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ABSTRACT Video object segmentation’s primary goal is to automatically extract the principal object(s) in
the foreground from the background in videos. The primary focus of the current deep learning-based models
is to learn the discriminative representations in the foreground over motion and appearance in small-term
temporal segments. In the video segmentation process, it is difficult to handle various challenges such as
deformation, scale variation, motion blur, and occlusion. Furthermore, relocating the segmentation target in
the next frame is difficult if it is lost in the current frame during the segmentation process. This work aims at
solving the zero-shot video object segmentation issue in a holistic fashion. We take advantage of the inherent
correlations between the video frames by incorporating a global co-attention mechanism to overcome the
limitations. We propose a novel reinforcement learning framework that provides competent and fast stages
for gathering scene context and global correlations. The agent concurrently calculates and adds the responses
of co-attention in the joint feature space. To capture the different aspects of the common feature space, the
agent can generate multiple co-attention versions. Our framework is trained using pairs (or groups) of video
frames, which adds to the training content, thus increasing the learning capacity. Our approach encodes
the important information during the segmentation phase by a simultaneous process of various reference
frames that are subsequently utilized to predict the persistent and conspicuous objects in the foreground.
The proposed method has been validated using four commonly used video entity segmentation datasets:
SegTrack V2, DAVIS 2016, CdNet 2014, and the Youtube-Object dataset. On the DAVIS 2016, the results
reveal that the proposed results boost the state-of-the-art techniques on the F1 Measure by 4%, SegTrack V2
by aJaccard Index of 12.03%, and Youtube Object by a Jaccard Index of 13.11%. Meanwhile, our algorithm
improves the accuracy by 8%, F1 Measure by 12.25 %, and precision by 14% on the CdNet 2014, thus
ranking higher than the current state-of-the-art methods.

INDEX TERMS Model adaptation, object detection, object tracking, reinforcement learning, video object
segmentation.
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I. INTRODUCTION

Video object segmentation (VOS) is a technique for auto-
matically distinguishing the objects(s) in the foreground
from the background in videos. Zero Shot Video Object
Segmentation (ZVOS) is very helpful for both application and
research since it does not need to interact manually during the
assumption phase. Inspite of the common challenges in video
processing (e.g., occlusion, object deformation, and backdrop
clutter, etc.), ZVOS is confronted with a new challenge:
how the primary objects can be correctly distinguished from
the complex background when there is no prior object
present. Two qualities are required for primary video object
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recognition. The objects in ZVOS should be recognized in a
single frame (locally prominent) and must appear throughout
the video sequence (globally consistent). Although the
primary objects at the macro-level are highly correlated
(the whole video), the camera movements, articulated body
motions, out-of-view movements, occlusions, and ambient
changes often create discontinuities at the micro-level (the
individual frames) (shorter video snippets). Consequently,
when dealing with problems caused by micro-level changes,
it’s better to depend on data from other frames (such as the
global consistency feature).

When we look from a global perspective at ZVOS, we re-
duce the ambiguity locally and identify the primary objects.
Even though it was the inspiration for most conventional
heuristic models of video segmentation [1], [2] it is not
preferred by the current Deep Learning (DL) based tech-
niques. The best performing deep models of ZVOS currently
focus mainly on the distinguishing feature of intra-frame.
The important objects in motion or appearance ignore the
global occurrence consistency across multiple frames. The
optical fluxes are typically calculated across a few frames
consecutively [3]-[5], [66] and are limited to the narrow
temporal receptive window. Even though recurrent neural
networks (RNNs) [8], [9] were created to retain data from the
previous frames, the processing of this sequential method is
not successful in exploring the intricate relationships between
distant frames effectively.

Most works in the Machine Learning (ML) domain
solve the VOS problem at the pixel stage, using Fully
Convolution Networks (FCN) to conduct dense pixel wise
classification for each image. Some researches focused
on the coherent classification of objects based on object
proposals. Despite extensive research in both the domains
of image and videos, several new techniques have a lot of
drawbacks. The supervised learning guidance serves as a
kind of teacher in models to handle individual structures or
group decisions sequentially. Supervised learning is a kind of
ML algorithm that trains computers to predict output using
labeled training data. As demonstrated by the labeled data,
a portion of the input data is already labeled with the desired
result.

The training data given as an input to the machines serve as
a supervisor in supervised learning, training the machines to
predict the output correctly. Abdulhussain ez al. [10] proposed
a temporal video segmentation (TVS) approach for reliably
recognizing various types of video transitions with low com-
putation cost and high recall values. The orthogonal moments
are used as features in detection of transitions in the proposed
technique. To improve the accuracy and speed of the TVS
technique, embedded orthogonal polynomial algorithms and
fast block processing are used to extract features. Li et al. [11]
proposed an Attention-Guided Network (AGNet) for adap-
tively strengthening the inter- frame and intra-frame features
for more accurate segmentation predictions. They added a
spatial attention module (SAM) to an adjacent attention mod-
ule (AAM) to a dilated Fully Convolutional Network (FCN)
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to imitate the feature correlations in spatial and temporal
dimensions.

Nakamura et al. [12] proposed a semi-supervised strategy
where they assumed a set of poorly labeled videos with
sparsely marked frames. The frames are supplied as input,
with the annotated frames being utilized to train a feature
extractor. The proposed method works by dividing the input
videos into small chunks known as primitive segments of
set length, which are then grouped using the visual charac-
teristics collected by the aforementioned feature extractor.
Wang et al. [13] introduced Noisy-LSTM, a novel model for
capturing the temporal coherence in video frames that can be
trained using ConvLSTMs from start to finish, as well as a
simple but successful training method that substitutes a frame
in a video sequence with noises.

Chakrobarty and Thounaojam [14] proposed a novel
shot boundary recognition method based on color and
gradient information. Luminance distortion and gradient
similarity are used to calculate the structural and contrast
changes of each frame. By using an adaptive technique
to detect the probable transitions between videos using an
adaptive threshold, the proposed approach accounts for the
impacts of changes in brightness and contrast-structure. Also,
Chakrobarty et al. [15] proposed a video segmenta-
tion method based on the mean luminance patterns and
CIEDE2000 color-difference and mean luminance patterns.
CIEDE2000 color-difference uses the lab color space, which
is efficient and trustworthy. The main benefit of the lab color
space model is that it can accurately recreate all of the avail-
able colors as viewed by the human eye. The highlights and
limitations of other TVS algorithms are mentioned in Table 1.

VOS is formalized as a conditional decision-making
process to tackle this problem. Two RL agent are employed
to calculate the attention summaries between the two feature
embeddings. If there are groups of frames, the agent
calculates the enhanced feature based on pair-wise co-
attention between the original frame and the correlation
information from the other N frames. The VOS model uses
this information for the update process and is further fed
into the segmentation network to find accurate segmentation
masks. Figure 1 shows the segmentation of three frames
in the DAVIS 2016 video dataset by our Reinforcement
Learning (RL) algorithm. As seen in the results in the 2" row
and 4" row, the boundary of our segmentation mask results
is clearly visible.

To select the optimal segmentation mask for the frames,
the features are fed into an RL model. Then the RL model
determines the best action and chooses the most suitable
mask for the current frame. Thus, an accurate segmentation
result is obtained by the segmentation model. The RL agent
learns to capture the complex correlations between a group
or pair of frames from the same video. This is achieved via
the use of a gated co-attention differentiable approach that
enables the network to pay more attention to informative
correlated regions while generating more discriminative
foreground features. Our RL model can give more accurate
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TABLE 1. Temporary video segmentation algorithm highlights and limitations.

S.No. Algorithm Name Highlights Limitations
1. Discrete Orthogonal Mo- It  utilizes fast block processing and  Soft transitions needs to be detected to guar-
ments [10] embedded orthogonal polynomial algorithms to  antee the use of algorithm for video object
extract the features. detection.

2. Attention-Guided Appends a spatial (SAM) and adjacent attention  Selection of more powerful backbones needs to

Network [11] module (AAM) on the top of dilated FCN, which  pe considered for replacing the upsample opera-
models the feature correlations in spatial and  tjon with a complex decoder for optimizing the
temporal dimensions. final boundary results.

3. Noisy-LSTM [13] Temporal coherence in video frames are leveraged ~ Technique should further explore the way to
by using convolutional LSTMs which replaces a  inject noises in model training and identify the
given video frame sequence with noises. types of noises.

4. Hierarchical tree [12] Proposed method assumed a set of weakly-labeled ~ Unknown category labels cannot be handled.
videos and hierarchical tree of the category labels
performed recursively at each tree branch.

5. Motion Guided Atten- Technique transfers information inherent in Incorrect foreground seeds are often discovered

tion [20] image-based instance embedding networks. on static objects when errors occur in “object-
ness only” mode.

6. SBD-Duo [14] Proposes a novel shot boundary detection tech- ~ Should extend the proposed system to address
nique using colour and gradient information. non-uniform illumination effect and eliminate

the effect of camera obstruction.

7. Visual Colour Informa-  Technique utilizes mean luminace pattern and  Should extend the proposed method for detect-

tion [15] CIEDE2000 colour-difference. ing wipes transition using the mean luminance
pattern.

8. Hybrid dual tree complex  Technique uses Walsh Hadamard transform  The structure suffers from a basic limitation

wavelet transform [21] (DTCWT-WHT) with Hybrid Dual-Tree Complex ~ when the authors examine the overall frequency
Wavelet Transform. response of each channel.

9. Color histogram [22] Local descriptors and the image color feature are ~ SURF matching is not performed for all adja-
combined in a kind of motion area extraction cent frames of each candidate segment frame by
algorithm. frame.

10. Deep CNN [23] Three stages are respectively used for abrupt de-  Variety of constraints present in the method for

tection, candidate boundary detection and gradual

transition detection.

filtering non-boundaries and the model process-
ing speed needs to be considered.

results for a testing frame when several reference frames and
correlations between the testing frame are utilized. When the
data is used only from a single testing frame, the results
are poor. Another advantage of our RL model is that it can
be used to supplement the training data. It enables a high
number of random frame pairings to be utilized inside a
single video. The proposed model also removes the necessity
for time-consuming and computationally expensive optical
flow calculations, because of the specified connections
between video frames. Finally, our RL model offers a single
framework for collecting rich contextual data from video
sequences from start to finish. To summarize, this paper
provides four significant contributions:

o We propose a single, end-to-end RL framework where
two RL agents are employed to calculate the rich fea-
tures between the video frames using the differentiable
co-attention mechanism. This helps in recognizing the
primary video foreground objects.

o The correlations are learned by the pair-wise co-
attention mechanism between the frame pairs, which is
further fed into the segmentation network to obtain
the optimal segmentation mask. We adopt the Deep
Deterministic Policy Gradient (DDPG) algorithm to
primarily train the agent in producing the correct object
segmentation masks.

o The RL agent calculates the correlations among the
video frames using the group co-attention mechanism,
resulting in a significant motion object pattern modeling
framework.
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« According to the final quantitative results, the suggested
methods outperform state-of-the-art methods in the F/
measure (F,) on the DAVIS 2016 dataset [16] by
2%, SegTrack V2 [17] by 12.03 %, and the Youtube-
Object dataset [18] by 13.11% for the FI measure.
Meanwhile, our algorithm outperforms the current state-
of-the-art methods evaluated on the CANET night
segmentation dataset [19], with an Accuracy (Acc) of
87.99%, Precision (Pre) of 94.01%, and F,, of 92.51%.

The remainder of the paper is organized as follows. Section II
describes the current state-of-the-art methods in video

segmentation. Section III gives our proposed RL technique
for segmenting the video objects. It involves modeling RL
actions, states, and rewards to enhance the performance
of the VOS by using a pair-wise co-attention mechanism.
Section IV describes in detail the Results and Discussion.
We finally conclude in Section V and give our future
directions.

Il. RELATED WORK
The VOS problem is addressed in a zero-shot unsupervised or
one-shot (semi-supervised) setting, depending on the degree
of supervision given during the test time. In this research, the
focus is given to the problem of ZVOS, which performs the
extraction of the primary object(s) and does not require any
intervention of humans in test time.

ZVOS rose from the long-studied issue of automated
VOS in the field of computer vision. Automated video
segmentation algorithms usually emphasize spatiotemporally
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FIGURE 1. Segmentation of 3 frames in the DAVIS 2016 video dataset by our RL algorithm. As it can be seen in the results in the 2"? row and 4% row, our

segmentation mask results are very clear.

connected groupings of video pixels and compact (consistent
motion and appearance). Motion analysis is one of the early
solutions [21], [22], and is based on assessing background-
induced motion patterns and geometry constraints. A wide
class of models based on trajectory are used for exploiting
the long-term motion information. The popular techniques
include super-voxels [24], temporal superpixel [25], and
hierarchical segmentation [26]. The researchers shifted their
focus towards video object pattern modeling after low-level
video over-segmentation. The signals related to objects like
object proposals [20], [23], [27] are used for the saliency
information [1], [28]-[30], and inference of primary video
objects are utilized. The example works above described
made substantial improvements in VOS. Still, hand-crafted
features’ limited representation capacity failed when the
heuristic assumptions were not applied.

Many methods [31]-[33] using DL features have recently
started to tackle the ZVOS problem, and are inspired by
the success of DL. The improvement in performance of
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these models are large weight fully connected topology
networks [31], [33], but are limited by the lack of learning
capabilities end-to-end. The research later focused on ZVOS
models that were constructed entirely on convolutional
neural networks. To differentiate between independent object
and camera motion, Tokmakov et al. [9] proposed using
a learnable motion pattern network. For recognizing the
background [7], Li et al. [6] used static images to train
an instance embedding network and then identified the
background [7] by incorporating motion-based bilateral
networks.

FCN are another popular method for combining appear-
ance data and motion for inference of objects [3]-[5],
[20], [34], [35]. Other research looked at ZVOS via exploring
robust network topologies [9], [20], [36] teacher-student
learning paradigm [37]. Wang et al. [38] created an attention-
guided ZVOS model after viewing a dynamic task, and
demonstrating the substantial relationship between moving
object patterns and human attention. These deep ZVOS
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models often provide excellent results, showing the usage of
neural networks advantages for this task. On the other hand,
they focus exclusively on the short-term temporal information
and ZVOS sequential nature, using the beneficial, cross-
frame correlation within videos and failing to take a global
view. During the ZVOS testing phase, target object(s) mask(s)
are often provided in a few frames or the first frame and
are sent to the future frames [39]-[42] automatically. Several
prior approaches have been proposed, including super-
trajectories [43], object recommendations [44], graphical
models [32], and so on. The results of DL algorithms are
promising and have dominated the field.

Test-time supervision is done for the models online, includ-
ing methods based on learning, which performs the models
fine-tuning online. Others include frame-by-frame mask
propagation [41], [45], [46] and propagation-based, which
rely on previous frame segments and function on a frame-
by-frame basis. Matching-based is another kind of common
stream, in which each frame is split based on its matching
connection/correspondence to the preceding frame [47].
Although many matching-based OVOS models use a Siamese
network architecture, our changes are substantial. Aside from
task parameters, our RL method captures the global and rich
correspondence by training the Siamese network between
groups or video frame pairs. The main aim is to utilize
the cross-frame correlations to assist automatic segmentation
and primary object recognition. RL is a machine learning
training method based on the reward of the desired behaviors
and punishing the undesired ones. At the same time, the
connections are captured between the matching-based OVOS
models between the first and subsequent frames.

Deep neural networks [48], [49] have been widely in-
vestigated for differentiable attention [50], [51], inspired by
human vision. The networks can use neuronal attention with
end-to-end training and focus on a subset of informative
inputs. Beginning with the neural machine translation [52]
and moving to a broad variety of NLP-related activities [48],
a continual development of attention mechanisms has been
witnessed in the field of natural language processing
(NLP). Later, a wide range of computer vision applications
utilized neural attentions, including object identification [53],
image captioning [54], video processing [55], visual recog-
nition [56], and visual dialogue [57], to name a few.
It has been shown that differentiable attention can capture
correlations/dependencies between the input components.

In particular, Chen et al. [58] proposed the use of
channel and spatial- wise attention for choosing an image
area dynamically while reducing the redundancy of the
feature channel. Self- attention beats LSTM and traditional
RNN in the sequence- to-sequence challenge, according to
Vaswani et al. [48] computed the solution at a place by
accessing all locations. A non-local operation was proposed
by Wang et al. [59] that may be thought of as a broader
kind of self-attention in a self-supervised environment.
Sun et al. [60] trained a mixed visual, linguistic model using
self-attention-based BERT. Co-attention mechanisms, a kind
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of differentiable attention, have recently been successful in
language and vision tasks [61], [62]. In this research, co-
attention techniques are used for efficiently mining the under-
lying relationships and projecting different modalities into a
single feature space. In this research, the RL agent captures
coherence across different frames by utilizing a co-attention
module, resulting in an elegant and unified VOS network
framework that focuses on the significance of identifying
video object information globally. The RL algorithm learns
from experience. Actor- Critic applies to a well-known RL
model that inherits several previous RL constructs focused
on values and policies, such as policy gradient and Deep
Q-learning. In computer vision applications, RL techniques
have been used to detect objects at the bounding box level
in various computer vision applications. Yun et al. [63] used
RL techniques to move the bounding box from the object’s
original position in the previous frame to the precise location.
To put it another way, the predicted action allows the sensor
to move away from its current site, and the next event is
measured using the new location. Zhang et al. [64] proposed
a new RL-driven model that can choose deep convolutional
layers based on the complexity of the current image, reducing
run time while maintaining precision.

The basic principle is that the less convolutional layers’
features are used to process the simpler frames. In contrast,
the fully convolutional layers’ costly and invariant deep
features are used to process the more complicated frames.
To find the best relation between the filter hyperparameters,
Dong and Yang [65] used the RL technique. Since conven-
tional continuous deep Q learning algorithms are challenging
to implement, they may help speed up the convergence phase.
Just one attempt to integrate RL into the role of VOS has been
made to our knowledge.

Chen et al. [66] created a new RL architecture that chooses
the bounding object box and the background box. Context and
object boxes are distinguished in the exploration, resulting in
distinct segmentation masks for an analogous segmentation
model. As a result, using the RL technique to choose the best
object context box pair for the best segmentation result is
usually appropriate. Unlike Sun et al. [60], who used RL to
determine the size of the quest area fed into the segmentation
network, our agent is capable of generating multiple co-
attention versions for capturing the different aspects of the
learned joint feature space

lll. METHODOLOGY

Our RL method can recognize the primary video objects
which appear throughout the video sequence and are
distinguishable in each frame. Our RL method formulates
the ZVOS problem as a co-attention approach, and a novel
co- attention Siamese Network is constructed to represent
it from a global perspective. Our method learns to capture
the complex correlations between a pair (or group) of frames
from the same video during training. This is achieved by using
a gated, differentiable co-attention mechanism, enabling the
network to focus on informative, correlated regions while also
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producing more discriminative foreground features. From a
global perspective, our RL method provides more accurate
results for a testing frame, i.e., it considers the correlations
between the testing frame and many reference frames. To be
more explicit, we first explore the co-attention between the
paired frames. Consequently, during the testing phase, the
pair-wise co-attention features of many inference frames are
concatenated to form a global representation. We describe a
group co-attention module directly constructed across several
frames. Based on the pair-wise co-attention module, we can
capture global information more naturally and elegantly.
Additionally, our RL model uses a large number of arbitrary
frames which helps it augment the training data.

The proposed model avoids the need for computationally
expensive and time-consuming optical flow calculations
since the video frame interactions are fully specified. Finally,
our model offers an end-to-end trainable framework for
collecting rich contextual information from video sequences
from start to finish. We demonstrate that our co-attention
strategy helps improve performance and focuses on the
importance of global information and its usability for ZVOS.
Our model can catch the rich relations between the video
frames due to the differentiable co-attention mechanism,
which is essential for distinguishing the key video foreground
objects. Our method also employs group co-attention for
extracting high and rich order correlations between video
frames, resulting in a more powerful moving object pattern
modeling framework.

The experimental results in the section IV infer that our
method can suppress similar target distractions and capture
the common objects even when no annotation is supplied
during the segmentation task. Our approach can handle the
sequential learning of data and can readily be applied to
various video analysis applications, such as optical flow
predictions and video saliency detection. We use a co-
attention strategy in our RL framework. The RL agent
encodes the correlations between video frames directly. This
enables our model to focus its attention on regions that are
often coherent, helping in the identification of foreground
objects and providing acceptable segmentation results. Our
method is able to detect the irregular objects in the standard
datasets. The coherent region are extracted finely and helps
in extracting good quality segmentation masks. We give an
overview of our RL method in Section A. In Section B,
the agent action is provided to calculate the pair-wise
co-attention summaries for the features obtained from the
feature embedding module. In Section C, the State and
Reward is given for the RL agent, while the training in
Actor-Critic Framework is given in Section D. In Section IV,
we give the analysis of Results and Discussion while
Section V concludes our work.

A. OVERVIEW

The main objective of the proposed work is to utilize RL for
zero-shot VOS. Unlike the current DL-based methods, which
primarily focus on learning the foreground representations,
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our approach uses RL to find the correlation between the
video frames. This helps our model attend the frequently
coherent regions and discover the foreground object(s), thus
producing good segmentation results. The RL agent evaluates
the correlation learning between any frame pairs from the
same video. It also helps assess the groupwise co-attention
mechanism, which addresses the high order relationship
amongst a group of video frames. The framework of our RL
model is shown in Figure 2.

E, and E,’s features are fed into the RL model to obtain
the optimal X, and X, for each frame to address the problem.
Two RL models are built to choose the most suitable X,
and X}, for each frame and choose the appropriate group co-
attention. A state s € §, a co-attention computation action
ay € Ay that helps in determining the value of X,, and a
computation action @ +y € A, that determines the value of
X}, a state transition function that is denoted as s’ = T'(s, A,,
A,), and a reward function g denoted by g(s, Ay, Ay).

The provided frames Fa and Fb are fed into a feature
embedding module to get E, and E;’s features. The two
RL agents then calculate the pair-wise co-attention module
and attention summaries that encapsulate the correlations
between E, and E,. E and Z are then concatenated
and passed to a segmentation module, which produces
the final segmentation predictions, i.e., the group co-
attention enhanced embedding is fed into the segmentation
network, the optimal segmentation masks Y, and Y, are
achieved. To mine the correlations between Fa and Fb in
their respective feature embedding space, the co-attention
mechanism [67], [68] is employed.

To begin with, the affinity matrix Ay between E, and E;,
is calculated in Equation 1 as follows:

As = Ef WEa ¢ RWVH)>(WH) (D)

where the weight matrix is We R®*C. Here E, € R ©
*WH) and E, € R ©*WH are represented by flattening
of matrix representations. Every column Eg) at position
i € {l,....,.WH} in E, represents the C dimensions feature
vector. Therefore, every entry of A¢ provides each row E}) and
each column E, similarity. Because, the W weight matrix is
a square matrix, it can be represented as a diagonalization of
W is calculated in Equation 2 as follows:

W =P 'DP )
where D is a diagonal matrix and P is an invertible matrix.
Then, it can be rewritten as follows in Equation 3:
A¢ = E[P7'DPE, (3)
Before computing the distance between any of their loca-
tions, the characteristic of each frame is linearly modified in
Equation 3. The projection matrix P becomes an orthogonal
matrix when the weight matrix also symmetric: P > P =1,
where I represents the identity matrix Cx C. To compute
symmetric co-attention we use the Equation below as follows
in Equation 4:
A = EfPTDPE,
At = (PE;,)"DPE, 4
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FIGURE 2. Overview of our RL framework based pair-wise co-attention in the phase of training. The frame pairs Fq and F, is fed as an input to the
feature embedding module for obtaining the two features Eq and Ep. Then, our RL agent calculates the co-attention summaries and finds the
correlations between the two frame embedded features Eq and Ep,. We adopt two actor-critic type model pairs to calculate the attention summaries
Zg and Zp,. Two roles are performed by the “actor-critic” framework which includes an “actor” role for generating an action and a “critic” role for
measuring how good the action is. Then a gating function is used for allocation of co-attention confidence to each attention summary. Finally, the
concatenation of the attention summary Z and the features E obtained from the embedded feature module is done and then handed over to the

segmentation module for producing accurate segmentation masks.

We project the features E, and E; into a common
orthogonal space while preserving their norm, according to
Equation 4. This characteristic has been shown to assist in
the removing correlation across many channels (i.e., the C
dimension) [69] as well as the enhancement of the network’s
generalization ability [70]. There is a degree of co-attention
on each channel. Furthermore, the projection matrix P can
be reduced to an I identity matrix and the weight matrix W
can be reduced to the diagonal matrix. W (i.e. D) can be
diagonalized into two diagonal matrices, D, and Dj. As a
result, Equation 4 can be re-written as channel-wise co-
attention in Equation 5 as follows:

A¢ = EIT7IDIE, = EfDITD,E, = (D,E})T> DyE,
5
This method can be compared to applying a channel-wise
weight to E, and E; before computing the similarity. This

lowers channel redundancy in a similar way to the Squeeze
and-Excite (SE) [71] method.

B. AGENT ACTION
The architecture of the proposed method comprises two RL
models that choose the best group co-attention enhanced
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embedding. To select the pair-wise co-attention X, the action
set Ay is utilized and for selecting X,, the action set Ay is
utilized. Ay it column contains the WH-length vector. This
vector depicts the relationship between the i’ feature in E;
and each feature (1....., WH) in E,. Using a softmax function,
the column-and row-wise normalized symmetric co-attention
is as follows in Equation 6:

f
Ac
f
Ar

softmax(Ay) € [0, 1]WH)*(WH)
softmax(Af) e [0, 11WH*WID) ©

Next, the attention summaries for the feature embedding
E, w.r.t. E; can be computed as follows in Equation 7:

Zy = EpSC=[Z2VZ2. ... ... YA ALY
. . WH o i
29 =By o AfY = > EVAY ¢ RC, )

where Zg) denotes the Zai’h column, ® indicates the matrix
times vector, A;(') is the " column of A{., E}’ indicates the
j™ column of E¥ and A}Jc is the j” element in Ajf(’) .The
corresponding co-attention enhanced feature is calculated as:
7, = EaAJ;.
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Given the subtle variations in appearance across input
pairs, occlusions, and background noise, it’s better to
calculate the information from different input frames rather
than treating all co-attention data identically. To accomplish
this, the network uses a self-gate technique for assigning
every attention summary with a co-attention confidence. The
gate inscription reads as follows in Equation 8:

fo(Za) = o (wrZy + by) € [0, 11VH,
fo(Zn) = o (wpZy + by) € [0, 1]V, ®)

where o is the logistic sigmoid activation function, by and
wy is the bias and convolution kernel, respectively. The f,
gate regulates the amount of data from the frame of reference
and can be learned automatically. The updation of attention
summaries is done once the gate confidences have been
computed and are described in the Equation 9 as follows:

La=1Zaxf (Za). Zn=17p*fe(Zn) ©))

where the channel-wise Hadamard product is represented
by ‘x’. As a consequence of these actions, a co-attention
structure with gates is formed. The resulting co-attention
representation Z is then concatenated with the original feature
E by the two RL agents to calculate the values of X, and X,
respectively in Equation 10 as follows:

Xa = [Z37 Ea] c RWXHX2C’ Xb — [Zb7 Eb] c RWXH><2C
(10)

where ‘[ ]’ denotes the concatenation operation. The pairwise
co-attention enhanced feature X calculated by the RL agent
is fed into a segmentation network to produce the final output
Y € [0, 1]V*H.

With respect to the reference group embedding [Eq,....
E,—1,E t1,...., Ey+1], the Equation below is the inference
feature embedding E,, based on group co-attention summary
in Equation 11 as follows:

Zo=1[E1,.....En_1,Enj1,. .. .. En+1]A§, € ROWH

(11

Each column in the Equation 11 above represents a linear
combination of reference frame embeddings, resulting in Z,,.
Z, now contains the whole information of the reference
group. By using Equation 8 and Equation 9, the gated co-
attention are calculated, and the concatenation of the co-
attention summary with the original features obtained from
the feature embedding is done by the RL agent as follows in
Equation 12:

Xy = [Zp, Ey] € RV*H>2C (12)

where E, is the enhanced group co-attention embedding
that is calculated by considering the feature of the original
frame and the correlation information of the preceding N
frames’ correlation information. By focusing on the group
as a whole, we can improve the features {X,Z}ﬁlvjll for all the

frames {F, }ivz"'ll .
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C. STATE AND REWARD

Since this method consists of two RL-based models, each
model employs a separate collection of states. The RL
model’s input is actually in states. The feature map is
produced by states obtained after extracting the features
from the feature embedding module. The attention summaries
are computed using the group-wise co-attention modules
that encode the correlations betweenE, and E,. Finally,
the concatenation of E and Z is done and given over to
the segmentation module to produce the final segmentation
process predictions.

The features E, and E, are obtained from the feature
embedding module in the provided input frames F, and
F;. Following that, the attention summaries for the feature
embedding E, with respect to E;, are computed. Co-attention
confidence is assigned to each attention summary by using a
self-gate technique. Concatenating the initial features E and
Z yields the final co-attention representation. For Frame F,,
the state f, is defined as follows:

stater, = feature{E,} + feature{Ey, AE}
+feature{fy(Za), Ea} (13)

In the case for the second frame F,, E, is used for
calculating the affinity matrix and the state is given by the
following Equation below as:

stateg, = feature{Eyp} + feature{E,, Ai}
+feature{fy(Zy), Ep} (14)

Finally, states state;, and states, will be fed into the
corresponding RL model and result in the actions to
choose the optimum values of group co-attention enhanced
embedding. The reward function is defined as r; = g(s;, ay,
ay), which helps in reflecting the final segmentation result
performance of each frame in the video sequence and is
given by:

a.l if A>0.1
851, e, @y) = !—a.l if A<0.1 ()
where A = loU (m;,k+1, yi)— loU (m; ., yt)

This Equation 15 reflects each of the final segmentation
results for every frame in the video sequence: where IOU
represents the Intersection-over-Union (IOU) between the
ground truth and the predicted ROI, thus indicating the
accuracy of the predicted segmentation’s mask.

D. TRAINING IN ACTOR-CRITIC FRAMEWORK

DDPG is an off-policy, model-free technique for continuous
action learning [90]. DQN (Deterministic Quality Network)
and DPG (Deterministic Policy Gradient) are combined in
this model (Deep Q-Network). It is based on DPG, which
is capable of operating over continuous action spaces and
employs DQN’s Experience Replay and slow-learning target
networks. The architecture of our actor-critic framework
is shown in Figure 3. For RL training, this analysis uses
the “actor-critic” framework. The ‘““actor-critic” framework
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FIGURE 3. Actor-Critic Network. When the current frame Fa is provided, the first step is to feed the state into the “actor” network, selecting the optimal
features for producing the segmentation masks. The corresponding reward rt will be rewarded once this phase is completed. The rt is calculated by the

10U that depends on the final results of the segmentation process.

consists of two parts: an “actor” who performs an action
and a ‘“‘critic” who evaluates the actor’s performance.
The proposed RL algorithm selects the optimum group
coattention enhanced embedding for each frame. We selected
two ‘‘actor-critic” type pairs to choose the segmentation
masks for each of the frames. We take four individual RL
models. When the current frame F, is provided, the first step
is to feed the state into the “actor” network, selecting the
optimal improved feature to produce the segmentation mask.
The corresponding reward rt will be rewarded once this phase
is completed. The rt is calculated by the IOU that depends
on the final results of the segmentation process. During the
phase of training, the “critic”’ network is generally updated
first, in the form of a value-based fashion which is shown as
follows: The critic updates the network, which is quite similar
to the average cost temporal-difference method of [72]:
Mt = A + Yk (8(Xk, Uik) (16)
where
i1 = re+yk(§(Xi, Ui+ QOkrk X1, U + 6) - (17)

In Equation 16 and Equation 17, Ax4+1 and A; represent
the weight of the critic model before and after the update,
and y is the learning rate of the critic model. g(Xi, Uy)
means the accumulated award of the state s, the critic predicts
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that before the update of the model. r, Xk, and Uy are the
reviewer’s criteria, and 6 is the actor’s vector r at time k.
(Xk, Uy) is the current state-action pair. Xi; is the new state
obtained after performing action Uy.

Ok+1 = Ok BT (ri )0k QX 1, Uk 1)k (Xit1, Uky1)  (18)

where (s, @) denotes the advantage function, and 6; and
Or+1 in Equation 18 denotes the weight of the “actor”
model after and before the transition, respectively. The
policymaking function Q(Xy+1, Uk+1) is a network with the
state s and unique action as inputs and the likelihood of
the chosen action happening in the state s as output. As a
result, the ‘“‘actor-critic” framework avoids the shortage of
policy- based and value-based approaches while training the
RL models. The RL models are modified during each pass
instead of waiting for the end of the process, thus significantly
minimizing the training time while preserving the stability of
RL training.

E. IMPLEMENTATION DETAILS

The backbone network for our RL framework is
DeepLabv3 [73]. In this network, the ASPP atrous
spatial pyramid pooling module and starting blocks of
the five convolutional layers from [74] ResNet form the
backbone network for our RL framework. The weight
matrix W of the co-attention modules is built by utilizing
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256 x 256 parameters of a fully connected layer. The SE-
like module is used to describe the channel-wise co-attention.
The 256 nodes fully connected layer is generated by the
channel weights by having 256 nodes in one branch, which
utilize a fully connected layer. It is then given as an input to
the other embedded branch feature. Equation 8 is achieved
using an 1 x 1 layer convolutional layer having a sigmoid
activation function. The following parameters apply to the
different co-attention variations as well as group co-attention.
The 3 x 3 convolutional layers form the segmentation module
(with the batch norm and 256 filters) and 1 x 1 layers of
convolutional for final segmentation prediction (with one
filter and sigmoid). Our RL model training process is split
into two parts. We fine-tune the feature embedding module
based on DeepLabV3 [73] is using the YouTube-Object
VOS [18] and SegTrack V2 [17] image saliency datasets by
using the static data.

The model is then fine-tuned using the DAVIS16 [10]
training videos. At this point, two frames are chosen
randomly from the same sequence and given to our RL model
to use as pairs in the training process. We choose six frames
at random for the training process of group co- attention from
the same sequence. To conserve GPU RAM, we compress the
frames in the input to 384 x 384 x 3, yielding a (56; 56; 256)-d
tensor as the frame’s initial feature embedding V. The whole
network is constructed using TensorForce, and the training
is done with the learning rate schedule and SGD optimizer
shown below: init /r = 1.5 x 10—4. The total epochs and batch
size are both set to 4 and 30. Data augmentation is beneficial
to static images and video data (e.g., flipping, resizing, and
cropping). All testing and analyses are performed on an Intel
(R) Xeon 2vCPU@2.2GHz and an NVIDIA GeForce 1080
Ti GPUs. It takes around 3 days to complete the training.
The network design has provided outstanding results for the
classification of ImageNet dataset and the segmentation of
the PASCAL tasks [29]. A batch of four frames, consisting of
three reference frames and one inference frame is used by our
RL model. A three frames batch, i.e., two reference frames
with just one inference frame, is used by our RL model and
is sufficient for generating promising results.

IV. ANALYSIS OF RESULTS AND DISCUSSION

To calculate the performance of the proposed model, the
basic statistical parameters used in other literature works have
been studied. Sensitivity (Sen) is calculated in Equation 19,
as follows:

Sen = TP/TP + FN (19)

It means that the number of object pixels in the image is dis-
tributed uniformly. Similarly, the parameter Specificity (Spe)
determines if the pixels proportions have been correctly
assigned to the image and is given in Equation 20 as follows:

Spe = TN /TN + FP (20)
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Algorithm 1 RL Based Video Object Segmentation

Input: Ground Truth of the First Frame extracted img(1)
The Length of the sequence M
The threshold T
Pretrained ResNet network
RL model to choose the pair-wise co-attention X,
RL model to choose the pair-wise co-attention X
Output: Segmentation result Y;
1: Fine-tune Segmentation Network on the frame extracted
F, and F}.
2: Extract the features E, and Ej; from the feature
embedding space
3:fort=2toL do
4:  Obtain the two RL machine learning states using
(3) and (4), respectively.
5:  Feed the states into the RL Model and calculate the
optimal X, and X,, values.
6: Obtain the Segmentation mask Y, for the two frames

F, and F}.

7: Update the segmentation networks on frames F; using
E,and Z,.

8: K; = Update(Seg_Algo, F;)

9: r()=m@)

10: end for

The rate of pixel classification referred to as Acc is
determined in Equation 21, as follows:

Acc = TP/TN + TP + FN + FP 1)

The spatial overlap that is present between the assigned
binary mask and the segmented image is defined as the

Dice coefficient (Dice), and is measured in Equation 22 as
follows:

Dice =2TP/2TP + FP + FN (22)

The Jaccard Index (J;;) is the relationship between the
binary labels and the pixel values analyzed for the input
image. The J,, is determined in Equation 23 as follows:

Jaccard Index = TP/TP + FN + FP (23)

It is generally used to measure the change in the center of
transformation present in the image axis. While true positive
(TP) correctly depicts the object pixels, false positive (FP)
incorrectly depicts non-object pixels as objects, true negative
(TN) depicts all incorrectly labeled non-object pixels, and
false negative (FN) represents the incorrectly identified object
pixels.

The F, is a measure of a test’s accuracy in binary
classification statistical analysis. It’s determined by dividing
the number of true positive results by the total number
of positive results (including those that were erroneously
recognized), and the Rec is the number of genuine positive
findings divided by the total number of samples that
could have been detected as positive. In diagnostic binary
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classification, Pre is also known as positive predictive value,
while Rec is also known as Sen. The F,, score is calculated
using the harmonic mean of Acc and Rec. The additional
weights generally score favor accuracy or memory over the
other. The conventional F,,, often known as the balanced
Fy, is the harmonic mean of Pre and Rec in Equation 24 as
follows:

_ 2 _ tp
" recall™! + precision™! - tp + %(fp + fn)

The Segtrack V2 dataset [17], the DAVIS 2016 dataset [16],
and the Youtube-Object dataset [18] are all used to
test the proposed RL segmentation method. The DAVIS
2016 dataset contains 50 high-quality video sequences and
3455 frames that address a wide range of VOS issues,
including transitions, occlusions, and motion blur. 30 DAVIS
2016 video sequences are used for training, and 20 video
sequences are used for analysis. Each video series in
DAVIS 2016 has only one object instance that is annotated.
In contrast, the DAVIS 2017 dataset expands on the DAVIS
2016 dataset by annotating several elements in a single frame.
The proposed approach is limited to the DAVIS 2016 dataset
and only considers single instance segmentation. This dataset
contains 155 video sequences, with a total of 570,000 frames
in the Youtube-Object.

The YouTube-Objects dataset contains videos retrieved
from YouTube after looking for ten distinct object types’
names. There are around 9 to 24 videos for each class.
Each video is approximately 30 minutes and 3 seconds long.
While the videos are annotated indirectly, we guarantee each
includes at least one object from the relevant class. The
video sequences are then separated into ten categories. The
Youtube-Object is commonly used solely for analysis since
the training and test sets are not isolated. By comparing
the Youtube-Object dataset to the SegTrack V2 dataset, the
occlusions outnumber the appearance changes in around
14 video frames. The area similarity J, and contour
accuracy Fj, are the calculation parameters. Other state-
of-the-art semi-supervised and unsupervised VOS strategies
are now being used to test the proposed study, including
Lucid- Tracker [75], STV [76], MSK [77], ObjectFlow [17],
TRC [30], CVOS [85], KEY [25], MSG [86] and NLC [1].
Our results are compared with these methods and our
quantitative results outperform these methods in terms of
Jn and Fy,. On the CANET 2014 night video dataset, the
comparison is made between the ground truth segmentation
and the segmentation generated by the proposed approach.
It is then calculated for each frame in the night videos.

This helps us to evaluate the output of our method with
the current state-of-the-art approaches. The results reflect
the error flow over time and highlighting the points of
failure [78]. In each method, deep neural networks evaluate
the necessary parameter values and add the best features from
the training data. These algorithms are trained and tested
on two partitions of the same sequence. The deep learning
network has poor generalization over unseen scenes due to

(24)
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a lack of annotated datasets. Our system was trained using
CDNet videos, and it demonstrated strong generalization
performance. In the fact that the current methods are
mostly supervised, our method outperforms many of these
methods. Our RL learning system is inherently more robust
to relevant shifts in the frames than various methods such as
COLBMOG [79], EFIC [80], and C-EFIC [81] based on Rec
and Pre values. The Rec and Acc values for our method are
0.8799 and 0.9401, respectively. This means that our method
has correctly obtained the segmentation masks and performs
well compared to the other methods. Our RL agent is capable
of making autonomous decisions with strong accuracies
and Pre.

Figure 4, Figure 5, Figure 6, Figure 7 depicts the
comparison of the foreground masks which are generated
by our proposed RL method, EFIC [80], C-EFIC [81], and
COLBMOG [79]. In Figure 4, from top to bottom, these
images display the initial frame (Input), ground truth (GT),
and foreground segmentation mask effects of our proposed
RL method, EFIC [80], C-EFIC [81], and COLBMOG [79]
for the frames numbered 1056 and 1220 of the winterStreet
video. The misclassified pixels are highlighted in red.
The quality of the segmentation masks provided by our
approach and all the other three proposed methods are
somewhat similar for frame 1056, which is a “simple”
frame. In contrast, our RL method performs significantly
better than the other approaches for frame 1220, which is a
“hard” frame to detect. These qualitative results demonstrate
our method’s superior performance in strong reflections
and the camouflaged objects originating from the street’s
headlights.

From left to right in Figure 4, it contains the bridgeEntry
1662nd frame, busyBoulvard frame number 820, fluid-
Highway frame 443, frame 2665 of streetCornerAtNight,
frame 1636 of frame tramStation video, and frame 1278 of
winterStreet video. The methods evaluated on these frames
determine the shape of the cars in these videos. Our method
can accurately determine the car’s shape and flashlight
(which is the front lightbox that emits light). This demon-
strates the better performance of our RL method to extract the
vehicle’s shape. The red color highlights pixels that have been
incorrectly labeled. Because the CDnet Night Videos dataset
contains a wide range of obstacles, it’s also essential to test
our RL method’s success in other difficult scenarios, such as
shadows and complex backgrounds.

Figure 5 shows the comparison of our method’s results
with COLBMOG [79] for the input image. As it can
be seen, our method segmentation mask is more accurate
than the COLBMOG [79] method. In the second row the
Figure 5 shows our RL algorithm performing significantly
well than the COLBMOG [79] method. In the segmentation
mask extracted, even the hands are visible clearly with our
method. Figure 6 depicts the qualitative segmentation masks
proposed by various VOS approaches. Our RL agent can
accurately retrieve the primary objects by calculating the
co-attention summaries that takes into account the global
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FIGURE 4. Example of segmentation masks for COLBMOG [79], C-EFIC [81], and EFIC [80], and the corresponding ground truth (GT), for the night
videos from the CDnet 2014 dataset. Our method performs well than the current existing methods. As seen from the results it can be seen that the
segmentation masks from our results are quite clear and our method is able to segment the objects more clearly. Even the headlights of the car
are visible with our RL method, and the shape detected by our algorithm is quite similar to the Ground Truth.

temporal information (s). The agent can deal with fast motion
scenarios (e.g., packour) and cluttered backgrounds (e.g.,
dancingtwirl).

Our RL approach emphasizes the primary subject while
minimizing the comparable object distractions using both
videos and static saliency images. This technique fits well
in video clips with a lot of variation in the presence of the
target entity, such as the camel and breakdance videos. Our
method successfully separates the target object from many
other similar items, mainly when they are near together, as
in the camel series. Since the SegTrack V2 and Youtube-
Object datasets do not distinguish between the training and
test sets, both of these video sequences can be included
for the evaluation of VOS approaches. Figure 7 shows
the segmentation masks for the various methods such as
COLBMOG [79], EFIC [80] and C-EFIC [81]. As it can be
seen from the figure our method performs much better than
the other method, giving clear Region of Interest (ROI).

Table 2 gives the average metrics for each of the videos
and across the overall set of videos for our RL learning
method. As seen in Table 2, the average F, in the
streetCornerAtNight dataset for the first half of the daytime
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videos is 0.9251, which is higher than COLBMOG [79]
(0.7853), C-EFIC (0.7223) [81], and EFIC (0.6704) [80]. The
values of other statistical measures are significantly higher
than the other methods. The Night Videos genre is devoid of
dynamic surroundings, which are significantly challenging
to work with. With values of 0.9251 (bridgeEntry), 0.9401
(busyBoulvard), and 0.8378 (fluidHighway), we were able
to achieve higher F,, averages for all video categories of
Dynamic Background (DB) type, putting us well ahead of the
methods evaluated on these video categories. This is an error
measure instead of the F},, so a lower value means better Acc.
As it can be shown in the most challenging conditions, all
algorithms fail in the same frames. In these frames, our RL
method performs significantly well than the other state of the
art methods evaluated on these dataset.

As seen in Table 3, our approach outperforms the others
on the DAVIS 2016 dataset, SegTrack V2 and Youtube
Object datasets. Our method is compared with eight deep
learning models [3]-[5], [8], [9], [9], [36], [89], and eight
conventional methods [1], [20], [25], [85]-[88], all of which
are based on the DAVIS16 benchmark [17]. This shows that
our method is more effective in terms of integrating the
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FIGURE 5. Our methods results compared with the COLBMOG [79] method for the Input Image. As it can be seen, our method segmentation mask
is more accurate than the COLBMOG method in both the first and the second row.

TABLE 2. Average metrics for each of the CdNet 2014 videos dataset and across the overall set of videos for our RL method.

Video Spe FPR
streetCornerAt-Night ~ 0.9231 0.0769
tramStation 0.9133 0.0757
winterStreet 09114 0.0786
fluidHighway 0.9266 0.0734
busyBoulvard 0.9345 0.0655
bridgeEntry 0.9041 0.0959
Average 0.9188 0.0776
St. Dev. 0.01022  0.00920

Sen FNR MCC Pre Fm

0.8750 0.1250 0.7943 09333  0.9251
0.8690 0.1310  0.7899  0.9267 0.9401
0.8742 0.1258 0.7906 09112 0.8378
0.9016 0.0984 0.8229 09451 0.9010
0.9059 0.0941 0.8393 09895 09519
0.8635 0.1365 0.7654 09171 09107
0.8815 0.1184 0.8004 09371 009111
0.01620 0.1172  0.0264 0.0258  0.0039

information common for the inference of mask. We infer
that our RL method considers more information related to
cross-frame relation. Compared to previous state-of-the-art
methods, this technique raises the mean area similarity J,,
on the Seg-Track V2 dataset by 12.03%, demonstrating the
usefulness of RL models when selecting online adaptation
ROIs. The proposed method also improves the mean-field
correlation J;,, by 13.11% on the Youtube-Object dataset.
The grid objects (such as trains and aircraft) and non-grid
objects are the two types of categories in Youtube-Things
(e.g., Cat, Bird). Despite the fact that the objects in the latter
class often undergo fast appearance change and shape defor-
mation our RL method maintains and captures long-term
dependency better than any other method evaluated on this
dataset.

The proposed approach outperforms the other methods on
the DAVIS 2016 dataset with an F,, of 91.85%. The values
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of J,, on the three datasets are 90.68%, 89.63% and
92.61% for DAVIS 2016, SegTrack V2 and Youtube Object
dataset respectively. Our approach can handle significant
appearance variations caused by interacting objects, size
differences, appearance change and background clutter.
Because all of the techniques investigated, including optical
flow fusion in FSEG [4], multi-tasks estimation in SFL [5]
and ConvLSTM in PDB [8], we use the temporal information
to estimate the segmentation mask. Our RL agent has the
benefit of leveraging temporal correlations through the co-
attention mechanism which becomes apparent from a global
perspective. Our method can capture temporal coherence and
differentiate between foreground and background objects.
The better performance of our RL model is due to the group
co-attention calculated by our agent which learns the fusing
and capturing of the correlation information from multiple
reference frames.
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FIGURE 6. The segmentation masks for the various methods. As it can be seen from the figure our method performs much better than the other
method, giving very clear ROIs. Our RL method helps in easy detection of all the segmentation masks for the ROIs taken into consideration.

In Table 4, the validity of the suggested approach is shown
by the fact that our algorithm runs better than the other
approaches. The quantitative results for the average value
metrics to evaluate the night video dataset segmentation
results are compared with the other state-of-the-art methods.
In this, we assess the foreground segmentation results by
using around seven metrics that are well-known and are based
on the number of correct and incorrect classified pixels.
The seven measures used are Spe, Rec, FalsePositiveRate
(FPR), FalseNegativeRate (FNR), Sen, and F,,,. We calculate
and evaluate the overall success of our method using these
various parameters. The metrics for each video group are
then measured to ensure that our RL approach is performing
well. We also calculate the average metrics in addition to the
calculation of statistical metrics for each video. The average
F,, for each video and the entire set of other videos are shown
in Table 4. The standard deviation of a group of videos is
often measured. When we do a significance test such as the
FriedMan test on each of the experimental outcome, we infer
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that the total ranks values of the respective column sum up to
34,25, 50 and 52. After calculating the p value, we find that
the value is 0.00042, which is less than 0.05. This suggests
that our results are significant.

Our system consistently outperforms the COLBMOG [79],
C-EFIC [81], and EFIC [80] approaches in terms of F;, rank-
ing, with a 16.8 % relative overall F-Measure improvement
over the previously suggested strategies, COLBMOG [79],
a 25.74 % relative overall F-Measure improvement over
C-EFIC [81], and a 27.03 % relative overall F-Measure
improvement over the EFIC [80]. Our RL method outper-
forms the other approaches in all video types, including
bridgeEntry, busyBoulvard, and fluidHighway. Just a few red-
marked regions in Figure 4 infer that our algorithm can extract
the shapes with great precision. COLBMOG is focused on the
low complexity color-based classification algorithm BMOG.
Due to the low-quality video with visible compression noise,
it produces inaccurate textures and has a significant effect
on texture representation. The statistical measures infer that
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TABLE 3. On the DAVIS 2016, SegTrack V2, and Youtube-Object datasets, the quantitative results of our RL method are compared with the other
state-of-the-art methods. Our method performs relatively well in comparison with the other methods.

Method DAVIS-16 Jm DAVIS-16 Fm
PreMVOS [82] 84.9 88.6
OnAVOS [83] 85.7 84.8
CINM [42] 83.4 85.0
Lucid [75] 83.7 -
MSK [77] 79.7 75.4
OSVOS [40] 79.8 80.6
STV [76] 73.6 -
ObjFLow [16] 68.0 -
ARVOS [84] 87.1 86.1
SAG [27] 42.6 38.3
TRC [30] 473 44.1
CVOS [85] 48.2 44.7
KEY [19] 49.8 42.7
MSG [86] 53.3 50.8
NLC [1] 55.1 52.3
CUT [87] 55.2 55.2
FST [88] 55.8 51.1
SFL [5] 67.4 66.7
LMP [9] 70.0 65.9
FSEG [4] 70.7 65.3
LVO [3] 75.9 72.1
ARP [89] 76.2 70.6
PDB [8] 77.2 74.5
LSMO [9] 78.2 75.9
MOT [36] 77.2 77.4
Our RL Method 90.68 91.85

SegTrack V2 Jm Youtube Object Jm

66.7 77.4

77.1 78.4
76.8 76.2
72.1 75.6
65.4 783
78.1 -
74.1 77.6
77.6 79.5
38.6 70.9
49.3 69.3
54.0 73.6
59.1 86.2
61.6 78.0
55.8 81.7
57.5 65.6
64.9 60.5
81.4 712
85.0 70.6
83.0 76.0
77.1 56.1
79.2 81.0
73.8 80.0
83.4 63.8
83.5 65.4
89.63 92.61

TABLE 4. Average metrics across the overall set of videos for our RL Method, COLBMOG [79], C-EFIC [81], EFIC [80].

Metric EFIC[80] C-EFIC [81]
Re 0.6704 0.7223
Sp 0.9893 0.9866
FPR 0.0107 0.0134
FNR 0.3296 0.2777
Pr 0.6869 0.6636
F-measure  0.6548 0.6677

COLBMOG [79] _ Our Method
0.8047 0.8799
0.9889 0.9618
0.0111 0.0382
0.1953 0.1184
0.7287 0.9401
0.7564 0.9251

our system outperforms other approaches in these uneven
datasets. The proposed system’s Acc and Pre scores also
raise the F,, value, which is considerably better than the
other methods. Compared to different algorithms, our RL
algorithm has a lower standard deviation of the F,,, across the
entire range of images, suggesting better efficiency. The F,,
is found to be 0.0552. In the COLBMOG [79] method, the
BMOG model is used. The contribution of the value-added
applied by COLBMOG to the device’s overall performance
is apparent when contrasting the F,, obtained by BMOG for
the Night Videos segment is 0.4982, with the one received by
COLBMOG [73] (0.7564).

For video datasets, our method outperforms other meth-
ods in both qualitative and quantitative terms, with some
promising results in pedestrian segmentation. It detects the
dark region at the bottom right of the images accurately.
Our results for the fluidHighway video, a low-quality video
with visible compression noise that produces false textures
and directly affects texture representation, are excellent.
Our system outperforms the other approaches by a broad
margin, in all the challenging cases. Our method has a
significantly lower standard deviation of the F,, over the
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entire continuum of videos, implying more accurate Pre
across various obstacles. These statistical measures serve as a
key metric for inferring the better performance of our method.
We evaluate our system’s Acc in some more complex cases,
such as shadows and complicated backgrounds. According
to ablation studies, the proposed method outperforms current
methods since it uses the co-attention mechanism. We pro-
pose a co-attention mechanism-based RL framework using
Siamese Networks. The Siamese neural network (sometimes
referred to as a twin neural network) is a kind of artificial
neural network that uses the same weights to produce
identical output vectors while processing two different input
vectors. Table 5 gives the average performance metrics for
the different categories of DAVIS 2016 video dataset. Our
method performs relatively well for all categories of videos.

Our VOS approach can achieve long-term, difficult to
achieve outcomes. The model fix mistakes made during the
training phase. Once the model has resolved an error, the
likelihood of the same error happening again is very low.
Our RL method strikes a balance between exploration and
exploitation. Exploration is the practice of searching for
new samples and exploiting the promising areas explored
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TABLE 5. Performance Metrics for the different categories of videos. The performance metrics are Acc, Dice, Fm, Jm, Matthews Correlation Coefficient

(MCC), Pre, Sen and Spe.

Video Acc Dice Fm

camel 0.8893 09185 0.9185
breakdance 0.8491 0.8052  0.8052
motor-crossjump ~ 0.9180  0.8305  0.8305
soapbox 0.8597 0.8694  0.8694
bmx-trees 0.8295 0.7601  0.7601
dance-twirl 0.8704 0.8969  0.8969
drift chicance 0.9563 0.9543  0.9543
drift-straight 0.8299 0.8554 0.8554
scooter black 0.8002 0.8214 0.8214

Im MCC Pre Sen Spe

0.8493  0.74599 09191 09179 0.8284
0.6739  0.6829 0.7838  0.8278  0.8260
0.7101  0.7777 0.8677  0.7963  0.9590
0.7690  0.7180 0.8612 0.8778  0.8392
0.6131  0.6308 0.8045 0.7204  0.8950
0.8130  0.7230 0.8863  0.9077  0.8094
09126 09126 09615 0.9472  0.9648
0.7474  0.6626 0.7959 0.9246  0.7169
0.6969  0.6051 0.7670  0.8841  0.7096

Input

EFIC GT

C-EFIC

OUR METHOD COLBMOG

FIGURE 7. Comparison of our segmentation masks with COLBMOG,
C-EFIC and EFIC. The segmentation masks calculated by our method is
better as compared to the other state of the art methods.

during exploitation. Most machine learning algorithms do
not maintain this balance. Furthermore, the mentioned issue
is a general problem in various video-related tasks, and
our proposed RL approach can be applied to other video-
related tasks. The stronger the match between our predicted
objects and the ground truth, the higher the value of Pre. The
main advantage of an encoder-based Siamese network over a
regular encoder network is the ability to quickly detect similar
target objects and foreground information propagation. With
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ZVOS, the Siamese network function performs well. As a
consequence, it can entirely replace online fine-tuning while
also substantially speeding up the segmentation process. The
segmentation accuracy is higher than the online fine-tuning,
and the Siamese network can achieve the speed-accuracy
trade-off. As a result, the amount of error produced during
the segmentation process is reduced. The error minimization
function has been extended to various other video-related
functions, enabling the current frame’s output to monitor the
output of subsequent frames. In several other VOS methods,
the current frame’s segmentation results are paired with the
information from the next frame. Our technique benefits from
the use of the error minimization process.

RL algorithms have their state space, function space,
transfer process, and reward defined. From this vantage point,
our state-space comprises the assignment network’s fixed
inputs, including normal (image, flow, etc.) and unique to
the current proposal inputs (current mask, appearance, etc.).
It can be seen from the results, our method needs much
less training data (especially video data) than other methods
like LVO [3], FSEG [4], OBN [7], LSMO [9], MOT [36]
while still obtaining better results. DDPG is composed of
two models: actor and critic [90]. Rather than the probability
distribution over the actions, the state is given as an input
to the actor (policy network) and outputs the exact action
(continuous). The state and action is given as an input to
the critic and it produces a Q-value as an output. The term
“deterministic”’ in DDPG refers to the fact that the actions
are computed directly by the actor rather than utilizing
a probability distribution across actions. We also compare
our computational time and hardware resources required for
various deep architectures with our RL method.

The methods taken for comparison are SegNet [91],
VNet [92], UNet [93] and Autoencoders [94]. Our RL algo-
rithm performs significantly better than the other methods
in terms of GPU training memory, GPU inference memory,
forward pass, and the backward pass time with a value
of 406OMB, 2700MB, 102.22ms and 144.49ms. From the
results we infer that our RL algorithm can solve the complex
problem of VOS in the night video dataset. Our method
does not need a large number of scene flow images (such
as those used in LVO [3] and LSMO [9] to train an optical
flow module since it takes the video frames as input. Our
method benefits from the natural data augmentation property
of our Siamese network-based learning method. Our method
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also outperforms FSEG [4], LSMO [9], MOT [36] which all
need extra video datasets. Our method also outperforms the
PDB [8] with the same training data, showing the importance
of global knowledge for ZVOS tasks.

V. CONCLUSION

Our RL model automatically recognizes and isolates the
major object regions in each frame of a video. Unlike
the conventional methods, which focused on sequential
and local data, this research emphasizes the significance
of the global co-attention mechanism. We propose our
RL model to capture temporal coherence by gathering
correlation information between frames group (or pairs)
via a differentiable co-attention mechanism. The proposed
method identifies the significant background objects for each
frame, capturing the temporal correlation across frames. Our
model can capture similar objects and minimize comparable
target distraction even when no annotation is given during
segmentation. We can extend our RL model to other video
analysis applications such as video saliency detection and
optical flow estimates. In the future, more powerful co-
attention mechanisms can be exploited and the idea of meta-
learning can be incorporated into the design. The algorithm
can be tested for the detection of the primary objects in more
complex scenarios. Our RL method ranks first in the CDnet
“Night Videos” with an F,, score of 0.9251. This makes it
the best performing method for the segmentation of irregular
objects in night video datasets. The results reveal that the
proposed results boost the state-of-the-art techniques in the
F1 measure on the DAVIS 2016 dataset by 2%, SegTrack V2
by a Jp, of 12.03%, and on the Youtube Object dataset by a J;,
of 13.11 %. Meanwhile, our algorithm achieves an accuracy
of 87.99%, precision of 94.01%, and F,, of 92.51% on the
DAVIS 2016 dataset, thus ranking higher than the current
state-of-the-art methods on the video segmentation datasets.
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