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ABSTRACT Automatic medical image segmentation is a critical tool for medical image analysis and disease
treatment. In recent years, convolutional neural networks (CNNs) have played an important role in this
field, and U-Net is one of the most famous fully convolutional network architectures among many kinds
of CNNs for medical segmentation tasks. However, the CNNs based on U-Net used for medical image
segmentation rely only on simple concatenation operation of multiscale features. The spatial and channel
context information is easily missed. To capture the spatial and channel context information and improve
the segmentation performance, in this paper, a spatial and channel attention network (SCA-Net) is proposed.
SCA-Net presents two novel blocks: a spatial attention block and a channel attention block. The spatial
attention block (SAB) combines the multiscale information from high-level and low-level stages to learn
more representative spatial features, and the channel attention block (CAB) redistributes the channel feature
responses to strengthen the most critical channel information while restraining the irrelevant channels.
Compared with other state-of-the-art networks, our proposed framework obtained better segmentation
performance in each of the three public datasets. The average Dice score improved from 88.79% to 92.92%
for skin lesion segmentation, 94.02% to 98.25% for thyroid gland segmentation and 87.98% to 91.37%
for pancreas segmentation compared with U-Net. Additionally, the Bland—Altman analysis showed that our
network had better agreement between automatic and manually calculated areas in each task.

INDEX TERMS Deep learning, multiscale contextual information, attention, medical image segmentation.

I. INTRODUCTION

Medical image segmentation is an essential tool for cur-
rent clinical applications, such as computer-aided diagno-
sis/detection (CAD) or therapy plan systems (TPSs) [1], [2].
Automation of medical segmentation can increase the
speed and efficiency and greatly reduce tedious and time-
consuming work for doctors. In brief, the main target of
medical image segmentation is to distinguish the target region
of interest from the background effectively. However, it is
a challenging task due to several factors. First, medical
images are collected by different acquisition facilities and
usually have low imaging quality, leading to incomplete
segmentation or excessive segmentation. Second, some
segmentation targets usually have a wide variety of shapes
and scales from patient to patient, making it difficult to
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construct excellent performance. Additionally, some targets
of interest to be segmented have a wide range of orientations
and positions in the context of medical images, such as the
pancreas in magnetic resonance imaging (MRI) [3]-[5].

In recent years, deep learning has become the mainstream
research method in many fields, and deep convolutional
neural networks (CNNs) have attracted much attention from
researchers in the field of medical image segmentation
because of their good performance. Compared with tradi-
tional medical image segmentation methods, the ability to
extract the features automatically helps CNNs learn from the
obtained dataset. Many state-of-the-art works have achieved
noticeable performance in medical image segmentation tasks.
However, there are still some problems with CNNs. First,
the weight-sharing design of CNNs between the same input
feature layer and output feature layer easily weakens the
learning ability of CNNs for complex textures and shapes.
At the same time, the increased number of channels causes
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FIGURE 1. An overview of our proposed SCA-Net.

redundant computation and memory consumption. Second,
with the depth growth of CNNs, the network becomes hard
to train, and the risk of gradient disappearance is increased.
Third, continuous pooling operations cause important local
and global context information to be lost. To efficiently
enhance the network segmentation performance for the
network constructed with convolution operation, some ideas
have been fused in CNNs and showed signs of progress
in the medical image segmentation field. For instance,
U-Net [6], one of the most popular architectures in the
medical image segmentation field, employed a symmetrical
U-shaped structure with skip connections to concatenate mul-
tiscale feature maps from low-level and high-level layers. [7]
employed a dilated convolution operation with multiple
different dilation rates to extract contextual feature maps. [8]
applied a fully connected CRF to maximize labeling similar
pixel points and modeling the spatial contextual feature
relationships in object classes. Although these methods
enhanced the CNNs’ feature extraction ability, the descriptive
information for spatial features and channel features, which
are very useful for medical image segmentation, is still
limited.

To learn more local related features and overlook irrelevant
details from the feature maps, several variants of attention
mechanisms have been proposed and have achieved better
performances in computer vision tasks [9]-[13]. Attention
U-Net [13] employed the attention gate (AG), which fuses
multistage contextual information from the encoder and the
decoder. AGs learn to suppress the irrelevant characteristic
response in the background while focusing on target regions.
SE-Net [14] employed the SE-block, which is a kind of
channel attention mechanism. It recalibrates the channel
feature maps, assigns more weights to important feature
channels and restrains irrelevant channels. The semantic seg-
mentation methods proposed in [15] and [16] utilized similar
ideas to enhance the network segmentation performance. [17]
and [18] introduced an attention mechanism into the deep
adversarial learning framework for capturing more contextual
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information. The results obtained by these works demonstrate
the effectiveness of attention modules for segmentation tasks.

Inspired by previous works of CNNs on medical image
segmentation, this paper introduces multiscale spatial and
channel information to achieve better segmentation perfor-
mance for medical images. Based on the encoder-decoder
architecture and the attention mechanism, we proposed a
spatial and channel attention network (SCA-Net) for medical
image segmentation tasks, which is shown in Fig. 1. In SCA-
Net, two novel attention blocks are constructed for capturing
the spatialwise and channelwise relationships. One is the
spatial attention block (SAB), and the other is the channel
attention block (CAB). The two blocks are integrated into
the decoder. The SAB learns to focus on the target spatial
regions and ignores the irrelevant background by resigning
each pixel weight. The CAB emphasizes the relativity of
different channels, which redistributes the critical channel
information and overgoes unrelated channel information.

In summary, the main contributions of our work are
organized as follows:

1) We propose two attention blocks: a spatial attention
block (SAB) and a channel attention block (CAB). The SAB
is supported to recalibrate the features of spatial context
information, and the CAB is supported to highlight the
relevant channels and restrain the irrelevant channels.

2) The proposed blocks SAB and CAB are integrated in
a novel network named SCA-Net. The ablation study shows
that the proposed blocks can effectively capture the features
for the targets of interest to be segmented.

3) Our proposed method was verified on three different
medical image segmentation tasks. The experimental results
show that SCA-Net has superior performance.

Il. RELATED WORK

A. CNNs FOR IMAGE SEGMENTATION

Convolution is the core operation of CNNs. Without manually
selecting features or prior knowledge, CNNs express the
ability to learn features from acquired datasets automatically.
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In recent research, CNNs have been widely applied in differ-
ent tasks [19]-[21]. By deepening the CNN layers and using
ReLU-+dropout, AlexNet achieved the best classification
results at that time [22].

By replacing the last fully connected layers of classifi-
cation CNNs with convolution layers, fully convolutional
network (FCN) architectures have made significant progress
for natural semantic segmentation, such as DeepLab for
semantic image segmentation [23]. Subsequently, Seg-
Net [24] proposed the encoder and decoder architecture,
which employed CNN as the base unit and achieved state-
of-the-art performance for semantic image segmentation.
However, the CNN performance is still limited by position-
invariant convolutional kernels, without attending to spatial
and channel information, which are very important for
segmenting objects.

B. MULTI-SCALE INFORMATION FUSION

In computer vision tasks, rich contextual features extracted
from multiscale information help the network achieve better
segmentation performance. Many methods using multiscale
information have been proposed and applied to 2D and 3D
medical image segmentation. Similar to [24], the structure
of U-Net [6] adopts a symmetrical encoder and decoder
architecture with a skip connection to perform 2D medical
image segmentation. To date, many models have been pro-
posed based on U-Net, including U-Net++ [25], DoubleU-
Net [26], and DUNet [27]. They have been successfully
applied to different 2D medical image segmentation tasks.
At the same time, 3D U-Net [28] and V-Net [29] were
proposed for 3D medical image segmentation tasks.

To compensate for lost feature details during the down-
sampling operation, dilation convolution [30] with different
rates enlarges the receptive field to capture more contextual
information [31]-[34]. For instance, CE-Net designed a
context extractor module to learn contextual semantic infor-
mation [31]. It generated more presentive feature maps. [33]
learned local geometric details using the cascaded pyramid
architecture, which was fused in dilation convolution with
different dilation rates. However, the scan area of dilation
convolution is not continuous. For small targets, the gain
is not worth the loss. Less attention has been paid to the
interrelationship between spatial and channel characteristics.

C. ATTENTION MECHANISM

The attention mechanism has proven to be an efficient
method to enhance CNN performance [35]. It mimics the
biological observation process of paying attention to more
detailed information about the desired target and suppressing
useless information. [9] was the first to propose an attention
mechanism for processing natural language translation. [36]
relied on self-attention to capture the dependencies of inputs
for machine translation. Meanwhile, the attention mechanism
has been used in the field of computer vision [37]-[39]. [37]
and [38] used spatial attention for image classification and
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image captioning. [39] employed a dual attention mechanism
to capture global features for semantic segmentation.

In many digital image segmentation tasks, the attention
mechanism has also been adopted for better performance.
Generally, attention modules can be plug-and-play in CNNs
and help CNNs focus on more effective features of the target
using spatial regions and channel interrelationships. Based
on U-Net [6], AG Gate [13] focuses on the salient feature
shape and size of the target through multiscale information.
SE-Net [14] employed the squeeze and excitation (SE)
block to recalibrate relevant channel feature maps and
overgo irrelevant features. CBAM [40] emphasized the
meaningful features in space and channels. It enhanced
the feature representation of key regions related to the
target. [41] designed an autofocus attention layer for semantic
segmentation. It employed multiparallel attention branches,
which had different scales of receptive fields to focus on
the optimal scales. However, multiple branches increase the
complexity of models and the difficulty of training. Inspired
by previous methods, we hypothesize that the effective use
of spatial information and channel-dependent features can
improve the segmentation performance of our network.

lll. MATH

Based on previous works, we use the effective architecture
of the encoder and decoder as our backbone. As illustrated
in Fig. 1, the architecture proposed by this paper has
three major components: residual block, spatial attention
block (SAB) and channel attention block (CAB). The encoder
transforms the input image into multidimensional feature
maps and extracts the segmentation information, and the
decoder generates spatial feature maps across aggregating
multiscale information and distributes the weight of feature
map channels.

In the encoding stage, we use the residual block to retain
more original information and extract the feature maps.
In the decoding stage, the SAB redistributes the spatial
pixel weights by aggregating pooled feature information
from high-level and low-level stages. The CAB exploits
the channel features, which uses global average pooling
and global max pooling to excite more channel contextual
information. It reassigns the relationship of every channel
and its neighbors to highlight more important channel
information. The details of these modules are described as
below.

A. RESIDUAL BLOCK
With increasing network depth, the model generally has a
better expression for tasks. However, it increases the risk of
gradient degradation and explosion of the network at the same
time. To solve these problems, [42] proposed the residual
learning network, which employed the residual connection
to ease the difficulty of network training and keep more
learnable features.

Inspired by the residual learning framework, we use
two 1 x 1 convolution blocks and one 3 x 3 convolution
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FIGURE 2. The residual block in our proposed method. We use GN layer to replace the original BN layer.
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FIGURE 3. Structure of spatial attention block in our proposed method. The input image is 3C x H x W and the output image is C x H x W. The «

presents the feature map.

block to generate the multidimensional feature maps, and
another residual connection is employed to reserve the
original feature information, which uses 1 x 1 convolution
to adapt the number of channels. A small batch size may
cause training gradient degradation and decrease the network
performance. Thus, we use group normalization [43] instead
of BN in our entire network. The residual block avoids
the risk of vanishing gradients and accelerates network
convergence. The residual block used in this paper is
shown in Fig. 2.

B. SPATIAL ATTENTION BLOCK

Previous works [31], [41] show that a deep convolution
network with atrous convolutional blocks and multikernel
branches can effectively extract contextual features from
images. However, using these blocks consumes considerable
memory and increases the complexity of the model. To use
the multiscale contextual information and the experimental
platform’s memory effectively, Attention-UNet [13] utilized
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AG Gate to capture the spatial features from multiscale
information. Motivated by these methods, we design SAB to
fuse adjacent features of high-level and low-level spatial fea-
ture maps from multiple stages. By extracting the relationship
of spatial interpixels, SAB can focus on meaningful spatial
features and highlight prospective information.

The SAB is shown in Fig. 3. x; represents the low-level
feature input from the encoder with the shape of C x H x W,
where C denotes input channels and H, W indicate the height
and width of input, respectively. x;, represents the input of
high-level features with the shape of 2C x H x W, which are
upsampled from the previous decoder layer. Compared with
X7, x;, has a higher spatial resolution. First, we concatenate
them into the shape of 3C x H x W, then feed them
into global average-pooled and global max-pooled functions
along the spatial dimension with the shape of 1 x H x W
and concatenate them by the channel dimension. One 1 x 1
convolution kernel with an output channel of 1 is employed
to fuse the spatial feature. The Sigmoid activation function

160929



IEEE Access

T. Shan, J. Yan: SCA-Net: Spatial and Channel Attention Network for Medical Image Segmentation

Selection

Selection
kernel

CXHXW

Yo
CXHxXW

FIGURE 4. Structure of channel attention block in our proposed method. The § means the channel attention coefficient.

is applied to gain a spatial wise statistic « € [0, l]lgxw-
The size of feature map « is 1 x H x W. To calibrate the spatial
feature maps, x; is subsequently multiplied by «. To reuse
the feature of xj,, we employ the residual connection. xj, is
compressed by 1 x 1 convolution with C output channels as
x". Furthermore, the output is obtained as:

Yo = (x) +axx (1

where ®€ denotes the 1 x 1 convolution with C output
channels and * denotes the elementwise dot product. The
number of output channels depends on the stage of x;. Here,
C is 128, 64, 32 and 16 for different dimensional stages.

C. CHANNEL ATTENTION BLOCK

The spatial feature maps from SAB contain considerable
spatial interpixel information, as shown in Fig. 3. However,
the output from SAB still contains unutilized channel feature
information. To exploit critical features and suppress useless
ones, we use CAB to redistribute the channel feature
responses and strengthen important channel features provided
by SAB. The details of CAB are shown in Fig. 4.

SE-Net [14] shows the effectiveness of the squeeze-and-
excitation block, which specifies the interchannel relation-
ship. However, it only uses global average-pooled infor-
mation. Compared with SE-Block, we additionally use the
global max-pooled information, which stores more channel
contextual information. Taking x as an input with the shape
of C x H x W, global average pooling and global maximal
pooling are separately applied along the x channel dimension
to obtain global channel information with the shape of
C x 1 x 1. Inspired by ECA-Net [35], CAB employs one-
dimensional kernel convolution with a kernel size of 5 x 5 to
preliminarily capture the nonlinear cross-channel interaction.
To decrease the parameters and complexity, the weights of
convolution kernels are shared. We use the F,;; function to
fuse the obtained channel information, and the result is fed
into the sigmoid active function to obtain the output § with
the shape of C x 1 x 1. Finally, the output y, of our channel
attention module is:

Yo =x %8 @)

where * denotes channelwise multiplication. The shape of y,
isCxHxW.
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D. LOSS FUNCTION

Our proposed framework is an end-to-end training network.
In our medical image segmentation tasks, we need to
train our network to accurately predict the classification of
each pixel. In recent years, the cross entropy loss function
has been broadly used in the medical image segmentation
field. However, some medical image segmentation objects
often have a range of variations in scale and direction in
the region of interest, particularly the pancreas and skin
lesions. Accordingly, we used the soft dice loss function to
alleviate the above problem. The soft dice loss function uses
the predicted probability maps instead of thresholding and
converts them into a binary mask. We used it in training and
validation processing. It is described as:

2 Zpixels Ytrue X Ypred
2 2
Zpixels Virue T Zpixels Yy pred

where y;,. denotes the ground truth point values and y,eq
denotes the predicted probability point values.

3

Lgice =1 —

IV. EXPERIMENTS AND RESULTS

A. DATASET

To assess the effectiveness of the proposed method,
we applied our network to three medical image segmentation
tasks: skin lesion segmentation from ISIC 2018, thyroid gland
segmentation, and pancreas segmentation. Each task has its
own challenge, and the sample of three datasets is shown in
Fig. 5.

B. IMPLEMENTION DETAILS

During our experiment, the input images were resized with
a uniform size of 256 x 256 and normalized by the mean
value and standard deviation. Fivefold cross-validation was
employed to assess the performance of the proposed model.
The dataset was randomly split at ratios of 70%, 10%
and 20% for training, validation and testing, respectively.
To reduce the risk of overfitting, we randomly rotated the
training dataset at an angle of (— /9, 7w /9), which increased
the number of training images.

Our framework was implemented on the PyTorch platform.
The training batch size was 16, and the Adaptive Moment
Estimation (Adam) optimizer was employed to train the
network. The initial learning rate is 107*, and the weight
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FIGURE 5. Three samples for each segmentation task. (a) Skin lesion segmentation from ISIC 2018. (b) Thyroid gland segmentation.

(c) Pancreas segmentation.

decay is 108 for our experiments. For each task, we iterate
the network for 300 epochs. The experimental hardware
used is one NVIDIA Tesla P100 with 16 GB for all
experiments. The soft dice loss function is used to train our
network. During the process of validation, we saved the best
performing model with the smallest loss. It was used in the
test dataset to evaluate model performance.

C. EVALUATION METHODS

To quantitatively evaluate the segmentation performance of
networks, we used the following evaluation methods, which
are shown below:

. 2]ANB
Dice = ———— 4)
|Al + |B|
IAN B
10U = (%)
IAUB|
|A| — |B]
RAVD = —— (6)
|B|
1
ASSD = m X (Zaesﬂ d (a7 Sb)+Zb€Sb d (b7 Sa))
(7

where A denotes the region of the predicted probability
segmentation map and B denotes the ground truth binary
image. S, denotes the set of segmentation boundary points,
and Sy, is defined as the set of ground truth boundary points.
d(v,S,;) = minyes, (v — x|) denotes the shortest Euclidean
distance between point x and all points of S,. Additionally,
the Bland—Altman plot, which is a commonly used method
for analyzing the consistency of two technologies in medical
statistics, is applied to visualize the potential bias between the
areas segmented by the automatic method and in a manual
manner.

D. ABLATION ANALYSIS
To prove the validity of SAB and CAB in our proposed
SCA-Net, we evaluate the proposed module by ablation
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analysis. Each module performance was tested by segmenting
skin lesions from the ISIC 2018 dataset. The residual
block replaces all convolutional layers in U-Net [6] as our
backbone.

In the next ablation experiment, the residual block is used
in the encoder path, and the decoder path integrates the SAB
and CAB to extract the feature information from feature maps
separately. The skip connection is used for concatenating
features between the encoder and the decoder as implemented
in the U-Net architecture [6].

The results of the quantitative comparison of these methods
are shown in Table 1. U-Net with residual block is assumed
to be the backbone. For the skin lesion segmentation task,
the performance of the backbone with SAB and CAB is
improved separately. Additionally, our proposed SCA-Net
can significantly enhance the performance of medical image
segmentation. Compared with the backbone, our proposed
network improved the average Dice from 0.8944 to 0.9292.
The visual segmentation result is shown in Fig. 6. We could
learn that SAB shows up the target space region and that CAB
pays attention to the edge information. Our SCA-Net achieves
better segmentation result.

E. SKIN LEISION SEGMENTATION
To assess the performance of our proposed SCA-Net, we first
put its paces on the skin lesion segmentation dataset from
ISIC 2018. The dataset contains 2594 images with their
ground truth [44], [45]. The skin lesion boundaries vary in
scale, shape and color, necessitating automated segmentation
methods to be extremely sensitive to these variations [46].
We present the comparison of our method with other
state-of-the-art networks. The comparison was made with
seven existing networks, including U-Net [8], ResUNet [48],
U-Net++ [25], CE-Net [31], Attention-UNet [13], FCA-
Net [17] and Singh et al. [18]. All of them are adopted with
the original implementation, and the soft dice loss function is
used uniformly.
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TABLE 1. The quantitative comparison of ablation analysis. The value of dice, loU, ASSD and RAVD are based on mean standard deviation.

Method Dice IoU ASSD RAVD
U-Net(backbone)  0.8970£0.0545  0.8207£0.0637  1.1360£1.4196  -0.027540.1320
U-Net + SAB 0.916540.0332  0.852040.0511  0.7076+0.6722  -0.0804+0.1035
U-Net + CAB 0.919440.0312  0.856610.0477  0.618240.6252  -0.0364+0.1061
SCA-Net 0.9292+0.0361  0.8730+0.0570  0.5838%+0.0570 -0.0061+0.1491

(a) (b)

(€)

(d)

FIGURE 6. Visual comparison between different attention modules for skin lesion segmentation. (a) Original image. (b) Ground truth. (c) Backbone: U-Net
with residual block. (d) Backbone with SAB (spatial attention block). (e) Backbone with CAB (channel attention block). (f) Our proposed SCA-Net.

TABLE 2. The result of skin lesion segmentation compared with other state-of-the-art methods.

(e)

Method Dice IoU ASSD RAVD

U-Net [6] 0.8893+£0.0375  0.8094+0.0560 0.9848+0.7377  -0.042740.1442
ResUNet [48] 0.8932+0.0485 0.8168+£0.0707 1.1501£1.6196  -0.028940.2222
UNet++ [25] 0.9096+0.0440  0.8420+0.0659 1.1613£1.6653  -0.042240.1632
CE-Net [31] 0.8983+0.0391  0.8237+£0.0588  0.9859+0.9537  -0.143340.1290

Attention-UNet [13]
FCA-Net[17]
Singh et al. [18]
SCA-Net

0.903510.0461
0.922240.0357
0.921410.0443
0.929210.0361

0.832610.0677
0.861510.0550
0.861240.0656
0.873010.0570

1.3076+1.969
0.648110.8056
0.8291+1.4779
0.583810.0570

-0.0219+0.2256
0.0568+0.1572
-0.0432+0.1609
-0.0061+0.1491

The properties describing the detailed results are displayed
in Table 2. We calculated the means and standard deviation
of the four assessed metrics in all experiments. Fig. 7 shows
the visual segmentation results, and it is obvious that our
framework outperformed other state-of-the-art methods in
skin lesion segmentation. Our SCA-Net achieved a Dice score
of 0.9292, an IoU score of 0.8730, an ASSD of 0.5079 and
an RAVD of —0.0061 for skin lesion segmentation. The
training parameters of U-Net [6] have 20.96 M but our
network only has 13.36 M, showing that the complexity
of the model is higher than our model, but our network
performs better. From the sample performance images, the
segmentation results show that other state-of-the-art networks
produce missegmentation due to color and hair interference.
Fig. 8 depicts the Bland—Altman plots for the comparison
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difference between the segmentation areas of the ground
truth and automatic segmentation methods. Compared with
Singh et al. [18], our proposed method has a lower average
deviation, which illustrates that our model is much more
robust.

F. THYROID GLAND SEMGENTATION

We conducted the following evaluation task: thyroid gland
segmentation [47], which consists of sixteen records of 3D
volumes and their matching ground truth. To match our net-
work input format, the 3D volumes and their corresponding
ground truth were split into 4762 individual slices with the
shape of 256 x 256. According to the ground truth marked by
the sonographer, the unmarked slices were removed from the
dataset. Finally, 3999 images and the corresponding ground
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Original Image Ground Truth Baseline(U-Net) SCA-Net(ours) ResUNet

UNet++ Attention-UNet FCA-Net Singh et al.

FIGURE 7. Visual comparison between SCA-Net and state-of-the-art networks for skin lesion segmentation. Our proposed SCA-Net has obvious

performance compared with other segmentation performance.
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truth were screened. The main challenge of this task is the
diversity of thyroid tissue size and morphology in the thyroid
ultrasound images. The complexity of the peripheral tissue
also affects the segmentation performance.

The result shown in Table 3 shows that our network
is successful and achieves higher efficiency compared
to other state-of-the-art networks. Our proposed network
outperformed U-Net with a Dice score of 0.9825, an IoU
score of 0.9661, an ASSD score of 0.0508, and a RAVD
score of 0.0021. U-Net can segment the general outline
of thyroid glands. However, it lacks the ability to segment
both blurred and prominent edges. ResUNet has a better
performance than U-Net, in which the residual connection
enhances the segmentation ability. CE-Net, U-Net++, FCA-
Net and Singh et al. have slight oversegmentation and under-
segmentation, respectively. Compared with other networks,
our model can segment the details of the thyroid edge.
We show some samples of segmentation results for visual
comparison in Fig. 9. In Fig. 10, all automatic methods
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Bland-Altman plots for area comparisons between ground truth (GT) and automated segmentation results of skin lesion.

dealing with the thyroid gland segmentation task present
consistency with manual segmentation, and our proposed
method performs better with a lower average deviation and
smaller dispersion.

G. PANCREAS SEGMENTATION

Pancreas segmentation is the last experimental task. This
dataset comes from The Nation Institutes of Health Clinical
Center, which consists of 82 abdominal contrast-enhanced 3D
CT scans from 53 male and 27 female subjects. Pancreases
corresponding to the ground truth were manually slice-
by-slice segmented by a medical student and inspected
by an experienced radiologist. The anatomical structure of
the pancreas is complex, and it is mainly located in the
posterior peritoneum, with very high shape and volume
variability in morphology among different slices. It is
surrounded by adjacent tissues, and these tissues are close
to the pancreas in CT images, which causes blurring of
segmentation boundaries. Together with the noise of the CT
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TABLE 3. The result of thyroid gland segmentation compared with other state-of-the-art methods.

Method Dice IoU ASSD RAVD
U-Net 0.940240.0085 0.8923+0.0136  0.292140.0726  0.1278+0.0408
ResUNet 0.9520+0.0103  0.9120+0.0171  0.2368+0.1061  0.0393+0.0460
UNet++ 0.94534+0.0113  0.9098+0.0181 0.31414+0.1649  -0.0265+0.0504
CE-Net 0.95554+0.0057 0.9176+0.0097  0.2048+0.0577 -0.014740.0283
Attention-UNet  0.95824+0.0090  0.92254+0.0153  0.19714+0.1101  0.0099+0.0379
FCA-Net 0.9640+0.0045  0.9325+0.0077 0.12734£0.0305  0.1185+0.0189
Singh et al. 0.9665+0.0096  0.9371+0.0164  0.1378+0.1003  0.0465+0.0356
SCA-Net 0.9825+0.0033 0.9661+0.0062 0.0508+0.0217  0.0021+0.0108

Original Image Ground Truth Baseline(U-Net) SCA-Net(ours) ResUNet Attention-UNet Singh et al.

FIGURE 9. Visual comparison between SCA-Net and state-of-the-art networks for thyroid gland segmentation. Our proposed network achieves the best
performance. The U-Net++ and CE-Net have incomplete segmentation or excessive segmentation, separately.
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FIGURE 10. Bland-altman plots for area comparisons between ground truth (GT) and automated segmentation results of thyroid gland.

(h)

images themselves, local body effects and the influence of
tissue motion, pancreas segmentation is a very challenging
problem.

The result is displayed in Table 4. Our network has a better
performance than other state-of-the-art networks. The model
obtained the best Dice score of 0.9137, IoU score of 0.8530,
ASSD of 0.3079 and RAVD of —0.0069. The samples of
segmentation results for visual comparison are illustrated in

Fig. 11, and the Bland—Altman plots of these methods are
presented in Fig. 12. In comparison with the segmentation
samples of other state-of-the-art networks, we find that SCA-
Net is slightly worse in complex boundary segmentation than
CE-Net and Singh et al., which has more parameters and
better fitting segmentation boundaries. However, they are
more complex than our network, and our model excels at
focusing on specific target areas. Although our SCA-Net has
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TABLE 4. The result of pancreas segmentation compared with other state-of-the-art methods.

Method Dice IoU ASSD RAVD
U-Net 0.879840.0257  0.807240.0322  0.79584+0.5592  -0.072740.1037
ResUNet 0.874440.0239  0.8000+0.0301  0.782440.5200 -0.052740.1086
UNet++ 0.8866+0.0236  0.8160+0.0311  0.56054+0.3278  -0.080040.0850
CE-Net 0.905440.0151  0.841140.0212  0.373940.2093  -0.019440.0532

Attention-UNet  0.9061+£0.0159  0.842340.0223  0.3696+0.1883  -0.0282+0.0616
FCA-Net 0.9081+0.0151  0.8450£0.0214  0.37624+0.1999  -0.038240.0554
Singh et al. 0.904940.0235  0.8411£0.0311  0.4538%+0.8066 -0.018040.0922
SCA-Net 0.9137+0.0124  0.8530£0.0179  0.3079%0.1279  -0.006910.0475

Original Image Ground Truth Baseline(U-Net) SCA-Net(ours) ResUNet UNet++ CE-Net Attention-UNet FCA-Net Singh et al.

FIGURE 11. Visual comparison between SCA-Net and state-of-the-art networks for pancreas segmentation. With the complex segmentation task, our
network has a better performance compared with other networks.
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FIGURE 12. Bland-altman plots for area comparisons between ground truth (GT) and automated segmentation results of pancreas.

a slightly higher confidence interval than FCA-Net in Fig. 12, of shapes, sizes and target locations, such as skin lesions,
the difference is not obvious, and our proposed network has requires the network to have strong robustness. Original
a lower bias. methods based on CNNs produced many channel feature

maps and saved important features relying on simple con-
V. DISCUSSION catenation operations. However, the relevant information is
For medical image segmentation tasks, better segmentation not utilized efficiently between multiscale spatial and channel
results help clinicians make a considerable preclinical features. The component structure of attention mechanisms
diagnosis and assist them in clinical treatment. The variety handles the relevant feature maps, which improves the
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performance of segmentation tasks. Thus, we conceive a
novel framework for medical image segmentation. The SAB
connects the high- and low-level information from multiple
stages to produce more representative contextual features.
Additionally, the CAB redistributes the channel feature
responses and strengthens important channel features.

To further verify the validity and robustness of the model,
we conducted tests in three different medical image domains,
including RGB images, MRI slices and ultrasound images.
Compared with state-of-the-art networks, our SCA-Net has
a significant improvement over three representative datasets,
which shows that SCA-Net has better performance for
different medical image segmentation tasks. We are more
interested in applying our network to 3D data in the future.

We also find that our SCA-Net outperforms other networks
in the thyroid gland segmentation task, but there are no
significant segmentation differences. The reason we believe
is that the boundary and the shape of the thyroid gland have
small differences, and the distribution of locations is similar.
Our proposed network can discern the boundary effectively.
Compared with the skin lesion segmentation task, the color
of the ultrasound image is gray, which may make it easier to
learn the characteristics of the thyroid gland. In the pancreas
segmentation tasks, SCA-Net scored significantly higher than
the other networks. Our network shows more effectiveness of
segmentation. Compared with other state-of-the-art methods,
SCA-Net has fewer parameters and higher efficiency.

VI. CONCLUSION

Medical image segmentation tasks are crucial for clinical
analysis and diagnosis. Due to the large variation in
shape and texture of segmented targets, higher demands
are placed on the robustness and performance of medical
image segmentation networks. We introduced a spatial and
channel attention network (SCA-Net) in this study, aiming
to enhance the segmentation performance of medical image
segmentation methods. Specifically, we design the SAB to
consider the multiscale spatial information and the CAB to
recalibrate the channel information. We train our SCA-Net,
and the result demonstrates the superiority of our method in
different tasks, including skin lesion segmentation, thyroid
gland segmentation and pancreas segmentation. Our model
can be used in a new application by fine-tuning using a new
dataset and the manual ground truth.

In this paper, we conducted three experiments to verify
the effectiveness of our network on 2D medical images.
In possible future work, we will develop an extension to
process 3D data.
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