
Received October 23, 2021, accepted November 28, 2021, date of publication December 3, 2021,
date of current version December 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3132386

Complex Dynamics of a Dysentery Diarrhoea
Epidemic Model With Treatment and Sanitation
Under Environmental Stochasticity: Persistence,
Extinction and Ergodicity
XINGWANG YU 1 AND YUANLIN MA2
1School of Management Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
2School of Economics, Zhengzhou University of Aeronautics, Zhengzhou 450046, China

Corresponding author: Xingwang Yu (xwyu2006@126.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 12171441, and in part by the Key
Scientific Research Project of Colleges and Universities in Henan Province under Grant 21A110024.

ABSTRACT To understand the transmission dynamics of diarrhea in random environment, in this paper
we propose a stochastically perturbed dysentery diarrhoea epidemic model with treatment and sanitation.
Using the theory of stopping time, we first show the existence of global positive solution of the model. Then,
we study the stochastic dynamics of the model and present a stochastic threshold RS

0 which determines the
extinction and persistence of the disease. Based on Khasminskii’s theory, we further prove that the model has
a unique ergodic stationary distribution under the condition of RS

0 > 1. Numerical simulations are carried
out to verify the analytical results, showing that the white noise, and the constant treatment and sanitation
may have certain inhibitory effects on disease transmission. Lastly, the model is further extended to include
colored noise and seasonal fluctuation to study the long-term transmission dynamics of disease. It is found
that the method proposed in this paper is universal.

INDEX TERMS Stochastic dysentery model, threshold dynamics, persistence and extinction, ergodicity.

I. INTRODUCTION
Diarrhoea is an ancient disease that continues to cause
epidemics despite ongoing efforts to limit its spread [1]–[4].
It is well known that dysentery is a typical diarrhoeal disease
caused by Shigella (S. flexneri and S. dysenteriae), which is
associated with contaminated water and poor sanitation. As a
result, the disease often occurs in refugee camps. The elderly,
the weak and the malnourished are particularly vulnerable
to this disease and cause serious death. According to the
World Health Organization (WHO) [5], diarrhea is the second
leading cause of death in children under five years old, killing
around 525000 children every year, of which dysentery and
cholera contribute most of the cases. Available information
indicates that about 15% of diarrhoea under five years old is
dysentery, but up to 25% of all diarrhoea deaths [6].

Over the past few decades, WHO has launched a
series of measures to prevent and control dysentery [7],
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such as advocating exclusive breastfeeding, using improved
sanitation, rotavirus immunization, good personal and food
hygiene, health education about how infections spread,
etc., and has made remarkable achievements. However, for
developing countries, dysentery remains a significant public
health burden due to economic constraints and continues
to receive worldwide attention [8]–[14]. Stemming from
this motivation, to understand the transmission dynamics of
dysentery Berhe et al. [15] proposed the following dysentery
diarrhoea epidemic model with treatment and sanitation:

dS
dt = 3+ γ (1− ρ1)I + e1u1(1− ρ2)I + αR

−

(
β1B
K+B + β2I + µ

)
S,

dI
dt =

(
β1B
K+B + β2I

)
S − (µ+ d + γ + e1u1)I ,

dR
dt = (γρ1 + e1u1ρ2)I − (µ+ α)R,
dB
dt = kI − (δ + e2u2)B,

(1)

where S, I , R stand for the susceptible, infected and
recovered individuals respectively, and B is the concentration
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of pathogen population (or concentration of shigella in
the environment). Model (1) is based on two assumptions,
namely that disease transmission is multiple pathway and
the population is homogeneously mixed. As a result, the
incidence is composed of two parts: one is modeled by a
logistic response curve β1B

K+B representing the environment-
to-human transmission and the other is modeled by β2I
representing the human-to-human interaction. All parameters
in model (1) are positive and have the following biological
significance: β1 and β2 denote the rates of ingesting shigella
from a contaminated environment and through human-to-
human interaction respectively; K is the pathogen concen-
tration that yields 25-50% chance of catching dysentery
diarrhoea [16]; 3 denotes the recruitment rate of susceptible
humans; µ represents the natural death rate of all human
classes; k is the rate of infected individuals contribution to
shigella; γ is the natural recovery rate of diarrhea; α is
the relapse rate of the recovered humans to the susceptible
class; d is the disease-induced death rate; δ is the net
death rate of the pathogen population in the environment;
u1 is the rate of treatment; e2u2 is the rate of sanitation;
ei (i = 1, 2) are the efficacy of treatment and sanitation
respectively; ρ1 is the proportion of the naturally recovered
ones who go to the recovered class; ρ2 denotes the proportion
of the recovered individuals due to treatment who move
to a temporary immune state. For model (1), the dynamic
behavior is completely determined by the basic reproduction
number

R0 =
3β1k

µ(µ+ d + γ + e1u1)(δ + e2u2)K

+
3β2

µ(µ+ d + γ + e1u1)
,

that is, the disease-free equilibrium E0 = (3
µ
, 0, 0, 0)

is globally asymptotically stable if R0 < 1; while
for R0 > 1, there has a unique endemic equilibrium
E∗ = (S∗, I∗,R∗,B∗) which is globally asymptotically stable
(see [15]). The model was successful in explaining some
basic effects of constant controls treatment and sanitation on
disease transmission.

As an effective tool to predict and control disease
outbreaks, stochastic epidemic models (including models
driven by white noise [17]–[25], Markov switching [26]–[31]
and Lévy jumps [32]–[35]) have been increasingly favored by
many scholars in recent years. Unlike deterministic models,
the random transmission dynamics of disease is usually based
on probabilistic analysis, which provides a new perspective
on the evolution of disease. However, due to the complexity
of noise effect, there are still many problems to be studied,
such as persistence and extinction of the disease under
environmental noise and ergodicity of stochastic epidemic
system. To this end, we introduce randomness into model
(1) by assuming that stochastic perturbations are of the white
noise type which are directly proportional to S, I , R and B
(please refer to [36] for details), resulting the following Itô

type model:

dS =
[
3+ γ (1− ρ1)I + e1u1(1− ρ2)I + αR

−

(
β1B
K+B + β2I + µ

)
S
]
dt + σ1SdW1(t),

dI =
[(

β1B
K+B + β2I

)
S − (µ+ d + γ + e1u1)I

]
dt

+ σ2IdW2(t),
dR = [(γρ1 + e1u1ρ2)I − (µ+ α)R]dt

+ σ3RdW3(t),
dB = [kI − (δ + e2u2)B]dt + σ4BdW4(t),

(2)

where Wi(t) are mutually independent standard Brown-
ian motions defined on this complete probability space
(�,F , {Ft }t≥0,P) with a filtration {Ft }t≥0 satisfying the
usual conditions, σi ≥ 0 denote the intensity of the white
noise, i = 1, 2, 3, 4.
A natural question is: How does environmental noise affect

the dynamic behavior of stochastic model (2), especially
the persistence, extinction and ergodicity? To answer this
question, we give some theoretical results in Section II,
including the existence of a unique global positive solution
for model (2), the exponential stability and persistence
of the disease, and the existence of a unique ergodic
stationary distribution. Strict mathematical proofs of themain
results are presented in Section III. Later, some numerical
simulations are carried out to confirm our theoretical analysis
in Section IV. Finally, further discussions are provided in
Section V to conclude our study. Our major contributions
of the paper are: (i) This paper is the first attempt
to consider a dysentery diarrhoea epidemic model with
treatment and sanitation under environmental stochasticity.
Although there are some stochastic epidemic models such as
[19]–[23], [26]–[30], model (2) is essentially different due
to the complexity its structure; (ii) A new stochastic tool for
studying extinction of the disease is used, which is different
from the existing literatures [21]–[23], [27] and is universal;
(iii) A stochastic threshold RS

0 is given, which determines
the persistence and extinction of the disease. Meanwhile,
a meaningful result that environmental noise and constant
treatment and sanitation may have certain inhibitory effects
on disease transmission is obtained.

II. MAIN RESULTS
Some main results are presented in this section, including
the existence and uniqueness of global positive solution,
the exponential stability and persistence in mean, and the
existence of a unique ergodic stationary distribution. Before
that, let us denote

RS
0 =

3β2

(µ+ 1
2σ

2
1 )(µ+ d + γ + e1u1 +

1
2σ

2
2 )

+
3β1k

K (µ+ 1
2σ

2
1 )(µ+d+γ+e1u1 +

1
2σ

2
2 )(δ + e2u2 +

1
2σ

2
4 )
,

1 =
3β2

(µ+ 1
2σ

2
1 )(µ+ d + γ + e1u1 +

1
2σ

2
2 )
,
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5 =
1
2

[
1+

√
12 + 4

(
RS

0 −1
)]
,

2 =
1
8
(σ 2

2 + σ
2
4 )+

3(β1τ1 + β2τ2K )σ 2
1

2µτ2(µ+ 1
2σ

2
1 )K

+ min
{
µ+ d + γ + e1u1 +

1
2
σ 2
2 , δ + e2u2 +

1
2
σ 2
4

}
× (5− 1).

Here,

τ1 =
υ1

µ+ 1
2σ

2
2

, τ2 =
υ2

µ+ d + γ + e1u1 + 1
2σ

2
2

,

where (υ1, υ2) is any positive solution of the followingmatrix
equation

(υ1, υ2)0 = (5− 1)(υ1, υ2), (3)

and

0 =

 J 3β1

K (µ+ 1
2σ

2
1 )(µ+d+γ+e1u1+

1
2σ

2
2 )

k
δ+e2u2+ 1

2σ
2
4

−1

 ,
where J = −1+ 3β2

(µ+ 1
2σ

2
1 )(µ+d+γ+e1u1+

1
2σ

2
2 )
.

Now we are in the position to state our main results.
Theorem 1: Given initial valve (S(0), I (0),R(0),

B(0)) ∈ R4
+, model (2) admits a unique positive solution

(S(t), I (t),R(t),B(t)) for t ≥ 0; furthermore, the solution
will remain in R4

+ with probability one.
Theorem 2: Let (S(t), I (t),R(t),B(t)) be the solution

of stochastic model (2) with any given initial value
(S(0), I (0),R(0),B(0)) ∈ R4

+.
(i) If RS

0 < 1, then

lim sup
t→∞

1
t
ln[τ1I (t)+ τ2B(t)] ≤ 2,

lim sup
t→∞

1
t
lnR(t) ≤

[
− (µ+ α +

σ 2
3

2
)
]
∨2 a.s.

Especially, if 2 < 0, then

lim
t→∞

I (t) = lim
t→∞

R(t) = lim
t→∞

B(t) = 0,

lim
t→∞

1
t

∫ t

0
S(τ )dτ =

3

µ
a.s.

(ii) If RS
0 > 1, then

lim inf
t→∞

1
t

∫ t

0
I (τ )dτ ≥

µ+ d + γ + e1u1 + 1
2σ

2
2

η

× (RS
0 − 1),

where η is defined as (13).

Remark 1: (i) Theorem 2 gives the sufficient conditions
for the infected individual to approach zero with
probability one and to persist. It is worthy to note that,
when σi = 0 (i = 1, 2, 4), R0 = RS

0 , which shows
that RS

0 is the stochastic version of R0; when σi 6= 0
(i = 1, 2, 4), RS

0 < R0, implying the possibility that
RS

0 < 1 < R0. This means that environmental noise
may suppress the spread of disease. Furthermore, it is
interesting to find that the stochastic version of RS

0 is
independent of the noise intensity σ3.

(ii) We may rewrite RS
0 as RS

0 = RS
1 + RS

2 , where
RS

1 and RS
2 , as shown at the bottom of the page.

Biologically, RS
1 and RS

2 are the basic reproduction
numbers corresponding to the ingesting shigella from
a contaminated environment and through human to
human, respectively.

(iii) After direct calculation, we easily obtain
∂RS

0
∂u1

<

0,
∂RS

0
∂u2

< 0. Thus, the basic reproduction number
RS

0 decreases with implementing the controls u1 and
u2. Similarly, the basic reproduction number increases
with β1, β2, k and 3.

Theorem 3: If RS
0 > 1, then model (2) admits a unique

stationary distribution π (·) and it has the ergodic property.
Remark 2: Theorem 3 tells us that although there is no

positive equilibrium point in model (2), under the condition of
RS

0 > 1, there exists a unique ergodic stationary distribution,
which to some extent reflects that the solution of the model is
weakly stable and persistent in mean.

It should be pointed out that condition2 < 0 in Theorem 2
means that the noise intensity cannot be too large, while
RS

0 < 1 shows that the noise intensity can not be too
small, that is, the infected individuals tend to zero only at an
appropriate noise intensity.

III. PROOFS OF MAIN RESULTS
In this section, we provide the detailed proofs of the main
results illustrated in Section II.

A. PROOF OF THEOREM 1
Proof: Since the coefficients of model (2) do not

satisfy the linear growth condition, for given initial value
(S(0), I (0),R(0),B(0)) ∈ R4

+, there only exists a unique local
solution on t ∈ [0, τe), where τe is the explosion time. Now
we only show τe = ∞ a.s., which implies the global existence
of the solution. To this end, let n0 ≥ 1 be sufficiently
large such that S(0), I (0), R(0), and B(0) all lie within the
interval [ 1

n0
, n0]. For each integer n ≥ n0, define the stopping

RS
1 =

3β1k

K (µ+ 1
2σ

2
1 )(µ+ d + γ + e1u1 +

1
2σ

2
2 )(δ + e2u2 +

1
2σ

2
4 )
,

RS
2 =

3β2

(µ+ 1
2σ

2
1 )(µ+ d + γ + e1u1 +

1
2σ

2
2 )
.
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τn = inf{t ∈ [0, τe) : min{S, I ,R,B} ≤ 1
n or

max{S, I ,R,B} ≥ n}. Clearly, τn is increasing in n, and for
the empty set ∅ we have inf∅ = ∞. If let τ∞ = lim

n→∞
τn,

then τ∞ ≤ τe a.s. Next, we prove τ∞ = ∞ by contradiction,
implying τe = ∞. If this statement is false, there exist
three constants T > 0, n1 ≥ n0 and ε ∈ (0, 1) such that
P{�n} ≥ ε for all n ≥ n1, where �n = {τn ≤ T }.
Define a function V1 : R4

+→ R+ as

V1(S, I ,R,B) = S − m1 − m1 ln
S
m1
+ I − 1− ln I

+R− 1− lnR+ m2(B− 1− lnB),

where m1, m2 > 0 are determined later. Applying Itô’s
formula yields

L V1

≤ 3+ [γ (1− ρ1)+ e1u1(1− ρ2)]I + m1(β1 + β2I + µ

+
1
2
σ 2
1 )−(µ+d+γ+e1u1)I+d+γ+e1u1+

1
2
σ 2
2 +(γρ1

+ e1u1ρ2)I+µ+α+
1
2
σ 2
3 + m2(kI + δ + e2u2 +

1
2
σ 2
4 )

= [m1β2+m2k−(µ+d)]I+3+ m1(β1 + µ+
1
2
σ 2
1 )+ d

+ γ + e1u1 +
1
2
σ 2
2 + µ+ α +

1
2
σ 2
3

+m2(δ + e2u2 +
1
2
σ 2
4 ).

Choose m1 =
µ+d
2β2

and m2 =
µ+d
2k such that m1β2 + m2k −

(µ+ d) = 0, then

L V1 ≤ 3+ m1(β1 + µ+
1
2
σ 2
1 )+ d + γ + e1u1 +

1
2
σ 2
2

+µ+ α +
1
2
σ 2
3 + m2(δ + e2u2 +

1
2
σ 2
4 ) := C .

The rest of the proof is standard and can be referred to
Theorem 3.1 in [17]. So we omit it here. �

B. PROOF OF THEOREM 2
Below two lemmas are very useful in proving Theorem 2,
where the proof of Lemma 1 is omitted because it is standard
(see Lemma 1 in [37]).
Lemma 1: The solution (S(t), I (t),R(t),B(t)) established

in Theorem 1 satisfies

lim sup
t→∞

[S(t)+ I (t)+ R(t)+ B(t)] <∞ and

lim
t→∞

1
t

∫ t

0
σ1S(τ )dW1(τ ) = 0,

lim
t→∞

1
t

∫ t

0
σ2I (τ )dW2(τ ) = 0,

lim
t→∞

1
t

∫ t

0
σ3R(τ )dW3(τ ) = 0

lim
t→∞

1
t

∫ t

0
σ4B(τ )dW4(τ ) = 0

Lemma 2: Let U (I ,B) = τ1I + τ2B, where τ1 and τ2 are
defined as Theorem 2. Then,

lim sup
t→∞

1
t

∫ t

0

τ1β1B(τ )
KU (τ )

(
S(τ )−

3

µ

)
dτ ≤ 0 a.s., (4)

and

lim sup
t→∞

1
t

∫ t

0

τ1β2I (τ )
U (τ )

(
S(τ )−

3

µ

)
dτ ≤ 0 a.s. (5)

Proof: From model (2), d(S + I + R) ≤ [3 −
µ(S + I + R)]dt + σ1SdW1(t) + σ2IdW2(t) + σ3RdW3(t),
which shows that

S + I + R

≤
3

µ
+

(
S(0)+ I (0)+ R(0)−

3

µ

)
e−µt +

∫ t

0
e−µ(t−τ )

×

[
σ1S(τ )dW1(τ )+ σ2I (τ )dW2(τ )+ σ3S(τ )dW3(τ )

]
.

Then,∫ t

0

τ1β1B(τ )
KU (τ )

(
S(τ )−

3

µ

)
dτ ≤

∫ t

0

τ1β1B(τ )
KU (τ )

{(
S(0)

+ I (0)+ R(0)−
3

µ

)
e−µτ − I (τ )− R(τ )+

∫ τ

0
e−µ(τ−s)

×

[
σ1S(s)dW1(s)+ σ2I (s)dW2(s)+ σ3S(s)dW3(s)

]}
dτ

≤
τ1β1[S(0)+ I (0)+ R(0)]

τ2µK
+

∫ t

0

τ1β1B(τ )
KU (τ )

∫ τ

0
e−µ(τ−s)

×

[
σ1S(s)dW1(s)+ σ2I (s)dW2(s)+ σ3S(s)dW3(s)

]
dτ

=
τ1β1[S(0)+ I (0)+ R(0)]

τ2µK

+
τ1β1

K

{ ∫ t

0
σ1S(s)eµs

[ ∫ t

s

B(τ )e−µτ

U (τ )
dτ
]
dW1(s)

+

∫ t

0
σ2I (s)eµs

[ ∫ t

s

B(τ )e−µτ

U (τ )
dτ
]
dW2(s)

+

∫ t

0
σ3R(s)eµs

[ ∫ t

s

B(τ )e−µτ

U (τ )
dτ
]
dW3(s)

}
:=

τ1β1[S(0)+ I (0)+ R(0)]
τ2µK

+
τ1β1

K
(M1 +M2 +M3).

Here,

〈M1,M1〉t =

∫ t

0
σ 2
1 S

2(s)e2µs
[ ∫ t

s

B(τ )e−µτ

U (τ )
dτ
]2
ds

≤

σ 2
1 sup
τ∈[0,t]

S2(τ )

τ 22µ
2

∫ t

0
e2µs(e−2µt + e−2µs)ds

≤

2σ 2
1 t sup

τ∈[0,t]
S2(τ )

τ 22µ
2

,

which follows from strong law of large numbers and
Lemma 1 that lim

t→∞
M1(t)
t = 0. Similarly, lim

t→∞
M2(t)
t =

lim
t→∞

M3(t)
t = 0. Consequently, lim sup

t→∞

1
t

∫ t
0
τ1β1B(τ )
KU (τ ) (S(τ ) −

3
µ
)dτ ≤ 0. Similarly, lim sup

t→∞

1
t

∫ t
0
τ1β2I (τ )
U (τ ) (S(τ )− 3

µ
)dτ ≤ 0.

�
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1) DISEASE EXTINCTION OF STOCHASTIC MODEL (2)
In this subsection, we prove Theorem 2(i) about the extinction
of disease for model (2).

Proof: Applying Itô’s formula to U (I ,B) defined in
Lemma 2 and then integrating from 0 to t lead to

1
t
ln
U (t)
U (0)

=
1
t

∫ t

0
(I1(τ )+ I2(τ ))dτ +

M4(t)+M5(t)
t

, (6)

where

I1(t) =
1
U

{
τ1

[( β1B
K + B

+ β2I
)
S − (µ+ d + γ + e1u1)I

]
+ τ2[kI − (δ + e2u2)B]

}
,

I2(t) = −
σ 2
2 τ

2
1 I

2
+ σ 2

4 τ
2
2B

2

2U2 ,

M4(t) =
∫ t

0

σ2τ1I (τ )
U (τ )

dW2(τ ),

M5(t) =
∫ t

0

σ4τ2B(τ )
U (τ )

dW4(τ ).

Following the strong law of large numbers yields

lim
t→∞

M4(t)+M5(t)
t

= 0 a.s. (7)

Notice that

I1(t) =
1
U

{
τ1

[( β1B
K + B

+ β2I
)
S − (µ+ d + γ + e1u1)I

]
+ τ2[kI − (δ + e2u2)B]

}
≤

1
U

{τ1β1B
K

(
S −

3

µ

)
+ τ1β2I

(
S −

3

µ

)
+
τ13β1

µK
B−τ1(µ+d+γ+e1u1)I

+
τ13β2

µ
I + τ2[kI − (δ + e2u2)B]

}
≤

1
U

{1
2
σ 2
2 τ1I

+
τ1β1B
K

(
S −

3

µ

)
+ τ1β2I

(
S −

3

µ

)
+

1
2
σ 2
4 τ2B

}
+
3(β1τ1 + β2τ2K )σ 2

1

2µτ2(µ+ 1
2σ

2
1 )K

+
5− 1
U

(υ1I + υ2B)

≤
1
U

{τ1β1B
K

(
S −

3

µ

)
+ τ1β2I

(
S −

3

µ

)
+

1
2
σ 2
2 τ1I

+
1
2
σ 2
4 τ2B

}
+
3(β1τ1 + β2τ2K )σ 2

1

2µτ2(µ+ 1
2σ

2
1 )K

+min
{
µ+ d

+ γ + e1u1 +
1
2
σ 2
2 , δ + e2u2 +

1
2
σ 2
4

}
(5− 1),

and

1
U

(1
2
σ 2
2 τ1I +

1
2
σ 2
4 τ2B

)
+ I2(t)

=
1
2
σ 2
2

(τ1I
U
−
τ 21 I

2

U2

)
+

1
2
σ 2
4

(τ2B
U
−
τ 22B

2

U2

)
=
τ1τ2IB
2U2 (σ 2

2 + σ
2
4 ) ≤

1
8
(σ 2

2 + σ
2
4 ). (8)

It then follows from (6) and Lemma 2 that

lim sup
t→∞

1
t
lnU (t)

≤ min
{
µ+d+γ + e1u1+

1
2
σ 2
2 , δ + e2u2 +

1
2
σ 2
4

}
(5− 1)

+
1
8
(σ 2

2 + σ
2
4 )+

3(β1τ1 + β2τ2K )σ 2
1

2µτ2(µ+ 1
2σ

2
1 )K

:= 2 a.s., (9)

which is the desired assertion.
Next we assume diffusion process R̃(t) defined by{

dR̃(t) = −(µ+ α)̃R(t)dt + σ3R̃(t)dW3(t),
R̃(0) = R(0).

(10)

Then, d(R(t) − R̃(t)) ≤ [(γρ1 + e1u1ρ2)I − (µ + α)
(R(t)− R̃(t))]dt+σ3(R(t)− R̃(t))dW3(t),which together with
stochastic comparison theorem implies that

R(t)− R̃(t) ≤ (γρ1 + e1u1ρ2) exp
{
−

(
µ+ α +

σ 2
3

2

)
t

+ σ3W3(t)
} ∫ t

0
exp

{(
µ+ α +

σ 2
3

2

)
τ − σ3W3(τ )

}
I (τ )dτ.

By (9), for arbitrary ε1 > 0 and ω ∈ �, there exists a
T1 = T1(ω) such that I (t) ≤ 1

τ1
exp((2 + ε1)t), ∀t > T1.

Hence, when t > T1,

|R(t)− R̃(t)| ≤ (γρ1 + e1u1ρ2) exp
{
−

(
µ+ α +

σ 2
3

2

)
t

+ σ3W3(t)
} ∫ T1

0
exp

{(
µ+ α +

σ 2
3

2

)
τ − σ3W3(τ )

}
I (s)ds

+
2

τ1
exp

{
−

(
µ+ α+

σ 2
3

2

)
t+σ3W3(t)+σ3max

τ≤t
|W3(τ )|

}
×

∫ t

T1
exp

{(
µ+ α +

σ 2
3

2
+2+ ε1

)
τ
}
dτ.

That means that lim sup
t→∞

1
t ln |R(t) − R̃(t)| ≤ [−(µ +

α +
σ 23
2 )] ∨ (2 + ε1) a.s. By the arbitrariness of ε1,

we know that lim sup
t→∞

1
t ln |R(t) − R̃(t)| ≤ [−(µ + α +

σ 23
2 )] ∨ 2 a.s. Meanwhile, it can be seen from (10) that

R̃(t) = R(0) exp{−(µ+ α+
σ 23
2 )t + σ3W3(t)}, which implies

that lim sup
t→∞

1
t ln R̃(t) = −(µ+ α +

σ 23
2 ) a.s. Therefore,

lim sup
t→∞

1
t
lnR(t) ≤

[
−

(
µ+ α +

σ 2
3

2

)]
∨2 a.s. (11)

Furthermore, if 2 < 0, it follows from (9) and (11) that

max
{
lim sup
t→∞

1
t
ln I (t), lim sup

t→∞

1
t
lnR(t), lim sup

t→∞

1
t
lnB(t)

}
< 0,

which means lim
t→∞

I (t) = lim
t→∞

R(t) = lim
t→∞

B(t) = 0 a.s.
In this case, for sufficiently small ε2 > 0, there exist a set
�ε2 ⊂ � with P(�ε2 ) ≥ 1 − ε2 and a positive constant
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T2 = T2(ω) such that (3− ε2−µS)dt + σ1SdW1(t) ≤ dS ≤
(3 + ε2 − µS)dt + σ1SdW1(t), ∀ω ∈ �ε2 , t > T2. Then,
by the stochastic comparison theorem and Lemma 3 in [38],
we conclude that

3− ε2

µ
≤ lim

t→∞

1
t

∫ t

0
S(τ )dτ ≤

3+ ε2

µ
a.s.

Let ε2→ 0, one has lim
t→∞

1
t

∫ t
0 S(τ )dτ =

3
µ
a.s. �

2) DISEASE PERSISTENCE OF STOCHASTIC MODEL (1.2)
In this subsection, we prove Theorem 2(ii) about the
persistence of disease for model (1.2).

Proof: Let

V21 = −a1 ln S − ln I − a2 lnB+
a3

K (δ + e2u2)
B,

where a1, a2 and a3 are positive constants to be determined
later. By Itô’s formula, we obtain

L V21

= −a1
[3
S
+
γ (1− ρ1)I

S
+
e1u1(1− ρ2)I

S
+
αR
S

−

( β1B
K + B

+ β2I + µ+
1
2
σ 2
1

)]
−

[( β1B
K + B

+ β2I
)S
I

−

(
µ+ d + γ + e1u1 +

1
2
σ 2
2

)]
− a2

[kI
B
−

(
δ + e2u2

+
1
2
σ 2
4

)]
+

a3
K (δ + e2u2)

[kI − (δ + e2u2)B]

≤ −
a13
S
−

β1SB

K (1+ B
K )I
− a3

(
1+

B
K

)
+ a1

(
µ+

1
2
σ 2
1

)
+ a2

(
δ + e2u2 +

1
2
σ 2
4

)
+

(
µ+ d + γ + e1u1 +

1
2
σ 2
2

)
+ a3 − β2S +

a1β1
K

B+
(
a1β2+

a3k
K (δ + e2u2)

)
I −

a2kI
B

≤ −4 4

√
3β1 ka1a2a3

K
+ a3 + a2

(
δ + e2u2 +

1
2
σ 2
4

)
+ a1

(
µ+

1
2
σ 2
1

)
+

(
µ+ d + γ + e1u1 +

1
2
σ 2
2

)
− β2S

+
a1β1
K

B+
(
a1β2 +

a3k
K (δ + e2u2)

)
I .

Choose a1, a2 and a3 such that

a1
(
µ+

1
2
σ 2
1

)
= a2

(
δ + e2u2 +

1
2
σ 2
4

)
= a3 =

3β1k

K
(
µ+ 1

2σ
2
1

)(
δ + e2u2 + 1

2σ
2
4

) ,
then

L V21 ≤ −
3β1k

K
(
µ+ 1

2σ
2
1

)(
δ + e2u2 + 1

2σ
2
4

)
+

(
µ+ d + γ + e1u1 +

1
2
σ 2
2

)
−β2S +

a1β1
K

B+
(
a1β2 +

a3k
K (δ + e2u2)

)
I . (12)

Let V22 = −a4 ln S + a5B, where a4 and a5 are positive
constants to be determined later. Then,

L V22

= −a4
[3
S
+
γ (1− ρ1)I

S
+
e1u1(1− ρ2)I

S
+
αR
S

−

( β1B
K + B

+ β2I + µ+
1
2
σ 2
1

)]
+ a5[kI − (δ + e2u2)B]

≤ −
a43
S
+ a4

(
µ+

1
2
σ 2
1

)
+

[a4β1
K
− a5(δ + e2u2)

]
B

+ (a4β2 + a5k)I ,

which together with (12) yields that

L (V21 + V22) ≤ −
3β1k

K
(
µ+ 1

2σ
2
1

)(
δ + e2u2 + 1

2σ
2
4

)
+

(
µ+ d + γ + e1u1 +

1
2
σ 2
2

)
+ a4

(
µ+

1
2
σ 2
1

)
−β2S −

a43
S
+

[β1(a1 + a4)
K

− a5(δ + e2u2)
]
B

+

[
(a1 + a4)β2 + a5k +

a3k
K (δ + e2u2)

]
I

≤ −
3β1k

K
(
µ+ 1

2σ
2
1

)(
δ + e2u2 + 1

2σ
2
4

)
+

(
µ+ d + γ + e1u1 +

1
2
σ 2
2

)
+ a4

(
µ+

1
2
σ 2
1

)
− 2

√
β2a43+

[β1(a1 + a4)
K

− a5(δ + e2u2)
]
B

+

[
(a1 + a4)β2 + a5k +

a3k
K (δ + e2u2)

]
I .

Choose a4 and a5 such that

a4
(
µ+

1
2
σ 2
1

)
=

β23

µ+ 1
2σ

2
1

, a5(δ + e2u2) =
β1(a1 + a4)

K
,

then

L (V21 + V22) ≤ −
3β1k

K
(
µ+ 1

2σ
2
1

)(
δ + e2u2 + 1

2σ
2
4

)
+

(
µ+ d + γ + e1u1 +

1
2
σ 2
2

)
−

β23

µ+ 1
2σ

2
1

+

[
(a1 + a4)β2 + a5k +

a3k
K (δ + e2u2)

]
I

= −

(
µ+ d + γ + e1u1 +

1
2
σ 2
2

)
(RS

0 − 1)+ ηI ,

where

η = (a1 + a4)β2 + a5k +
a3k

K (δ + e2u2)
. (13)

And hence

d(V21 + V22)

≤

[
−

(
µ+ d + γ + e1u1 +

1
2
σ 2
2

)
(RS

0 − 1)+ ηI
]
dt

− σ1(a1 + a4)dW1(t)− σ2dW2(t)

− σ4

(
a2 − a5B−

a3B
K (δ + e2u2)

)
dW4(t). (14)
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Integrating (14) from 0 to t and then dividing by t on both
sides, we have

1
t
ln
V21(t)+ V22(t)
V21(0)+ V22(0)

≤ −

(
µ+ d + γ + e1u1 +

1
2
σ 2
2

)
(RS

0 − 1)

+
1
t

∫ t

0
ηI (τ )dτ +

ϕ(t)
t
,

where ϕ(t) =
∫ t
0 [−σ1(a1 + a4)dW1(τ ) − σ2dW2(τ ) −

σ4(a2−a5B(τ )−
a3B(τ )

K (δ+e2u2)
)dW4(τ )]. According to Lemma 1

and the strong law of large numbers for martingale, we get
lim
t→∞

ϕ(t)
t = 0, which further implies that

lim inf
t→∞

1
t

∫ t

0
I (τ )dτ ≥

(
µ+d + γ+e1u1 + 1

2σ
2
2

)
(RS

0 − 1)

η
.

This completes the proof. �

C. PROOF OF THEOREM 3
In this subsection, we provide a complete proof of Theorem 3.
Before that, we give an important lemma about the existence
of ergodic stationary distribution.

Let X (t) be a regular time-homogeneous Markov process
in Rl described by the stochastic differential equation

dX (t) = b(X )dt +
∑̀
r=1

gr (X )dBr (t).

The diffusion matrix is defined as follows

A(x) = (aij(x)), aij(x) =
∑̀
r=1

gir (x)g
j
r (x).

Then, one has the following lemma about the existence of
stationary distribution established by Khasminskii [39].
Lemma 3 [39]: Assume there exists a bounded open set

D ⊂ Rl with a smooth boundary 6, satisfying the following
conditions:
(a1) There exists a positive number M such that
l∑

i,j=1
aij(x)λiλj ≥M |λ|2, for x ∈ D and λ ∈ Rl .

(a2) There exists a non-negative C2-function V and a
positive constant L such thatL V ≤ −L, for any X ∈ Rl

\D.
Then the Markov process X (t) has a unique stationary

distribution π (·), and for any integrable function f (·) with
respect to the measure π we have

P
{
lim
t→∞

1
t

∫ t

0
f (X (s))ds =

∫
Rl
f (x)π (dx)

}
= 1.

With the help of Lemma 3, we now complete the proof
of Theorem 3 about the existence of ergodic stationary
distribution for model (2).

Proof: Let us construct a C2 function V2 : R4
+→ R as

V2 = M (V21 + V22)+ V23 + V24,

where V21, V22 are defined in Theorem 2, and

V23 = − ln S − lnR− lnB,

V24 =
1

θ + 1

(
S + I + R+

µ+ d
2k

B
)θ+1

.

Here, M and θ satisfy the conditions

−M
(
µ+ d + γ + e1u1 +

1
2
σ 2
2

)
(RS

0 − 1)+8 ≤ −2,

µ ∧
1
2
(µ+ d) ∧ (δ + e2u2)−

1
2
θ(σ 2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4 )>0,

and8 is defined as (24). LetDι = ( 1
ι
, ι)× ( 1

ι
, ι)× ( 1

ι
, ι), then

lim inf
ι→∞,(S,I ,R,B)∈R4

+\Dι
V2(S, I ,R,B) = +∞,which implies that

V2 exists a global minimum point (S̄, Ī , R̄, B̄) in the interior
of R4

+. So we define a nonnegative function Ṽ2: R4
+ → R+

as

Ṽ2(S, I ,R,B) = V2(S, I ,R,B)− V2(S̄, Ī , R̄, B̄).

Notice that

L V23

= −
3

S
−
γ (1− ρ1)I

S
−
e1u1(1− ρ2)I

S
−
αR
S

+
β1B
K + B

+ β2I + µ+
1
2
σ 2
1 −

(γρ1 + e1u1ρ2)I
B

+ µ

+α +
1
2
σ 2
3 −

kI
B
+ δ + e2u2 +

1
2
σ 2
4

≤ −
3

S
−

(γρ1 + e1u1ρ2)I
R

−
kI
B
+ β2I + α

+β1 + δ + 2µ+ e2u2 +
1
2
σ 2
1 +

1
2
σ 2
3 +

1
2
σ 2
4 ,

L V24

= (S + I + R+
µ+ d
2k

B)θ [3− µS −
1
2
(µ+ d)I − µR

−
(µ+ d)(δ + e2u2)

2k
B]+

1
2
θ (S + I + R+

µ+ d
2k

B)θ−1

× [σ 2
1 S

2
+ σ 2

2 I
2
+ σ 2

3R
2
+ σ 2

4 (
µ+ d
2k

B)2]

≤ (S+I+R+
µ+ d
2k

B)θ [3− (µ ∧
1
2
(µ+ d) ∧ (δ+e2u2))

× (S + I + R+
µ+ d
2k

B)]+
1
2
θ (σ 2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4 )

× (S + I + R+
µ+ d
2k

B)θ−1[S2+I2+R2 + (
µ+ d
2k

B)2]

≤ 3(S + I + R+
µ+ d
2k

B)θ−ξ (S + I + R+
µ+ d
2k

B)θ+1

≤ 9 −
1
2
ξ [Sθ+1 + I θ+1 + Rθ+1 + (

µ+ d
2k

B)θ+1],

where ξ = µ ∧ 1
2 (µ + d) ∧ (δ + e2u2) −

1
2θ (σ

2
1 ∨ σ

2
2 ∨ σ

2
3 ∨ σ

2
4 ) > 0, and

9 = sup
{
3
(
S + I + R+

µ+ d
2k

B
)θ

−
1
2
ξ
(
S + I + R+

µ+ d
2k

B
)θ+1}

<∞. (15)
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Therefore,

L Ṽ2

≤ −M
(
µ+ d + γ + e1u1 +

1
2
σ 2
2

)
(RS

0 − 1)

+MηI −
3

S
−
kI
B
−

(γρ1 + e1u1ρ2)I
R

−
1
2
ξ
[
Sθ+1

+ I θ+1 + Rθ+1 + (
µ+ d
2k

B)θ+1
]
+ β2I +9 + α

+β1 + δ + 2µ+ e2u2 +
1
2
σ 2
1 +

1
2
σ 2
3 +

1
2
σ 2
4 . (16)

Suppose that Dε is a bounded closed set defined as follows

Dε =
{
ε ≤ S ≤

1
ε
, ε≤ I ≤

1
ε
, ε2≤R ≤

1
ε2
, ε2 ≤ B ≤

1
ε2

}
.

Here ε is a sufficiently small positive constant satisfying

−
3

ε
+ φ1 ≤ −1, (17)

−M
(
µ+ d + γ + e1u1 +

1
2
σ 2
2

)
(RS

0 − 1)+8+Mηε

≤ −1, (18)

−
γρ1 + e1u1ρ2

ε
+ φ1 ≤ −1, (19)

−
k
ε
+ φ1 ≤ −1, (20)

−
1
4
ξ
(1
ε

)θ+1
+ φ2 ≤ −1, (21)

−
1
4
ξ
(µ+ d
2kε2

)θ+1
+ φ2 ≤ −1, (22)

where φ1, φ2 are defined in (23) and (25). For simplicity,
denote R4

+\Dε ≡
⋃8

i=1D
i
ε , where

D1
ε = {0 < S < ε}, D2

ε = {0 < I < ε},

D3
ε = {I > ε, 0 < R < ε2}, D4

ε = {I > ε, 0 < B < ε2},

D5
ε =

{
S >

1
ε

}
, D6

ε =

{
I >

1
ε

}
,

D7
ε =

{
R >

1
ε2

}
, D8

ε =

{
B >

1
ε2

}
.

Next, we prove L Ṽ2 ≤ −1 on R4
+\Dε in eight cases.

Case 1: When (S, I ,R,B) ∈ D1
ε , by (17) one can see that

L Ṽ2

≤ −
3

S
−

1
2
ξ
[
Sθ+1 + I θ+1 + Rθ+1 + (

µ+ d
2k

B)θ+1
]

+MηI + β2I +9 + α + β1 + δ + 2µ+ e2u2 +
1
2
σ 2
1

+
1
2
σ 2
3 +

1
2
σ 2
4 ≤ −

3

ε
+ φ1 ≤ −1,

where

φ1 = sup
{
−

1
2
ξ
[
Sθ+1 + I θ+1 + (

µ+ d
2k

B)θ+1

+Rθ+1
]
+MηI + β2I +9 + α + β1

+ δ + 2µ+ e2u2 +
1
2
σ 2
1 +

1
2
σ 2
3 +

1
2
σ 2
4

}
. (23)

Case 2: When (S, I ,R,B) ∈ D2
ε , it follows from (18) that

L Ṽ

≤ −M
(
µ+ d + γ + e1u1 +

1
2
σ 2
2

)
(RS

0 − 1)+MηI

+β2I +9 + α + β1 + δ + 2µ+ e2u2 +
1
2
σ 2
1 +

1
2
σ 2
3

+
1
2
σ 2
4 −

1
2
ξ
[
Sθ+1 + I θ+1 + Rθ+1 + (

µ+ d
2k

B)θ+1
]

≤ −M
(
µ+ d + γ + e1u1 +

1
2
σ 2
2

)
(RS

0 − 1)

+Mηε +8 ≤ −1,

where

8 = sup
{
−

1
2
ξ
[
Sθ+1 + I θ+1 + (

µ+ d
2k

B)θ+1

+Rθ+1
]
+9 + β2I + α + β1 + δ + 2µ+ e2u2

+
1
2
σ 2
1 +

1
2
σ 2
3 +

1
2
σ 2
4

}
. (24)

Case 3: When (S, I ,R,B) ∈ D3
ε , by (19) we have

L Ṽ

≤ −
(γρ1 + e1u1ρ2)I

R
−

1
2
ξ
[
Sθ+1 + I θ+1

+Rθ+1 + (
µ+ d
2k

B)θ+1
]
+MηI + β2I +9 + α

+β1 + 2µ+ e2u2 +
1
2
σ 2
1 +

1
2
σ 2
3 +

1
2
σ 2
4

≤ +δ −
γρ1 + e1u1ρ2

ε
+ φ1 ≤ −1.

Case 4: When (S, I ,R,B) ∈ D4
ε , by (20) we conclude that

L Ṽ

≤ −
kI
B
−

1
2
ξ
[
Sθ+1 + I θ+1 + Rθ+1 + (

µ+ d
2k

B)θ+1
]

+MηI + β2I +9 + α + β1 + δ + 2µ+ e2u2 +
1
2
σ 2
1

+
1
2
σ 2
3 +

1
2
σ 2
4 ≤ −

k
ε
+ φ1 ≤ −1.

Case 5: When (S, I ,R,B) ∈ D5
ε , (21) implies that

L Ṽ

≤ −
1
4
ξSθ+1 +MηI −

1
4
ξ
[
Sθ+1 + I θ+1 + Rθ+1

+ (
µ+ d
2k

B)θ+1
]
+ β2I +9 + α + β1 + δ + 2µ+ e2u2

+
1
2
σ 2
1 +

1
2
σ 2
3 +

1
2
σ 2
4 ≤ −

1
4
ξ (
1
ε
)θ+1 + φ2 ≤ −1,

where

φ2 = sup
{
−

1
4
ξ
[
Sθ+1 + I θ+1 + Rθ+1

+ (
µ+ d
2k

B)θ+1
]
+ β2I +MηI +9 + α + β1

+ δ + 2µ+ e2u2 +
1
2
σ 2
1 +

1
2
σ 2
3 +

1
2
σ 2
4

}
. (25)
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Case 6: When (S, I ,R,B) ∈ D6
ε , using (21), then

L Ṽ

≤ −
1
4
ξ I θ+1 −

1
4
ξ
[
Sθ+1 + I θ+1 + (

µ+ d
2k

B)θ+1

+Rθ+1
]
+MηI + β2I +9 + α + β1 + δ + 2µ+ e2u2

+
1
2
σ 2
1 +

1
2
σ 2
3 +

1
2
σ 2
4 ≤ −

1
4
ξ (
1
ε
)θ+1 + φ2 ≤ −1.

Case 7: When (S, I ,R,B) ∈ D7
ε , by (22), we can easily

deduce that

L Ṽ

≤ −
1
4
ξRθ+1 −

1
4
ξ
[
Sθ+1 + I θ+1 + (

µ+ d
2k

B)θ+1

+Rθ+1
]
+MηI + β2I +9 + α + β1 + δ + 2µ+ e2u2

+
1
2
σ 2
1 +

1
2
σ 2
3 +

1
2
σ 2
4 ≤ −

1
4
ξ (

1
ε2

)θ+1 + φ2 ≤ −1.

Case 8: When (S, I ,R,B) ∈ D8
ε , following (22) yields

L Ṽ

≤ −
1
4
ξ
[
Sθ+1 + I θ+1 + Rθ+1 + (

µ+ d
2k

B)θ+1
]
+MηI

−
1
4
ξ (
µ+ d
2k

B)θ+1+β2I+9 + α+β1 + δ + 2µ+ e2u2

+
1
2
σ 2
1 +

1
2
σ 2
3 +

1
2
σ 2
4 ≤ −

1
4
ξ (
µ+ d
2kε2

)θ+1 + φ2 ≤ −1.

From the above analysis, it is shown that L Ṽ2 ≤ −1
for (S, I ,R,B) ∈ R4

+\Dε, which implies that the condition
(a2) in Lemma 3 holds with L = 1.
And also, choose M = min

(S,I ,R,B)∈Dε
{σ 2

1 S
2, σ 2

2 I
2, σ 2

3R
2,

σ 2
4B

2
} such that

4∑
i,j=1

aij(S, I ,R,B)λiλj

= σ 2
1 S

2λ21 + λ
2
2I

2η22 + λ
2
3R

2η23 + λ
2
4B

2η24 ≥M ‖λ‖2

for all (S, I ,R,B) ∈ Dε, λ = (λ1, λ2, λ3, λ4) ∈ R4, then the
condition (a1) in Lemma 3 holds. So, model (2) has a unique
stationary distribution π (·) and it is ergodic. This completes
the proof. �

IV. NUMERICAL SIMULATIONS
In this section, we numerically simulate the solution of model
(2) to check our theoretical results by use of the method
in [40] and then find the effects of white noise and control
on the spread of disease. In the following, we always select
(S(0), I (0),R(0),B(0)) = (520, 30, 1, 5) and parameters
3 = 2.5, γ = 0.001, ρ1 = 0.4, ρ2 = 0, e1 = 1,
e2 = 0.1, β2 = 0.0001, β1 = 0.0001, K = 400, µ = 0.004,
d = 0.0015, α = 0.0025, δ = 0.03, k = 0.2 unless otherwise
specified. Now let us do our numerical simulation in three
cases.
Case 1: σ1 = 0.001, σ2 = 0.18, σ3 = 0.04, σ4 = 0.01,

u1 = 0.05, u2 = 0.1. In this case, simple calculations show

FIGURE 1. The left are time series of infected humans; the right are times
series of pathogen. Here, σ1 = 0.001, σ2 = 0.18, σ3 = 0.04, σ4 = 0.01,
u1 = 0.05, u2 = 0.1 and R0 = 1.12 > 1, RS

0 = 0.87 < 1.

FIGURE 2. The left are time series of infected humans and pathogen,
respectively; the right are its corresponding probability density functions.
Here, σ1 = 0.001, σ2 = 0.01, σ3 = 0.04, σ4 = 0.01, u1 = 0.05, u2 = 0.1 and
R0 = 1.12 > 1, RS

0 = 1.1 > 1.

FIGURE 3. Simulations of model (2) with and without controls. The left
are time series of infected humans; the right are times series of pathogen.

that R0 = 1.12 > 1, which shows that the system without
random perturbation is uniformly persistent. This can be seen
from see the blue lines in Fig. 1.

On the other hand, RS
0 = 0.87 < 1, and % = −0.001 < 0,

where v1 = 5 and v2 =
3β1

K (µ+ 1
2σ

2
1 )(µ+d+γ+e1u1+

1
2σ

2
2 )
.

This together with Theorem 2 yields that under random
perturbation, all solution trajectories representing infected
humans with dysentery diarrhoea drop to zero and the
pathogen population is also eliminated from the community.
Fig. 1 confirms these theoretical results, see the red lines.
Case 2: σ1 = 0.001, σ2 = 0.01, σ3 = 0.04, σ4 = 0.01,

u1 = 0.05, u2 = 0.1. By calculating we can see that RS
0 =

1.1 > 1. Thenmodel (2) is persistent and has a unique ergodic
stationary distribution by Theorems 2 and 3, see Fig. 2.

Comparing the above two cases, we find that large white
noise may suppress the spread of disease, while small white
noise can not change the original persistence of disease.
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Case 3: Let u1 = u2 = 0 and noise intensities are same
as Case 2. As pointed in Remark 2, treatment and sanitation
may reduce the reproduction number, which implies that it
is possible to decrease the infected and pathogen population
using controls. Fig. 3 confirms these analysis.

V. CONCLUDING REMARKS
To better understand the spread of disease in random envi-
ronment, in this paper, we proposed a stochastic dysentery
diarrhoea epidemic model with controls disturbed by white
noise. We first showed the existence of global positive
solution of the model. Then we gave a stochastic threshold
RS

0 , which determines the extinction and persistence of the
disease. Lastly, based on Khasminskii’s theory, we proved
that the model has a unique ergodic stationary distribution
under the condition of persistence in mean. Theoretical
analysis and numerical simulations show that: (i) Large
white noise may suppress the spread of disease while small
white noise cannot change the original persistence of disease;
(ii) Constant treatment and sanitation have important positive
role in controlling the spread of disease.

It is especially necessary to point out that the method
proposed in this paper is universal and can be used to study
other types of stochastic epidemic models, for example,
stochastic HIV-1 infection model with logistic growth or
Beddington-DeAngelis incidence rate and so on. Here are two
examples to illustrate the universality of this method from
other perspectives.
Example 1: In nature, besides the Gaussian white noise,

there are other types of noise such as colored noise, which
can cause the system to switch from one environmental
regime to another. Usually, the switching between envi-
ronmental regimes is memoryless and the waiting time
for the next switching follows the exponential distribu-
tion [41]–[45]. Hence the colored noise can be modeled
by a continuous time Markov chain {r(t)}t≥0 taking values
in a finite state space N = {1, 2, . . . ,N }. With this
in mind, model (2) can be extended to the following
form:



dS =
[
3(r(t))+ γ (r(t))(1− ρ1(r(t)))I + e1(r(t))

× u1(r(t))(1− ρ2(r(t)))I + α(r(t))R−
( β1(r(t))B
K (r(t))+ B

+ β2(r(t))I + µ(r(t))
)
S
]
dt + σ1(r(t))SdW1(t),

dI =
[( β1(r(t))B
K (r(t))+ B

+ β2(r(t))I
)
S − (µ(r(t))+ d(r(t))

+ γ (r(t))+ e1(r(t))u1(r(t)))I
]
dt + σ2(r(t))IdW2(t),

dR = [(γ (r(t))ρ1(r(t))+ e1(r(t))u1(r(t))ρ2(r(t)))I

− (µ(r(t))+ α(r(t)))R]dt + σ3(r(t))RdW3(t),

dB = [k(r(t))I − (δ(r(t))+ e2(r(t))u2(r(t)))B]dt

+ σ4(r(t))BdW4(t).
(26)

For the sake of argument, we assume that the generator
Q = (qij)N×N of the Markov chain is governed by

P{r(t +1t) = j|r(t) = i}

=

{
qij1t + o(1t), if i 6= j,
1+ qii1t + o(1t), if i = j,

where 1t > 0 and qij is the transition rate from state i to
state j and qij ≥ 0 if i 6= j while qii = −

∑
i6=j
qij. In addition,

we further assume that the Markov chain r(t) is irreducible
and hence has a unique ergodic stationary distribution
π = (π1, π2, · · · , πN ) satisfying

πQ = 0,
∑
i∈N

πi = 1 and πi > 0, ∀i ∈ N.

Now we denote f̂ = min
m∈N
{f (m)}, f̌ = max

m∈N
{f (m)},

J1 =
N∑
i
πi(δ(i) + e2(i)u2(i) + 1

2σ
2
4 (i))(

N∑
i
πi
√
3(i)β2(i))2,

J2 = (
N∑
i
πi

4
√
3(i)β1(i)k(i)

K (i) )4, J3 =

N∑
i
πi(µ(i) +

1
2σ

2
1 (i))

N∑
i
πi(µ(i) + d(i) + γ (i) + e1(i)u1(i) + 1

2σ
2
2 (i))

N∑
i
πi(δ(i)+ e2(i)u2(i)+ 1

2σ
2
4 (i)), and

RC
0 =

J1 + J2
J3

.

Using the method proposed in this paper, the persistence in
mean and existence of an ergodic stationary distribution for
hybrid model (26) can be investigated easily. Therefore, the
following conclusions are valid.
Theorem 4: Assume RC

0 > 1, then for any initial value
(S(0), I (0),R(0),B(0), r(0)) ∈ R4

+×N, the solution of model
(26) has the following property

lim inf
t→∞

1
t

∫ t

0
I (τ )dτ

≥

N∑
i
πi(µ(i)+ d(i)+ γ (i)+ e1(i)u1(i)+ 1

2σ
2
2 (i))

η̌1

× (RC
0 − 1) a.s.,

where

η1 = (b1 + b2)β2(i)+ b3k(i)+
b4k(i)

K (i)(δ(i)+ e2(i)u2(i))
,

b1 =

(
N∑
i
πi

4
√
3(i)β1(i)k(i)

K (i) )4

(
N∑
i
πi(µ(i)+1

2σ
2
1 (i)))

2
N∑
i
πi(δ(i)+e2(i)u2(i)+ 1

2σ
2
4 (i))

,

b2 =

(
N∑
i
πi
√
3(i)β2(i))2

(
N∑
i
πi(µ(i)+ 1

2σ
2
1 (i)))

2

,

161138 VOLUME 9, 2021



X. Yu, Y. Ma: Complex Dynamics of Dysentery Diarrhoea Epidemic Model With Treatment and Sanitation

b3 =
β̌1

K̂ (δ̂ + ê2û2)
,

b4=

(
N∑
i
πi

4
√
3(i)β1(i)k(i)

K (i) )4

N∑
i
πi(µ(i)+ 1

2σ
2
1 (i))

N∑
i
πi(δ(i)+ e2(i)u2(i)+ 1

2σ
2
4 (i))

.

Theorem 5: If RC
0 > 1, then model (26) admits a unique

stationary distribution and it has the ergodic property.
Example 2: Considering seasonal fluctuation and other

factors, similar to [37], [46]–[48], model (2) can also be
extended to the following periodic form:

dS =
[
3(t)+ γ (t)(1− ρ1(t))I + e1(t)u1(t)(1− ρ2(t))I

+ α(t)R−
( β1(t)B
K (t)+B

+β2(t)I+µ(t)
)
S
]
dt+σ1(t)SdW1(t),

dI =
[( β1(t)B
K (t)+ B

+ β2(t)I
)
S − (µ(t)+ d(t)+ γ (t)

+ e1(t)u1(t))I
]
dt + σ2(t)IdW2(t),

dR = [(γ (t)ρ1(t)+ e1(t)u1(t)ρ2(t))I − (µ(t)+ α(t))R]dt

+ σ3(t)RdW3(t),

dB = [k(t)I − (δ(t)+ e2(t)u2(t))B]dt + σ4(t)BdW4(t),
(27)

where all parameters are continuous$ -periodic functions.
When f is an integrable function, we denote 〈f 〉$ =

1
$

∫ $
0 f (τ )dτ ; while for a continuous $ -periodic function,

denote f l = min
t∈[0,$ ]

f (t), f u = max
t∈[0,$ ]

f (t). Define a parameter

R$
0 =

J4 + J5
J6

.

where J4 = 〈δ + e2u2 + 1
2σ

2
4 〉$ 〈
√
3β2〉

2
$ , J5 = 〈

4
√
3β1k
K 〉

4
$ ,

J6 = 〈µ+ 1
2σ

2
1 〉$ 〈µ+ d + γ + e1u1 +

1
2σ

2
2 〉$ 〈δ + e2u2 +

1
2σ

2
4 〉$ . We then get the following two results, whose proof

are similar to Theorems 2(ii) and 3.
Theorem 6: Assume R$

0 > 1, then for any initial
value (S(0), I (0),R(0),B(0)) ∈ R4

+, the solution (S(t), I (t),
R(t),B(t)) of model (27) has

lim inf
t→∞

1
t

∫ t

0
I (τ )dτ ≥

〈µ+ d + γ + e1u1 + 1
2σ

2
2 〉$

ηu2
× (R$

0 − 1),

where η2 = (c1 + c2)β2(t) + c3k(t) +
c4k(t)

K (t)(δ(t)+e2(t)u2(t))
,

c1 =
〈
4
√
3β1k
K 〉

4
$

〈µ+ 1
2σ

2
1 〉

2
$ 〈δ+e2u2+

1
2σ

2
4 〉$

, c2 =
〈
√
3β2〉

2
$

〈µ+ 1
2σ

2
1 〉

2
$

,

c3 =
βu1

K l (δl+el2u
l
2)
, c4 =

〈
4
√
3β1k
K 〉

4
$

〈µ+ 1
2σ

2
1 〉$ 〈δ+e2u2+

1
2σ

2
4 〉$

.

Theorem 7: IfR$
0 > 1, then model (27) admits a positive

$ -periodic solution.
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