
IEEE RELIABILITY SOCIETY SECTION

Received October 18, 2021, accepted November 30, 2021, date of publication December 3, 2021, date of current version December 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3132353

A New Unsupervised Online Early Fault Detection
Framework of Rolling Bearings Based on
Granular Feature Forecasting
KEYING LIU1, WENTAO MAO 1,2, (Member, IEEE), HUADONG SHI1,
AND XIHUI LIANG 3, (Member, IEEE)
1School of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China
2Engineering Laboratory of Intelligence Business and Internet of Things of Henan Province, Xinxiang 453007, China
3Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada

Corresponding author: Wentao Mao (maowt@htu.edu.cn)

This work was supported in part by the National Nature Science Foundation of China under Grant U1704158, in part by the Henan
Province Technologies Research and Development Project of China under Grant 212102210103, in part by the NSFC Development
Funding of Henan Normal University under Grant 2020PL09, in part by the 2021 Scientific Research Project for Postgraduates of Henan
Normal University of China under Grant YL202106, and in part by the Natural Science and Engineering Research Council of Canada
under Grant RGPIN-2019-05361.

ABSTRACT In online scenarios, the monitoring signals are collected in the form of streaming data and
would raise some requirements for early fault detection (EFD) of rolling bearings: 1) enhancing the detection
accuracy of online data; 2) lowering the computational cost of real-time detection; 3) reducing false alarm
rate; 4) deploying easily and working adaptively without manual initialization. To solve this problem,
a new unsupervised online EFD framework of rolling bearings is proposed based on granular feature
forecasting. First, the proposed framework considers two different online scenarios in extracting granular
feature representations of online data. If the offline monitoring data are available, a deep stacked denoising
autoencoder (SDAE) networkwith domain adaptation is introduced to extract common feature representation
via decreasing the data distribution differences between offline and online working conditions. If only initial
online data are available, a SDAE model is directly used to extract deep features. Second, for the obtained
features, a forecasting model with tensor Tucker decomposition and ARIMA is run to predict the degradation
trend of all feature sequences quickly and simultaneously. Finally, the deviation degree between the predicted
sequence and sequentially-arrived data is calculated for setting alarm threshold. The proposed framework
adopts an unsupervised learning mode and has three advantages: 1) flexible applicability to two different
online scenarios; 2) automatic detection and easy deployment without manual intervention; 3) high reliability
and extremely low false alarm rate. Experimental results on the IEEE PHM Challenge 2012 dataset and
XJTU-SY dataset verify the advantages of this proposed framework.

INDEX TERMS Early fault detection, anomaly detection, streaming data, denoising autoencoder, alarm
threshold.

I. INTRODUCTION
As one of the critical step of bearings Prognostics and Health
Management (PHM), early fault detection (EFD) focuses
on detecting the change of running status in the starting
stage of fault occurrence [1]. Traditional EFD methods usu-
ally employ signal analysis techniques. In the past decade,
data-driven EFD technology has been a research hotspot.
Traditional machine learning algorithms such as Support
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VectorMachines (SVM) [2], naïve Bayesian [3], Adaboost [4]
and so on have been successfully applied to EFD of rolling
bearings. Although these methods can achieve fault detec-
tion well, they generally rely on manual feature extrac-
tion. Thanks to the excellent capabilities of end-to-end
modeling and adaptive feature extraction, deep neural net-
works have also been proven effective in solving the prob-
lem of EFD. Building a suitable fault detection model
for particular applications is of significant importance.
Please refer to Section 2 for more specific literature
analysis.
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In recent years, with the rapid development of measure-
ment technology, online EFD without system halt began to
receive wide attention in industry and academia. Online EFD
focuses on identifying the change of running status in a
short time (usually between the arrivals of two data blocks).
Therefore, online EFD is quite different from the traditional
EFD methods with the following challenges: 1) the detection
accuracy of online data, especially when the data amount
is insufficient, should be enhanced; 2) the detection speed,
as well as the computational efficiency, should be improved
in real time; 3) the false alarm rate, i.e., avoiding recognizing
normal state sample as faulty sample, should be reduced as
much as possible; 4) deploying easily and working adaptively
with no need of manual initialization. The challenges listed
above pose new requirements for the construction of EFD
model.

For the challenge 1), it is necessary to extract as many
discriminative features as possible from online data, even
the data merely have a small amount. Besides online data,
we need to consider two cases: offline data available and
unavailable. Generally speaking, some historical monitor-
ing data of the bearings with the same manufacturing spec-
ifications can be accumulated in the laboratory or under
other working conditions before going online. However, these
offline data usually have different distribution characteristics
with online data due to varying working conditions. In this
case, the classifier trained with such offline data is prone to
be biased. Therefore, the feature extraction should consider
the problem of distribution shift of training data. In the other
side, if the training data are merely collected online, we have
to extract as granular features as possible from limited online
data.

For the challenge 2), it is necessary to complete fault
detection between the arrivals of two consecutive data blocks,
since the monitoring signals reach sequentially. Thus, the
detection model should be adjusted to fit the form of stream-
ing data, identifying fault occurrence adaptively and quickly.
Specially, streaming data is a common form, where the data
blocks are sequentially collected without prior knowledge.
Please note that most of traditional methods need to repeat-
edly train the classification model with the newly-collected
data block, which will cause high computational cost and is
not suitable for the online EFD problem.

For the challenge 3), it is necessary to set a reliable alarm
threshold and avoid false alarms caused by the unexpected
data fluctuations in the initial stage. Such data fluctuations are
usually generated by machine running-in, noise interference
and so on. For online EFD in non-stop scenarios, false alarms
will cause unnecessary shutdowns and huge losses. The set-
ting of alarm threshold should consider comprehensively the
characteristics of streaming data to improve the reliability.
Meanwhile, the threshold should have good adaptability and
does not be adjusted repeatedly and manually.

For the challenge 4), the EFD model should work in an
unsupervised learning mode, that is, the online data for model
training are unlabeled while the detection rules are adaptively

learned from such data. This mode is very appropriate for
practical applications. Moreover, the detection model can be
deployed directly, without assuming that the online data in
the initial stage is in normal state.

Due to the unsupervised learningmode, the solutions of the
challenges 1) - 3) need to be further exploited. Specifically,
for the challenge 1), we adopt unsupervised deep features
instead of hand-crafted statistical features or supervised deep
features like CNN. For the challenge 2), we identify the
abnormal status by calculating the deviation between the pre-
dicted degradation trends and the newly-arrived data blocks.
Obviously, this operation is suitable to tackle streaming data.
More importantly, the obtained deviation degree is helpful to
build an online alarm threshold with high confidence for the
challenge 3).

Following the ideas stated above, this paper proposes a
new unsupervised online EFD framework of rolling bearings
based on granular feature forecasting. This framework can
handle two online scenarios which have, besides online data,
offline data and no offline data respectively. The proposed
framework consists of three inter-related generic blocks:
granular feature decomposition, feature trend forecasting and
anomaly recognition based on prediction deviation. First,
if the offline data available, we introduce a deep transfer
learning strategy to tackle the distribution drift problem.
A Stacked Denoising Autoencoder (SDAE) with domain
adaptation is employed to obtain multi-dimensional common
feature representation of the offline and online data. If only
online data available (the offline data unavailable), a SDAE
model is directly used to obtain the multi-dimensional deep
features. Then the granular decomposition of the online data
is achieved. Second, a forecasting model with tensor Tucker
decomposition and ARIMA is run to forecast the degrada-
tion trend of all the feature sequences. Finally, the deviation
degree between the predicted sequence and sequentially-
arrived data is calculated, and an alarm threshold is built
to realize fault detection. Experimental results on the IEEE
PHM Challenge 2012 dataset and XJTU-SY dataset verify
the effectiveness of the proposed framework.

Rather than theoretical innovation of fault detection tech-
nology, this paper utilizes some existing techniques to build
a practical and efficient online EFD framework with high
deployability. This framework can provide a new integrated
solution for bearing online health management under non-
stop scenarios. In particular, the main contribution of this
paper can be highlighted as follows:

1) An unsupervised online EFD framework is proposed.
This framework can cover two online scenarios which have
offline data and no offline data respectively, and realize
self-adaptive detection without any human interventions.
Thus it has good stability and deployability. Moreover,
different from most existing EFD methods that employ
black-box models, the proposed framework can provide an
insight into how an anomaly is determined. Consequently,
this framework can obtain detection results with high
confidence.
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2) A temporal anomaly detection method is proposed for
streaming data. By adopting a strategy of granular decom-
position, this method can extract multi-dimensional feature
representations for a single sequence. Then the degradation
trends of such feature sequences are jointly predicted to
achieve stable and reliable EFD in real time. This method
has low dependence on the amount of training data, even
a very limited amount of online data can get satisfactory
EFD results. According to our best knowledge, no similar
work about granular anomaly detection with streaming data
is found.

The remaining part of this paper is structured as follows.
Section 2 provides a detailed literature analysis and presents
the limitations of current bearing EFD methods in the online
scenarios. Section 3 elaborates three generic blocks of the
proposed framework. Section 4 verifies the effectiveness
of the proposed framework on the IEEE PHM Challenge
2012 dataset and XJTU-SY dataset, followed by a conclusion
in Section 5.

II. PRELIMINARY WORKS
At present, vibration signals are widely used in fault detec-
tion. Current EFDmethods for rolling bearings can be divided
into signal analysis-based methods and machine learning-
based methods. Traditional signal analysis-based methods
mainly use time-frequency analysis of weak vibration sig-
nals to identify the occurrence of early fault [5-7]. As a
state-of-the-art method, Li et al. [5] used the bandwidth
empirical mode decomposition (BEMD) to reconstruct the
original vibration signal, and then exploits adaptive multi-
scale morphological analysis (AMMA) to demodulate the
reconstructed signal for judging fault occurrence. These
methods have some drawbacks: 1) less of robustness and
adaptive feature extraction, 2) insensitive to early faults and
easy to delay alarm due to the low signal-to-noise ratio.

In the past decade, machine learning techniques have been
applied to the EFD problem. The traditional methods usu-
ally include two steps [2]–[4]: 1) feature extraction, and
2) construction of classification model. Various algorithms
such as SVM [2], naïve Bayesian [3] and Adaboost [4] were
introduced to build bi-classification model based on some
statistical features. Another way is utilizing one-class classi-
fication, e.g., Support Vector Data Description (SVDD) [8],
to build anomaly detection model only using the data of
the normal state. Although having got satisfactory results,
these methods can not automatically adapt to the irregular
fluctuations in the normal state, which is easy to generate
false alarms. Moreover, the features are hand-crafted and fail
to automatically work. There are also a few methods that
can adaptively extract bearing fault characteristics under a
certain working condition. For example, Tao et al. [9] used
Generalized Gaussian Density (GGD) estimation to adap-
tively capture the wavelet subband information, improving
the EFD accuracy significantly. However, such methods can
not effectively work under varying working conditions.

In recent years, deep learning technology has been applied
to bearing fault detection. Due to adaptive feature extraction
directly from original data, deep neural networks can outper-
form traditional machine learning algorithms in the end-to-
end modeling. Mao et al. [10] extracted the SDAE features
of early fault data and then utilized a sliding window to
determine the area of fault occurrence via a feature match-
ing strategy. Eren [11] used one-dimensional Convolutional
Neural Networks (CNN) to extract deep features of bearing
vibration signals and performed an end-to-end EFD classi-
fication. Kumar et al. [12] employed CNN with an adaptive
gradient optimizer to automatically extract deep features for
the bearing EFD in squirrel cage induction motor. Although
deep learning techniques have been proven effective in solv-
ing the EFD problem, they still need to update the modeling
according to the requirements of specific applications, for
example, online fault detection.

According to our literature survey, current bearing EFD
methods mainly use offline data for model training and run
detection in online scenario. But the research on online EFD,
mainly using online data to conduct detection, is still in its
infancy. As a pioneerwork, Lu et al. [13] used the Long Short-
TermMemory (LSTM) network to detect early fault of rolling
bearings in online mode by calculating the deviation degree
between the generative feature sequence and real online data.
The alarm threshold in this work was built by means of the
fluctuation characteristics of online data. Mao et al. [14]
introduced a semi-supervised SVM with SDAE deep feature
to incrementally update anomaly detection model in online
scenarios. But these methods also require certain offline data
to initialize a discriminative model or build an auxiliary CNN
model for feature extraction.

Another key issue is that offline data and online data usu-
ally have distribution drift, e.g., caused by varying working
conditions. Direct modeling using offline data may cause
model bias and decrease the detection effect as well. As a
potential solution to solve this problem, transfer learning
aims to transfer the learned domain knowledge from one task
(called source domain) to a different but related task (called
target domain). In the last 2-3 years, transfer learning has been
introduced to solve the problem of online EFD [15], [16].
The main idea is running deep domain adaptation to seek
the common feature representation of normal state data
between different working conditions. The enhancement
of online features in the normal state can facilitate the
construction of model detection. However, two limitations
of transfer learning-based methods should be considered:
1) the commonly-used transfer strategy such as fine-tuning
and layer frozen depends on data label, and 2) negative trans-
fer would appear if the data distribution difference of the two
domains is large. How to build a reliable anomaly detection
model mainly using online data has become a key challenge
of realizing online EFD with the applicability.

In addition, as the data in online scenario are collected
sequentially, the model of anomaly detection should be
updated to tackle streaming data. It is worth noting that
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anomaly detection with streaming data should work in an
unsupervised learning mode, without assuming the initial
part of online data is in normal state. There are a few
works engaged in anomaly detection with streaming data.
For instance, Wen et al. [17] regarded anomaly detection
with streaming data as an image segmentation problem,
and employed a U-net network to extract the temporal
change pattern in the data. But this method has to set the
normal state label, which belongs to supervised learning.
Ahmad et al. [18] proposed an online sequential memory
algorithm with a hierarchical structure. This algorithm can
detect the change of latent data distribution over time and
learn the fluctuation trend directly from the streaming data.
Although this method is unsupervised, the model training
relies on a large amount of data. If the online samples are
insufficient, the temporal information will be not accurately
extracted.

In summary, although the existing EFD methods have
achieved good results, they still have the following challenges
if applied to the online environment: 1) most of EFDmethods
require offline data for modeling training, but very few works
directly use online data to build an EFD model. According to
the literature survey, there is no integrated EFD solution that
is applicable to the both two online scenarios: with or without
offline data in training process; 2) current EFD methods usu-
ally assume the training data to be in normal state, which fails
to recognize anomalies adaptively and reduces the deploya-
bility in practical applications. Unsupervised anomaly detec-
tion is essential to streaming data, especially the data are with
insufficient amount.

III. PROPOSED FRAMEWORK OF EARLY FAULT
ONLINE DETECTION
In this section, a new unsupervised online EFD framework
of rolling bearings is proposed based on granular feature
forecasting. This framework is suitable for two different types
of online EFD problems: with and without offline data. The
main idea is to decompose the streaming data into granular
features, then calculate the deviation degree between the
predicted trends of the feature sequences and sequentially-
arrived data. The framework is divided into three generic and
inter-related blocks: granular feature decomposition, feature
trend forecasting and anomaly recognition based on predic-
tion deviation. The overall flowchart is shown in Fig. 1. Each
generic block will be elaborated in the following parts.

A. BLOCK 1: GRANULAR FEATURE DECOMPOSITION
To obtain granular features of the online data, we utilize
SDAE to run unsupervised feature extraction. Two scenarios
need to be treated differently. If only online data available,
i.e., without any offline data accumulated before, we directly
run SDAE on the online data. If some offline data available,
we introduce the strategy of deep transfer learning to tackle
the potential problem of distribution drift caused by varying
working conditions. The SDAE with deep domain adapta-
tion is then employed to obtain the domain-invariant feature

representation of the online and offline data. The implemen-
tation methods for these two online scenarios are as follows.

1) ONLY ONLINE DATA AVAILABLE
Since online EFD is essentially an unsupervised learning
problem, we run SDAE to achieve granular feature decompo-
sition for online data. To improve the readability, we provide
a brief introduction of SDAE, as follows. Please refer to the
reference [19] for a detailed analysis.

SDAE is stacked by multiple denoising autoencoders
(DAEs). DAE is an unsupervised learning neural network
for dimensionality reduction and feature extraction. DAE’s
structure includes encoders and decoders, and is mainly
composed of an input layer, a hidden layer and an output
layer. Different from the general autoencoders (AEs), DAEs
add a small level of noise in the training data. To elimi-
nates the influence of noise on the input training data and
extract more robust features at the hidden layer, the input
data containing noise is encoded by the encoder from the
input layer to the hidden layer, and the hidden layer output
is reconstructed by the decoder from the hidden layer to the
output layer. The network structure of the SDAE is shown
in Fig. 2.

Suppose the training sample set is x = [x1, x2, . . . ,
xn]T ∈ <n, where n represents represents the number of
sample. For the original training data, the DAE obtains a new
data set x ′ =

[
x1′, x2′, . . . , xn′

]T
∈ <

n by adding some noise,
and then feeds it into the encoder to get a hidden feature
representation h = [h1, h2, . . . , hm]T ∈ <m.

h = f
(
Wx ′+b

)
(1)

where W and b are the weight matrix and bias term in the
encoder respectively, f represents the activation function of
the encoder.

Then the reconstructed data set x̄ = [x̄1, x̄2, . . . , x̄n]T ∈ <n

can be obtained after feeding h into the decoder.

x̄ = g
(
W ′h+ b′

)
(2)

where W ′ and b′ are the weight matrix and bias term in the
decoder respectively, g represents the activation function of
the decoder. In this paper, the activation functions of the
encoder and decoder are both set with the Sigmoid function:
sigmoid (x) = 1/

(
1+ e−x

)
.

Finally, the reconstruction error between input data and
reconstruction data can be minimized by employing cross
entropy, as shown in Equation (3). After running a gradient
descent algorithm, the optimal DAE model weight and bias
term can be obtained [20]. In this way, the m−dimensional
deep feature of the original online sequence is obtained, that
is, the granular feature decomposition of the online data.

L
(
x ′, x̄

)
= −

n∑
i=1

[
xi′ log (x̄i)+

(
1− xi′

)
log (1− x̄i)

]
(3)
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FIGURE 1. Flowchart of the proposed framework.

FIGURE 2. Network structure of SDAE.

2) OFFLINE DATA AVAILABLE
Transfer learning aims to improve the generalization abil-
ity of the discriminative model in target domain by getting
help from the source domain data with different distribution
characteristics. Domain adaptation [21] is a representative
method of transfer learning. The main idea is to map the
data from different domains to a consistent feature space, and
make them as close as possible in this space. Therefore, this
section introduces the idea of domain adaptation to conduct
granular feature decomposition of online data when offline
data is available. Specifically, considering that online data is
in streaming formwhile offline data can be labeled, a previous
work of domain adaptation, proposed by the authors in [15],
is introduced. We built SDAE with domain adaptation model
to reduce the distribution difference between the online data
and the normal state data of offline bearings. The loss func-
tion of this method is as follows:

Loss = LossSDAE + λLossMMD +
µ

2
Lossweight (4)

where:
LossSDAE = 1

2n

∥∥x̄ − x ′∥∥2F is the reconstruction loss func-
tion of SDAE. Here ‖·‖F indicates the Frobenius norm of
matrix.

LossMMD =
J∑
j=1

∥∥∥∥∥∥ 1nj
nj∑
p=1

φ
(
xj,p
)
−

1
nj′

nj ′∑
q=1

φ
(
x ′j,q

)∥∥∥∥∥∥
2

H

is the maximum mean discrepancy (MMD) regularizer [22].
Here the symbol J represents the combination of the online
target bearing and multiple offline bearings, xj and xj′ repre-
sent the offline bearing samples and online bearing samples
respectively, nj and nj′ denote the number of j−th offline
bearing samples and online bearing samples respectively.

Lossweight =
M∑
m=1

exp
(
−‖Wm‖

2
F

/
σ
)

is the weight regularizer which aims to reduce model com-
plexity. Here σ is the width parameter, M is the number
of SDAE hidden layers, Wm is the weight matrix of the
m−th layer.
To obtain m−dimensional deep feature, the final loss

function can be minimized by using the stochastic gradient
descent algorithm. Please refer to the reference [15] for more
details.

B. BLOCK 2: FEATURE TREND FORECASTING
This section predicts the trend of the m−dimensional feature
sequences extracted in Section 3.1 to achieve fault detection
by calculating the deviation values between the predicted
values and the sequentially-arrived data. Considering that
the amount of online data is relatively limited, most of the
existing deep learning models such as LSTM may have low
prediction accuracy and stability in time series forecasting.
Moreover, the deep learning methods are generally time-
consuming in model training, which is not suitable for online
EFD. Since the feature sequences are from the same original

159688 VOLUME 9, 2021



K. Liu et al.: New Unsupervised Online Early Fault Detection Framework of Rolling Bearings

signals and then intrinsically correlated, this section adopts
a multivariate time series forecasting method proposed in
the literature [23]. Running with block Hankel tensor and
ARIMA model, this method, called BHT-ARIMA, can cap-
ture well the intrinsic relationships among multiple feature
sequences to improve the forecasting accuracy. More impor-
tantly, the computational cost is very low. The algorithmic
details are described as follows.

1) Employ a multi-way delay embedding transform
(MDT) [24] to convert the feature sequences Xl =

[x1, x2, . . . , xl]T ∈ <l×m to a third-order tensor χl̂ =
[χ̂1, χ̂2, . . . , χ̂l̂]

T
∈ <

m×τ×(l−τ+1):

χl̂ = h̄τ (Xl)= Fold(l,τ ) (Xl × 1S1 × · · · × lSl) (5)

where τ and l are the time window and sample length respec-
tively, l̂ = l − τ + 1 is the reconstructed sample length, S is
the mapping matrix.

2) Use Tucker decomposition technology [25] to obtain
the core tensors 1dGl̂ = [1dg1,1dg2, . . . ,1dgl̂]

T (new
features) by Equation (6):

1dGl̂ = 1
dχl̂×1U (1)T

×2U (2)T
× · · ·×cU (c)T

s.t.U (c)TU (c)
= I , c = 1, . . . ,C (6)

where
{
U (C)

}
is a set of joint orthogonal factor matrices.

3) Utilize the obtained core tensors 1dGl̂ to train a tensor
ARIMA model [26]. Then predict a new core tensor 1dgl̂+1
at the next time point by Equation (7) and calculate the
predicted value 1dχl̂+1 by Equation (8):

1dgl̂+1 =
p∑
i=1

αi1
dGl̂−i −

q∑
i=1

βiεl̂−i (7)

1dχl̂+1 = 1
dgl̂+1×1U (1)×2U (2) × · · ·×cU (c) (8)

Then we conduct inverse Tucker decomposition for
1dχl̂+1 and get χl̂+1 in the embedded space. Finally, a pre-
dicted sequence X ′l+1 = [x1,x2, · · · ,xl,x ′l+1]T ∈ <(l+1)×m

can be obtained via an operation of inverse MDT in Equation
(9), where x ′l+1 indicates the predicted value:

X ′l+1 = h̄−1τ
(
χl̂+1

)
= Unfold(l+1,τ )

(
χl̂+1

)
× 1S

†
1 × · · · × l+1S

†
l+1 (9)

where the superscript † means the Moore-Penrose
pseudo-inverse.

The steps listed above can be illustrated in Fig. 3.
After running one-step ahead forecasting with BHT-ARIMA,
the trend of all m-dimensional feature sequences obtained
in Section 3.1 can be predicted, as X ′i = [x ′l+1, . . . ,
x ′l+n]T ∈ <n×m. Since the intrinsic interaction information
between different feature sequences is utilized, BHT-ARIMA
can effectively improve the prediction accuracy and stability.
Thus, it provides an essential confidence for calculating devi-
ation degree between the predicted values and sequentially-
arrived data. Moreover, since BHT-ARIMA runs at a fast
speed, it can also meet the requirements of online scenarios.

FIGURE 3. Building a granular feature forecasting model using
BHT-ARIMA.

C. BLOCK 3: ANOMALY RECOGNITION BASED ON
PREDICTION DEVIATION
To detect fault occurrence with streaming data in real-time,
it is necessary to construct an effective alarm threshold.
Considering the streaming data is unlabeled and arrives
sequentially, it is very challenging to directly construct a
two-class or one-class classifier for identifying the occur-
rence of anomalies. Because the initial state of online samples
is unknown, the alarm threshold should be set based on
the anomaly detection model. No matter the initial state of
online data is normal or faulty, the detection rules should
both be learned adaptively from the unlabeled data, with-
out being adjusted repeatedly and manually. Based on the
predicted values of the granular feature sequences (see
Equation 9), the deviation degree between the predicted val-
ues and sequentially-arrived data (called the real values) are
expressed as:

Dev(i) =
1
m

∥∥X ′i − Xi∥∥22 (10)

where Xi′ and Xi are the predicted values and real values at
the i−th time point respectively. A largerDev(i) indicates that
the i−th sample is more likely to be an abnormal point.

Moreover, an alarm threshold is set as the 95% confidence
interval of the maximum deviation of the initial online data.
Generally, the 95% confidence interval of the alarm threshold
in the project is commonly used. For the newly-arrived online
sample, a same operation including granular feature decom-
position and BHT-ARIMA forecasting is conducted. Then the
deviation degree can be calculated. If the deviation degree
is larger than the threshold on three consecutive samples,
an anomaly is determined.

From this process, the proposed framework does not adopt
a supervised classifier to recognize state change, but employs
a deviation indicator between the predicted feature trend and
real online data. This framework does not set the initial online
data as normal in advance, thus it meets the characteristics of
streaming data. Specifically, if the available online data is
in normal state, the deviation between the predicted feature
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trend and real fault data will arise, which can determine the
location of faulty occurrence. In contrast, if the available
online data cover a certain fault data (usually in the later
part), the feature trend will correspondingly rise up. In this
scenario, the alarm threshold can still work after counting
the maximum deviation of the available online data. And
the proposed framework can also identify fault occurrence
adaptively in the newly-arrived data. Therefore, the proposed
framework is suitable for the online EFD problem.

IV. EXPERIMENTS
To verify the effectiveness of the proposed framework, some
comparative experiments are conducted on two bearing data
sets: IEEE PHM Challenge 2012 and XJTU-SY. The pro-
gramming environment is Matlab2014 and Python 3.6, with
CPU i5-8400HQ and 16 GB memory. All data are linearly
normalized to [−1, +1] before training.

A. DATASET INTRODUCTION
The dataset of IEEE PHM Challenge 2012 [27] is collected
from PRONOSTIA test platform shown in Fig. 4(a). This
platform provided the run-to-failure degradation data rolling
bearings. The dataset includes three working conditions.
Under the first condition, the motor speed is 1800rpm and
the load is 4000N. The second condition is the motor speed
of 1650rpm and the load of 4200N. The third condition is
the motor speed of 1500rpm and the load of 5000N. Among
them, the first condition and the second condition contain
7 bearings, and the third condition contains 3 bearings.

The dataset of XJTU-SY [28] is collected from the test
platform, as shown in Fig. 4(b). The platform can provide
accelerated degradation experiments of various rolling bear-
ings and sliding bearings, and obtain whole-life monitoring
data. This dataset includes three working conditions. Under
the first condition, the motor speed is 2100rpm and the load
is 12N. The second condition is the motor speed of 2250rpm
and the load of 11N. The third condition is the motor speed
of 2400rpm and the load of 10N. Each working condition
contains 5 bearings.

It is noted that the two datasets have different data samples.
One sample in the IEEE PHM challenge 2012 dataset and the
XJTU-SY dataset has 2560 points and 32000 points respec-
tively. For deep neural networks, the more sample points, the
better the effect of feature extraction.

B. EXPERIMENTAL SETUP
According to including offline data in the training pro-
cess or not, this section sets up three comparative experi-
ments, as shown in Table 1. For the IEEE PHM Challenge
2012 dataset, the bearings 1, 3, 4 and 7 under the first working
condition are selected in turn as the online target bearing
(i.e., the target domain). Experiment 1 only has initial online
data. Experiment 2 chooses six bearings under the first work-
ing condition as the offline data (i.e., the source domain).
Experiment 3 also chooses six bearings under the second

FIGURE 4. Test environments used in our experiments, with
(a) PRONOSTIA test platform [27] and (b) XJTU-SY test platform [28].

TABLE 1. Experimental settings on the two datasets. The word ‘‘Source’’
and ‘‘Target’’ indicates the source domain and target domain respectively.
The first number in the bearing name indicates the number of working
condition, and the second number indicates the number of the bearing.
The data in source domain is for training, and the data in target domain is
for test in the unsupervised learning mode.

FIGURE 5. The extracted 50-dimensional features of online bearing in
Experiment 1 with (a) Target 1 and (b) Target 2.

working condition as the offline data. For the XJTU-SY
dataset, the bearings 1, 2, 3 and 5 under the first work-
ing condition are as the online target bearings in turn. The
experimental setup is the same as the IEEE PHM Challenge
2012 dataset.

C. RESULTS ON THE IEEE PHM CHALLENGE
2012 DATASET
1) RESULTS OF GRANULAR FEATURE DECOMPOSITION
Experiment 1 (Only Initial Online Data Available): To con-
duct granular feature decomposition, the first 500 samples
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FIGURE 6. PDFs of the online bearing Target 1 and the offline data from the same working condition in Experiment 2, with (a) raw signal,
(b) Hilbert-Huang Transform (HHT) [29] marginal spectrum, and (c) the common features extracted by SDAE with domain adaptation.
To calculate the PDF of the common features, the features are reduced to one dimension by using principal component analysis (PCA).

FIGURE 7. Data distribution of the online bearing Target 1 and the offline data from the same working condition with (a)-(c) are the PDF
curves, (d)-(f) are the feature distribution. PCA is used to visualize the feature distribution.

of the bearing whole lifetime are used to extract deep fea-
tures by SDAE, and the remaining samples are sequentially
collected and employed for test. For the SDAE network, the
added noise level is set 0.01 and three hidden layers with
the size [2048, 512, 50] are employed. After 100 iterations,
the 50 dimensional deep features are obtained. Then the
sequentially-arrived data is fed into the trained SDAE model
to get online features. Taking Target 1 and Target 2 as exam-
ples, Fig. 5 shows the extracted features. From Fig. 5, due to
the reason of run-in, the feature values of the first 50 samples
are more different from the remaining ones. It is obvious that
the overall trend of the features is smooth, indicating that the

extracted features have good predictability. Thus it is suitable
to predict the feature trends using BHT-AMRIMA and other
time series forecasting methods.
Experiment 2 (Offline Data Under the Same Working Con-

dition Available): Due to the degradation characteristics of
rolling bearings, the actual degradation process still has a
certain difference even under the same working condition.
To reduce the difference of data distribution, this section uses
the method in Section 3.1.2 to seek the common features
of the offline bearings data. The first 500 samples of each
bearing are taken to train SDAE with domain adaptation. The
probability density functions (PDF) before and after domain

VOLUME 9, 2021 159691



K. Liu et al.: New Unsupervised Online Early Fault Detection Framework of Rolling Bearings

FIGURE 8. Data distribution of the online bearing Target 2 and the offline data from the same working condition with (a)-(c) are the PDF
curves, (d)-(f) are the feature distribution. PCA is used to visualize the feature distribution.

adaptation are shown in Fig. 6. The PDF of the bearings
under the same working condition have a bit differences. But
after domain adaptation, the PDF of all bearings tends to be
consistent.

Here Target 1 and Target 2 are selected for test. The data of
these two bearings are fed into the SDAE model to obtain
the online features, as shown in Fig. 7 and Fig. 8. Please
note that the PDF of the offline bearings is calculated by
splicing the features of multiple bearings and then reducing
it to one dimension. It is obvious in Fig. 7(d) and Fig. 8(d)
that the original data of different bearings are scattered, which
indicates that the data distributions of the initial state are
significantly different in time domain. The HHT features
illustrated in Fig. 7(e) and Fig. 8(e) are certainly gathered
towards the center. After domain adaptation, Fig. 7(f) and
Fig. 8(f) show that the bearings data converge to a large
extent. With a roughly identical distribution, the features are
applicable for the further feature trend forecasting.

Fig. 9 provides the online feature sequences extracted
from the common feature representations that are shown in
Fig. 7(f) and Fig. 8(f). It is clear that the online features have
a smooth trend after domain adaptation and can be regarded as
granular features of the online data. Obviously, these feature
sequences have good predictability.
Experiment 3: Offline data under different working condi-

tions available.

FIGURE 9. The extracted 50-dimensional features of online bearing in
Experiment 2 with (a) Target 1 and (b) Target 2.

In this experiment, the first 500 samples of each bearing
under the first working condition and the first 100 samples of
the six bearings under second working condition are chosen
to train the SDAE model with domain adaptation. The PDFs
before and after domain adaptation are shown in Fig. 10.

The effect of Fig. 10 is similar to Fig. 6, which means
that the SDAE with domain adaptation is also suitable for
the granular feature extraction under different working con-
ditions. In addition, Target 1 and Target 2 are selected as the
online target bearing respectively, and the PDF and feature
distribution before and after domain adaptation are shown in
Fig. 11 and Fig. 12.
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FIGURE 10. PDFs of the online bearing Target 1 and the offline data from
the different working condition in Experiment 3, with (a) HHT marginal
spectrum, and (b) the common features extracted by SDAE with domain
adaptation. Same to Fig. 6, PCA is also used to calculate the PDF of the
common features.

FIGURE 11. Data distribution of the online bearing Target 1 and the
offline data from different working condition, with (a)-(b) are the PDF
curves of HHT marginal spectrum and the extracted common features,
(c)-(d) are the corresponding feature distribution. Same to Fig. 7, PCA is
used to visualize the feature distribution.

Similar to Fig. 9, Fig. 13 provides the online feature
sequences extracted from the common feature representations
that are shown in Fig. 11(d) and Fig. 12(d). As in Fig. 13,
the online features are smooth and of good predictability.
These feature sequences prove again that the granular feature
decomposition can provide a solid basis for the online data,
especially with an insufficient amount, to make an accurate
trend forecasting.

2) RESULTS OF FEATURE TREND FORECASTING
As described in Section 3.2, we need to forecast the extracted
granular feature sequences to calculate the deviation between
the predicted values and sequentially-arrived data. For the
BHT-ARIMA algorithm, we take the first 300 samples of the
extracted feature sequences as input, set the autoregressive
coefficient p to be 3, the difference order d to be 2, and the
moving average coefficient q to be 1. One-step ahead fore-
casting is used to obtain the trend of the multi-dimensional
deep feature sequences. Taking the online bearings Target 1

FIGURE 12. Data distribution of the online bearing Target 2 and the
offline data from different working condition, with (a)-(b) are the PDF
curves of HHT marginal spectrum and the extracted common features,
(c)-(d) are the corresponding feature distribution.

FIGURE 13. The extracted 50-dimensional features of online bearing in
Experiment 3 with (a) Target 1 and (b) Target 2.

FIGURE 14. Feature trend forecasting in Experiment 1 with (a) Target 1
and (b) Target 2. Here PCA is utilized to visualize the forecasting
performance by reducing the 50-dimensional features into the first
principal component.

and Target 2 as examples, Fig. 14, Fig. 15, and Fig. 16 show
the 50-dimensional feature trends of the Experiment 1 to
Experiment 3, respectively.
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FIGURE 15. Feature trend forecasting in Experiment 2 with (a) Target 1
and (b) Target 2.

FIGURE 16. Feature trend forecasting in Experiment 3 with (a) Target 1
and (b) Target 2.

It is clear from Figs. 14-16 that the predicted trend of the
two bearings keeps line with the real online data in the three
experiments. It indicates that the BHT-ARIMA model has
good capability of time series forecasting with limited data.
Moreover, the forecasting performance demonstrates that the
proposed framework can obtain well the public information
of multiple granular feature sequences from the same original
data. More importantly, the computational cost is extremely
low. Therefore, the forecasting results listed in Figs. 14-16
are suitable to calculate the deviation from the real data and
recognize fault occurrence as well.

3) FAULT OCCURRENCE DETECTION
In this section, the alarm threshold is built according to
the 95% confidence interval of the maximum deviation in
the initial online data. The mean square error of each fea-
ture sequence is calculated between the forecasting results
in Section 4.3.2 and the sequentially-arrived online data.
Then all 50-dimensional error sequences are reduced to
one-dimensional error sequence. After smoothing operation
by using moving average method, the sample in the error
sequence whose deviation exceeds the alarm threshold will
be recognized as an anomaly. The results of Experiment 1 to
Experiment 3 are shown in Figs. 17-19 respectively.

From Figs. 17-19, the deviation value line crosses the
alarm threshold multiple times, which is the scenario of false
alarm. Obviously, we cannot determine the fault occurrence
at the first cross point that may be caused by irregular signal
fluctuation. Only consecutive anomalies can indicate a real
fault alarm. In this experiment, a fault is supposed to occur
once the deviations on three successive samples are all larger

than the threshold. Otherwise the sample is set as false alarm.
Apparently, the number of false alarm is extremely low in
Figs. 17-19. More interestingly, the locations of fault detec-
tion in Fig. 18 and Fig. 19 are mostly earlier than the location
in Fig. 17. The reason is introducing offline data for model
training can improve the effect of granular feature decompo-
sition and obtain common features with better representative
capability. Such features are certainly beneficial to forecast
future trends. The specific numerical results can be referred
to Table II (in Section 4.5). The results also demonstrate
the stability of the proposed framework, both applying to
two different online scenarios: with offline data and without
offline data.

D. RESULTS ON THE XJTU-SY DATASET
In this section, the experimental steps are the same as those
of the IEEE PHM Challenge 2012 dataset. Due to space
limitation, we only provide detection results rather than
detailed description of experimental process. Here the first
300 samples of each bearing whole lifetime are selected
for granular feature decomposition and domain adaptation.
In such samples, the first 200 samples are used to train the
BHT-ARIMA model, and the remaining 100 samples are
used to build an alarm threshold via the 95% confidence
interval of the maximum deviation. The fault detection results
of Experiment 1 to Experiment 3 are shown in Figs. 20-22
respectively.

From Figs. 20-22, the number of false alarm is also
low, which is similar with the results of IEEE PHM Chal-
lenge 2012 dataset. It indicates that the proposed framework
can handle two types of online detection problems on the
XJTU-SY dataset: with and without offline data. In addition,
the locations of fault occurrence in Fig. 21 and Fig. 22 are
relatively later than the location in Fig. 20, which is exactly
the opposite of the results on the IEEE PHM Challenge
2012 dataset. The reason is offline data has large fluctua-
tions trend, affecting the effect of domain adaptation. As a
result, the fault detection results are correspondingly delayed.
However, the overall results is earlier than other EFD models
(please refer to Table III), which proves again the stability of
the proposed framework.

E. COMPARATIVE RESULTS
To verify the effectiveness of the proposed framework,
we introduce 10 widely-used EFD methods for comparison,
as follows.

1) BEMD+AMMA[5]
2) Kurtosis + SVDD
3) SDAE+ SVDD
4) Kurtosis + LOF
5) SDAE+LOF
6) Kurtosis + iFOREST
7) SDAE+ iForest
8) FDDA[13]
9) SDFM[10]
10) S4VM+SODRMB[14]
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FIGURE 17. Fault detection results in Experiment 1 with (a) Target 1, (b) Target 2, (c) Target 3 and (d) Target 4. The small window is an enlarged
view of the location of fault occurrence, and the blue dotted line is the obtained alarm threshold. The alarm threshold is built according to the
95% confidence interval of the maximum deviation in the initial online data.

FIGURE 18. Fault detection results in Experiment 2 with (a) Target 1, (b) Target 2, (c) Target 3 and (d) Target 4.

FIGURE 19. Fault detection results in Experiment 3 with (a) Target 1, (b) Target 2, (c) Target 3 and (d) Target 4.

FIGURE 20. Fault detection results in Experiment 1 with (a) Target 1, (b) Target 2, (c) Target 3 and (d) Target 4. The small window is an enlarged view
of the location of fault occurrence, and the blue dotted line is the obtained alarm threshold. The alarm threshold is built according to the
95 confidence interval of the maximum deviation in the initial online data.

Specifically, BEMD+AMMA [5] is a state-of-the-art EFD
method based on weak signal analysis. This method utilizes
Bandwidth EMD to decompose the signal in time-frequency

domain and compares it with the prefixed fault characteristic
frequency. LOF [30] is a typical anomaly detection algo-
rithm based on distance metric. SVDD [8] is a one-class
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FIGURE 21. Fault detection results in Experiment 2 with (a) Target 1, (b) Target 2, (c) Target 3 and (d) Target 4.

FIGURE 22. Fault detection results in Experiment 3 with (a) Target 1, (b) Target 2, (c) Target 3 and (d) Target 4.

classification algorithm for anomaly detection. iForest [31]
is an integrated algorithm based on data cutting. Besides the
SDAE features, we also adopt a typical early fault feature
Kurtosis. By combining the two features and the three meth-
ods, we have 6 methods (Methods 2-7) for comparison.

Methods 8-10 are three state-of-the-art online EFD meth-
ods. Among them, FDDA [13] utilizes LSTM to predict the
trend of the normal state data of online bearing and determine
fault occurrence by evaluating the deviation degree between
the predicted distribution and real distribution. SDFM [10]
realizes online EFD based on abnormal sequence matching
with deep learning. This methodmainly detects the early fault
occurrence bymatching the fault feature and the known faults
in a sliding window. S4VM+SODRMB [14] utilizes offline
data to construct an initial semi-supervised SVM and incre-
mentally updates the SVM model with the unlabeled data
batch to achieve anomaly detection in online scenario. These
three methods all adopt the strategy of offline-modeling and
online detection, and can be viewed as the state-of-the-art
online EFD works.

For the IEEE PHM Challenge 2012 dataset, we choose the
first 500 samples of the online target bearing in all methods
as the normal samples and then construct the EFD model.
For the XJTU-SY dataset, we choose the first 300 samples
of the online target bearing in all methods complete the same
operation. Moreover, we employ cross-validation to optimize
the hyper-parameters of SVDD and set the k-value of LOF to
be 10. For iForest, the number of trees is set to 100, and each
tree trains 256 samples.

TABLE 2. Comparative results of online EFD on IEEE PHM Challenge
2012 dataset.

To make a comprehensive comparison, we choose two
widely-used evaluationmetrics [10], [14]: alarm location and
false alarm number. Alarm location means the number of the
signal snapshot where the fault alarm appears. False alarm
numbermeans the number of anomalies before the fault alarm
appears. For all methods, we define the maximum deviation
of the initial online data as the threshold. If the deviations on
three successive samples are all larger than the threshold, the
fault occurrence is recognized. The comparative results are
listed in Table 2 and Table 3.

On the whole, the proposed framework performs better
than all methods in the three experiments. For the IEEE PHM
Challenge 2012 dataset, the proposed framework gets earlier
alarm location in Experiment 1 (only online data available)
than all methods except SDFM on Target 4. However, the
false alarm number of the proposed framework is 1, far
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TABLE 3. Comparative results of online EFD on XJTU-SY dataset.

less than the number 47 of SDFM. In Experiment 2 (offline
data under the same working condition available), the alarm
location of the proposed framework is earlier than the location
of Experiment 1 on all target bearings except Target 3. But
the false alarm number is lower, indicating that the degrada-
tion data under the same working conditions can effectively
improve the online feature representation and then develop
the detection results. But for Experiment 3, the comparative
results are sort of complex. On Target 2 and Target 3, the
results of Experiment 3 are slightly better than the one of
Experiment 2. But on Target 4, the result of experiment 3
is far inferior to the result of Experiment 2. The reason is
that the bearing data under different working conditions may
have a quite different distribution characteristic. In this case,
the SDAE with domain adaptation is not effective enough
to extract common features. Therefore, it is necessary to
introduce a stronger unsupervised domain adaptationmethod.

For the XJTU-SY dataset, the proposed framework obtains
a similar comparative effect. In Experiment 1, the proposed
framework gets earlier alarm location and lower false alarms
than all the other methods. Meanwhile, due to the intro-
duction of offline data, the results of Experiment 2 and
Experiment 3 are not very stable. The results of Experiment 2
are rather worse than the results of Experiment 1. The reason
is that the initial offline data has obvious noise in the normal
state, which influences negatively the feature representation.
Meanwhile, the detection effect depends on the quality of the
offline data when using offline data under different working
conditions. In Experiment 3, some results are better than the
ones in Experiment 2, but some are significantly inferior
(e.g., on Target 2).

Furthermore, we also evaluate the computational cost of
the proposed method. Due to space limitation, we choose
two representative methods for comparison, e.g. SDFM [10]
and S4VM+SODRMB [14]. For one data block with
10 samples, the running time of our proposed method is
approximately 2.5s, while the running times of SDFM and
S4VM+SODRMB are 6s and 10s respectively. Obviously,
the computational cost of the proposed method is very low,
which is suitable for the online fault detection.

In summary, the proposed framework always gets the best
EFD effect than all the methods for comparison when only
online data are available. After introducing offline data for
model training, the proposed framework can get relatively

earlier alarm location than the other methods on most of
bearings, also with lower false alarm number. But still on very
few bearings, the proposed framework is slightly less effec-
tive. The comparative effect depends on the data distribution
characteristics of the offline data as well as the used domain
adaptation method.

V. CONCLUSION
Aiming at the problem of bearings EFD without system halt,
this paper proposes an unsupervised online EFD framework
based on granular feature forecasting. This framework is
divided into three inter-related generic blocks: granular fea-
ture decomposition, feature trend forecasting and anomaly
recognition based on prediction deviation. The main conclu-
sions can be highlighted as follows:

1) The proposed framework is applicable to two types of
online scenarios: with and without offline data. Especially,
this framework can realize effective EFD only using a lim-
ited amount of unlabeled online data, which is the biggest
difference from the existing methods.

2) Granular feature forecasting with BHT-ARIMA can
accurately forecast the fluctuation trend of single degradation
sequence with very low computational cost, which is very
suitable to online EFD.

3) Introducing some offline data may obtain better EFD
results. But this effect depends on the quality of the offline
data (for example, whether there is colored noise) as well
as the transfer learning performance of the used domain
adaptation method.

In the next work, we will construct an unsupervised deep
learning algorithm with stronger adaptability to improve the
detection robustness. Besides, the current alarm strategy is
manually set. For online detection, an adaptive threshold
setting is certainly vital. It is necessary to optimize alarm
strategy to realize automatic setting of alarm threshold by
considering various fault patterns comprehensively.
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