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ABSTRACT Managing GPGPU resources in cloud systems is challenging as workloads with various
resource usage patterns coexist. To determine the co-location of workloads, previous studies have shown
that run-time performance profiling and dynamic relocation of workloads is necessary due to interference
between workloads. However, this makes instant scheduling difficult and also affects the performance of
workload executions. In this article, we show that efficient resource sharing in GPGPU is possible without
run-time profiling if resource usage characteristics of workloads are analyzed down to a fine-grained unit
level. To extract workload characteristics, we do not perform profiling at scheduling time, but separate
profiling from scheduling, thereby reducing the run-time complexity of previous approaches. Specifically,
we anatomize the characteristics of various GPGPU workloads and present a new scheduling policy that
aims at balancing resource utilization by co-locating workloads with complementary resource demands.
Simulation experiments under various virtual machine scenarios show that the proposed policy improves the
GPGPU throughput by 119.5% on average and up to 191.7%.

INDEX TERMS GPGPU, resource utilization, cloud system, multitasking, thread block scheduler.

I. INTRODUCTION
With the rapid advances in many-core computing technolo-
gies, general-purpose GPUs (GPGPUs) have been widely
adopted in cloud data centers as well as desktop sys-
tems. GPGPUs have a massive number of computing units,
which allow thread-level parallelism for various application
domains including deep learning, graphic rendering, and
genome analysis [1]–[3].

Multitasking of heterogeneous workloads has not received
much attention from traditional GPU management as GPUs
are generally adopted in systems dedicated to specific work-
loads. However, due to the widespread adoption of cloud
systems, heterogeneous workloads are concurrently executed
within a GPGPU device, and thus maximizing resource uti-
lization by multitasking in GPGPU has become an important
issue [4]–[6]. As shown in Figure 1, modern cloud systems
are equipped with GPGPU devices along with traditional host
resources (CPU, memory, storage, etc.), and various work-
loads are executed as virtual machines that share resources.
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Traditional host resources such as CPU, memory, and I/O
devices in cloud systems can be shared among heterogeneous
workloads through resource planning in the host operating
system and virtualization software [7], [8]. However, this is
challenging in GPGPU systems as the principle of resource
management in GPGPU is to simplify hardware logic and
maximize parallelism for a given workload rather than shar-
ing resources for heterogeneous workloads. For this reason,
some resources of the GPGPU may be exhausted whereas
others are still under-utilized.

Previous studies have also focused on this issue, and the
concurrent execution of multiple applications within GPGPU
has been addressed [9], [10]. Specifically, SMK (simultane-
ous multi-kernel) and Maestro were introduced as software
techniques to provide multitasking of heterogeneous work-
loads within SMs (streaming multiprocessors) [9], [10]. The
basic principle of these techniques is to co-locate workloads
with compensating resource usage in the same SM to bal-
ance the utilization of overall resources. Specifically, pairing
memory-intensive and computing-intensive workloads in the
same SM can significantly improve the overall utilization of
resources.
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FIGURE 1. A cloud host machine that equips the GPGPU device and
various workloads are executed as virtual machines that share the
resources including GPGPU.

Unfortunately, the resource under-utilization problem can-
not be resolved if the bottleneck resource for all workloads is
the same. That is, we cannot make use of the co-location strat-
egy aforementioned if there are only computing-intensive
or memory-intensive workloads. Also, previous approaches
require run-time performance profiling and dynamic
re-arrangement of workloads to cope with interference
between workloads. However, this makes instant schedul-
ing difficult and also affects the performance of workload
executions.

In this article, we show that efficient resource sharing in
GPGPU is possible without run-time profiling if resource
usage characteristics of workloads are analyzed down to a
fine-grained unit level. Specifically, we analyze fine-grained
resource usage patterns for a variety of GPGPU workloads
and discuss how this analysis can be utilized in resource plan-
ning for multitasking GPGPUs. To extract workload charac-
teristics, we do not perform profiling at scheduling time, but
separate profiling from scheduling, thereby reducing the run-
time complexity of previous approaches.

Let us consider a workload situation where only
computing-intensive workloads exist in the system. Even
in this case, our analysis shows that placing two
computing-intensive workloads in the same SM is efficient
if their bottleneck resources within the SM are different. For
example, if one workload performs integer arithmetic and the
other performs floating-point arithmetic, they can be assigned

to the same SM without conflict as GPGPUs typically have
separate units for integer and floating-point arithmetic within
an SM.

In order to maximize resource utilization through mul-
titasking, this article classifies GPGPU workloads into
computing-bound, memory-bound, and dependency-latency-
bound, and then refines the classification based on detailed
resources that cause bottlenecks. In particular, we show that
bottleneck resources can be different even for workloads with
the same classification.

Based on this observation, we present a GPGPU work-
load placement scheme for cloud systems that assigns work-
loads with different bottleneck resources on the same SM in
order to maximize overall resource utilization. Specifically,
we design a thread block scheduling policy, called FRU-
RR (Fine-grained Resource Utilization aware Round-Robin)
that assigns pending thread blocks to SMs in a Round-Robin
order but also considers each SM’s fine-grained resource
utilization.

Experimental results for various virtual machine scenarios
show that FRU-RR improves GPGPU throughput by 119.5%
on average and up to 191.7% compared to Round-Robin
scheduler, and by 30.1% on average and up to 42.9% com-
pared to previous studies that allow co-locations of workloads
within the same SM [9], [10]. Our findings and contributions
can be summarized as follows.

• Due to the coexistence of heterogeneous workloads and
various resource types to manage, GPGPU schedul-
ing in cloud systems incurs resource under-utilization
problems.

• Previous approaches have addressed this issue, but they
need run-time performance profiling and dynamic relo-
cation overhead.

• We observe that efficient resource sharing in GPGPU
is possible without run-time profiling if resource usage
patterns are analyzed down to a fine-grained unit level.

• We separate profiling from scheduling, thereby reduc-
ing the run-time complexity of previous approaches,
and quantify the resource usage patterns of various
GPGPU workloads.

• We propose a scheduling policy that aims to bal-
ance resource utilizations by co-locating workloads
with complementary resource demands, and validate it
through a variety of cloud scenarios.

The remainder of this article is organized as follows.
Section II briefly explains the internal structure of GPGPU
devices and the CUDA platform architecture. Section III
presents the analysis of various GPGPU workloads with
respect to resource utilization. In Section IV, we explain the
proposed thread block scheduling policy and conduct the
validation of the policy by simulation experiments under
various virtual machine scenarios. Section V summarizes
previous studies related to this article, specially focusing on
thread block scheduling. Finally, we conclude this article in
Section VI.
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FIGURE 2. Internal structure of SM (stream multiprocessor).

II. THE GPGPU ARCHITECTURE
A. INTERNAL STRUCTURE OF GPGPU
Modern general-purpose GPUs (GPGPUs) have tens of thou-
sands of computing units, which can accelerate the computing
performance by executing threads in parallel [11]. In gen-
eral, a GPGPU application has a large number of concur-
rent threads and they are grouped into thread blocks, which
are basic resource allocation units. The GPGPU hardware
consists of tens of stream multiprocessors (SMs), and thread
blocks are allocated to the SMs by the thread block sched-
uler [12]–[14]. As SM adopts the SIMT (Single Instruction
Multiple Thread) model, it executes the same instruction for
multiple threads simultaneously [15]. The maximum number
of threads that can be executed per SM is typically 2048.
The thread block scheduler manages the number of allowable
threads per SM not to exceed this limit while allocating thread
blocks to the SM [16].

Meanwhile, a series of threads that should be executed
simultaneously within the same hardware unit are called a
Warp, which consists of up to 32 threads. Each thread block
consists of at least one Warp, and the number of Warps
increases by 1 whenever the number of threads within aWarp
exceeds 32. Thus, SM may not execute all threads in a thread
block simultaneously, but threads within the same Warp are
essentially executed simultaneously [17].

Figure 2 shows the internal structure of a typical SM [18].
As shown in the figure, each SM consists of Instruction
Cache, two or four Processing Blocks, Texture / L1 Cache,
Texture Memory, and Shared Memory. Each Processing
Block has various types of computing units such as FP64
cores, INT32 cores, FP32 cores, Load/Store units, and SFUs
(special function units). Recently, a new type of comput-
ing units called Tensor cores, designed specifically for deep
learning matrix operations, are increasingly being added to
SMs [18].

Each Processing Block also has Instruction Buffer, Regis-
ter File, Dispatch Unit, and Warp Scheduler. Dispatch Unit
passes instructions to be executed to each core, and Warp
Scheduler performs the scheduling of threads in Warp units.

FIGURE 3. Memory architecture of CUDA.

B. CUDA PLATFORM AND MEMORY ARCHITECTURE
CUDA (Compute Unified Device Architecture) is a parallel
computing platform designed by NVIDIA [19]. As CUDA
provides an application programming interface (API) model
that supports industry standard languages like C, software
developers can implement parallel processing algorithms in
GPGPU efficiently.

Figure 3 shows the memory architecture of CUDA [19].
It consists of on-chip memory (right-hand side) and off-chip
memory (left-hand side). On-chip memory consists of Reg-
isters, Shared Memory, Constant Cache, and Texture Cache.
Registers are statically dedicated to each thread during thread
block scheduling, and SharedMemory is used for inter-thread
communication within the thread block.

Due to the limited capacity of Registers, the on-chip mem-
ory may be exhausted, and then Local Memory, which is
one of the off-chip memory, can be used. Off-chip memory
also has Global Memory that can be accessed by all threads,
Constant Memory that is shared by all threads but read-only,
and Texture Memory. For better memory performance, appli-
cation developers should take full advantage of the memory
structure and characteristics of CUDA.

III. ANALYZING RESOURCE UTILIZATIONS OF GPGPU
WORKLOADS
In this section, we analyze the fine-grained resource utiliza-
tion of various GPGPU workloads in order to manage the
GPGPU efficiently and improve resource utilization. As we
increase the load on the GPGPU up to its resource limit,
either a computing or amemory resource usually becomes the
performance bottleneck. Based on this bottleneck resource,
we classify GPGPU workloads into computing-bound and
memory-bound workloads.

A workload is classified as computing-bound if the utiliza-
tion of the computing resource is much higher than that of
the memory resource, thereby reaching its limit first. In con-
trast, a memory-bound workload uses high memory band-
width, which becomes a bottleneck resource. Meanwhile,
there are cases that neither the computing resource nor the
memory resource becomes a bottleneck resource although
we increase the load of the GPGPU up to its maximum
capacity. In this case, resource utilization is limited by the
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FIGURE 4. Resource utilization of computing-bound workloads.

execution dependency of the workload, which we classify as
a dependency-latency-bound type.

We investigate the resource utilization of various GPGPU
workloads by making use of the NVIDIA’s profiling tool.
Specifically, we execute 15 workloads consisting of NVIDIA
SDK and Rodinia, which are popular benchmarks used for
GPGPU performance evaluations [20], [21]. We also per-
form profiling for Conv2D, a convolutional neural network
as a representative benchmark for machine learning, and
SHA256, a secure hashing algorithmmainly used in Bitcoin’s
PoW (Proof of Work). Our execution configurations of the
workloads are listed in Table 1.

A. COMPUTING-BOUND WORKLOADS
Figure 4 shows the utilization of computing and memory
resources for the workloads classified as computing-bound

out of the 17 workloads we considered. Low resource uti-
lization here indicates that the resource has been idle for a
long time, and 100% utilization means that the resource is
a bottleneck. As shown in the figure, in computing-bound
workloads, computing resources are bottlenecked, whereas
memory resources are under-utilized.

The computing resources of GPGPU can be further classi-
fied into a single-precision arithmetic unit, a double-precision
arithmetic unit, a control flow unit, a load store unit, and a
special function arithmetic unit.

Figure 5 shows the detailed resource utilization of each
computing unit for the computing-bound workloads in Fig-
ure 4. As shown in the figure, even for the same computing-
bound workloads, the specific resource type that causes the
bottleneck is different. Of the 7 workloads, Back Propaga-
tion, Hotspot, LavaMD, Particle Filter, and Srad exhibit high
utilization of over 80% in double-precision arithmetic units,
whereas other resources such as single-precision arithmetic
units and special function arithmetic units show low uti-
lization. Specifically, in the case of Back Propagation and
LavaMD, the utilization of the double-precision arithmetic
unit is almost 100%, whereas the utilization of the single-
precision arithmetic unit and the special function arithmetic
unit is 10% and 0%, respectively. From this analysis, we can
summarize that most of computing-bound workloads we
consider perform arithmetic operations on 64-bit double-
precision data.

On the other hand, Nbody and Conv2D show significantly
different resource usage patterns. Specifically, the utilization
of the double-precision arithmetic unit is 0%, whereas the uti-
lization of the single-precision arithmetic unit is about 80%.
Thus, we can conclude that most computations of Nbody and
Conv2D consist of 32-bit single-precision data.

B. MEMORY-BOUND WORKLOADS
Memory-bound workloads exhibit high memory bandwidth
utilization, and thus performance is limited by memory
resources within the GPGPU. This occurs when memory
resources are not able to provide data at the speed of exe-
cution in computing resources. This lowers the utilization
of computing resources, thereby limiting overall GPGPU
performances.

In this subsection, we show resource utilizations for
memory-bound workloads, and identify specific memory
resources that cause performance bottlenecks. Specifically,
we analyze the utilization of each memory resource in
GPGPU, namely Shared Memory, Unified Cache, L2 Cache,
Device Memory, and System Memory to identify the perfor-
mance limiting factors.

Figure 6 shows the utilizations of computing resources
and memory resources for the memory-bound workloads
we investigated. Black Scholes, Stream Cluster, Convolution
Texture, Fluids GL, and HS Optical Flow were classified
as memory-bound workloads due to their high memory
usage. Figure 7 shows the utilizations of each memory
resource. As shown in the figure, in all workloads except

161510 VOLUME 9, 2021



K. Cho, H. Bahn: Characterizing Fine-Grained Resource Utilization for Multitasking GPGPU

TABLE 1. GPGPU workloads analyzed in this article.

for Convolution Texture, Device Memory, one of off-chip
memories, shows the highest utilization. In the case of Convo-
lution Texture, Unified Cache shows the highest utilization of
almost 100%. This is because Convolution Texture performs
frequent read accesses to Texture Memory.

Through the analysis in this section, we can summarize that
different types of memory resources can be a performance
bottleneck even for the same memory-bound workloads.

C. DEPENDENCY-LATENCY-BOUND WORKLOADS
We classify a workload as dependency-latency-bound when
both computing and memory resources are under-utilized due
to a dependency problem in the execution. This implies that
resources are not fully utilized because the dependencies of
the workload execution cause a certain stall. Causes of this
stall include instruction fetch delay, pipeline busy, synchro-
nization delay, memory dependency, execution dependency,
constant miss, texture overhead, and memory throttling.

Figure 8 shows the utilizations of computing and memory
resources for workloads classified as dependency-latency-
bound. As shown in the figure, neither computing nor mem-
ory resources exhibit high utilization in these workloads.
Figure 9 analyzes the reasons for stalls in the dependency-
latency-bound workloads. The meaning of the stall reasons
in the figure can be summarized as follows.

• Instruction fetch delay – The next assembly instruction
has not yet been fetched.

• Pipeline busy – The computing resource required for
the instruction is not yet available.

• Synchronization delay – Execution is blocked at a
thread synchronization call.

• Texture overload – The texture subsystem is fully uti-
lized or it has too many requests.

• Memory dependency – A load/store cannot be per-
formed as the target data is not available yet.

• Execution dependency – The input required for the
instruction is not yet available.

• Memory throttling – A large number of pending mem-
ory operations prevent further forward progress.

• Constant miss – A constant load is blocked due to a
miss in the constant cache.

• Not selected – The workload is ready to issue, but
another workload has been issued.

As shown in Figure 9, there are different reasons of
stalls for each workload. In some cases, such stalls may not
be resolved by efficient management of GPGPU resources
alone, but improvements can be expected when application
developers configure their workloads to improve resource
utilizations.

IV. GPGPU WORKLOAD ALLOCATION BASED ON
FINE-GRAINED RESOURCE UTILIZATION
In this section, we present a thread block scheduling policy
for GPGPU based on the fine-grained resource utilization
analyzed in the previous section. To allocate thread blocks
to SMs, GPGPU typically makes use of the Round-Robin
scheduling policy that sequentially allocates thread blocks to
each SM [22]. Figure 10 shows the basic role of the thread
block scheduler, which allocates the next thread block in the
queue based on the Round-Robin policy.
As Round-Robin scheduling is simple, easy to implement,

and starvation-free, it is efficient to implement in hard-
ware logic [23]. However, Round-Robin scheduling does not
consider the resource utilization of workloads. For example,
if all the threads allocated are double-precision arithmetic
operations, the FP64 units may be overloaded in some SMs,
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FIGURE 5. Utilization of each computing resource.

FIGURE 6. Resource utilization of memory-bound workloads.

whereas the same resources may be under-utilized in other
SMs, where threads do not have these types of operations.

Similar to Round-Robin, our scheduling policy deletes a
pending thread block from the queue, and inserts to an SM,
which is selected by the sequential order. Before inserting it,
however, our policy checks whether the utilization of a certain
resource in the SM exceeds its capacity in case the pending
thread block is allocated to it. If so, our policy skips the
current SM and moves to the next one. Previous studies also
tried to consider resource utilizations by co-locating thread
blocks from different workloads within the same SM if their
resource usage classification is different [9], [10]. We call
this scheme Multi-kernel placement throughout this paper.
Although the basic philosophies of Multi-kernel and our
policy are similar, our policy considers fine-grained resource
utilization whereas Multi-kernel determines whether thread
blocks from different applications can be co-located within an
SM based on coarse-grained classification (i.e., computing-
bound or memory-bound).

From now on, we will explain the exact workings of
the proposed policy in comparison with Multi-kernel and
Round-Robin with an example. Suppose a GPGPU device
that has four SMs and three pending thread blocks in
the queue. Tables 2 and 3 list the current resource uti-
lizations of SMs and the resource demand of pending
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TABLE 2. Current resource utilizations of SMs.

TABLE 3. Resource demand of pending thread blocks.

thread blocks, respectively. In this simple example, we only
consider two computing resources, i.e., single and dou-
ble precisions, and two memory resources, i.e., device
memory and shared memory. The coarse-grained utilization
columns in the tables are calculated by the maximum value
of the fine-grained utilizations within the same resource
classifications.

Now, let us see the scheduling results. In our policy, TB1
is allocated to SM1 as it does not incur the overflow of any
fine-grained resource utilizations. Note that the fine-grained
utilizations of SM1 are updated from (90, 10, 0, 10) to (100,
100, 0, 20) after TB1 is scheduled. Similarly, TB2 and TB3
are allocated to SM2 and SM3, respectively. In the Multi-
kernel scheme, the scheduling is performed by comparing
the coarse-grained utilization of the current SM and that of
the pending thread block. Thus, TB1 cannot be allocated to
either SM1 or SM2, as it incurs the overflow of computing
resources. After proceeding to the next SM, Multi-kernel
finally allocates TB1 to SM3. Similarly, TB2 is allocated to
SM4. However, TB3 cannot be allocated to any SM even
after scanning all SMs from SM1 to SM4 due to the overflow
of computing resources. In this case, TB3 should wait in
the queue until any SM becomes available. In the Round-
Robin scheme, TB1, TB2, and TB3 are allocated to SM1,
SM2, and SM3, respectively. Note that Round-Robin allo-
cates thread blocks to SMs one by one without considering
resource utilization although it becomes over 100% as long
as thread blocks assigned to an SM does not exceed hardware
limitations.

As the purpose of our profiling is to extract the char-
acteristics of workloads in advance, we do not perform
online profiling at scheduling time. For workloads that have

FIGURE 7. Utilization of each memory resource.

already been executed before, our policy retains previously
profiled results and uses them while scheduling the work-
loads. If there is no profiling history for the workload (i.e.
first run), a shadow virtual machine (VM) can perform the
profiling separately from the VM that is actually running the
workload. Note that a shadow VM is used for the profiling
purpose in our cloud GPGPU. Our empirical studies showed
that the profiling process requires only 1 to 30 milliseconds
for extracting the characteristics of workloads we experi-
mented, which is quite shorter than executing actual work-
loads in GPGPU. Thus, although our scheduling requires
prior knowledge of workloads, it is also possible to uti-
lize profiling results after a short training period during the
current run.
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FIGURE 8. Resource utilization of dependency-latency-bound workloads.

Separation of profiling and scheduling has the advantage
of reducing the run-time complexity of previous studies that
relied on online profiling. That is, previous studies mostly
arrange and re-arrange workloads to SMs periodically based
on performance metrics such as throughput and execution
time rather than utilizing the prior knowledge of resource
usage patterns. Thus, in a cloud system with many concurrent
workloads, the number of possible combinations becomes
excessively large. For example, suppose that there are four
workloads A, B, C, and D, without the prior knowledge of
workload characteristics. Then, all possible combinations,
i.e., AB, AC, AD, BC, BD, CD, ABC, ABD, ACD, BCD,
and ABCD may be tried to find an efficient co-location of
workloads on the same SM. In contrast, as we know the
fine-grained resource usage patterns of workloads A, B, C,
and D, we can find an efficient schedule without check-
ing various combinations. The only run-time overhead in
our policy is to identify the resource utilizations of each
SM. Actually, this does not incur significant overhead as
the thread block scheduler can keep track of the resource
utilizations of each SM by aggregating the resource demand
of thread blocks whenever a thread block is newly allocated or
completed.

To assess the effectiveness of our thread block schedul-
ing policy, we perform simulation experiments under

FIGURE 9. Stall reasons of dependency-latency-bound workloads.

FIGURE 10. An example of round-robin scheduling that allocates thread
blocks (TB) to SM.

7 scenarios consisting of 25 virtual machines. Tables 4 and
5 list the workload situations of each scenario we experi-
mented and the system and resource characteristics of our
experiments.

Scenario 1 consists of two virtual machines, VM-1 and
VM-2, which execute two computing-bound workloads,
Nbody and Srad, respectively. Scenario 2 consists of three vir-
tual machines, VM-3, VM-4, and VM-5, which execute three
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TABLE 4. Experimental scenarios in the experiments.

TABLE 5. System and resource characteristics of our experiments.

computing-bound workloads, Lava MD, Nbody, and Back
Propagation, respectively. Scenario 3 consists of three virtual
machines, VM-6, VM-7, and VM-8, which execute three
memory-bound workloads, Black Scholes, Stream Cluster,
and Convolution Texture, respectively. Scenario 4 consists
of four virtual machines, VM-9, VM-10, VM-11, and VM-
12, which perform four computing-bound workloads, Nbody,
Hotspot, LavaMD, and Srad, respectively. Scenario 5 con-
sists of four virtual machines, VM-13, VM-14, VM-15,
and VM-16, which execute four memory-bound workloads,
Stream Cluster, Convolution Texture, Fluids GL, and HS
Optical Flow, respectively. Scenario 6 consists of four virtual
machines, of which VM-17 and VM-18 execute computing-
bound workloads, Particle Filter and Hotspot, respectively,
whereas VM-19 and VM-20 execute memory-bound work-
loads, Convolution Texture and Black Scholes, respectively.
Finally, Scenario 7 consists of five virtual machines, of which
VM-21, VM-23, VM-24, and VM-25 execute computing-
bound workloads, Conv2D, Back Propagation, Srad, and

Nbody, respectively, whereas VM-22 executes a dependency-
latency-bound workload, SHA256. We assume that each vir-
tual machine executes the given workload repeatedly to see
the effect of simultaneous execution of heterogeous work-
loads in cloud systems.

Under these scenarios, we conduct simulation experi-
ments with the three scheduling policies, Round-Robin (RR),
Multi-kernel, and the proposed policy that we call FRU-
RR (Fine-grained Resource Utilization aware Round-Robin).
The utilization metrics that we use for FRU-RR are the
resource utilizations of each computing unit (i.e., single-
precision, double-precision, control flow, load-store, and spe-
cial function) and each memory unit (i.e., shared memory,
unified cache, L2 cache, device memory, and system mem-
ory). For performance metric, we use the throughput of each
virtual machine and the host machine. The throughput of
a virtual machine indicates the number of the workload’s
threads completed per unit time, and we show the throughput
of each scheduling policy normalized to that of the Round-
Robin. The throughput of a host machine indicates the total
number of threads completed per time unit including the
threads of all virtual machines and the host itself. In case
of our policy, the profiling overhead is reflected in the host
throughput, implying that the threads executed for profiling
are excluded from the host throughput after counting all
threads that have completed.

Figure 11 shows the throughput of the proposed pol-
icy, FRU-RR, in comparison with Round-Robin and
Multi-kernel. We experimented each scenario ten times and
plotted the average and their standard deviations. Let us
first discuss the performance comparison of our policy with
Round-Robin. As shown in the figure, the proposed policy
performs significantly better than Round-Robin in all scenar-
ios and workloads. Specifically, the performance improve-
ment is 119.5% on average and up to 191.7%. The main
reason of Round-Robin’s low performance is that it fails
to balance the load between SMs. Although Round-Robin
pursues load balancing by distributing thread blocks to each
SM one by one, the result did not come out as intended
because it does not consider the characteristics of workloads.
This implies that Round-Robin, which is currently adopted as
the thread block scheduler of most GPGPU devices, can be
improved significantly.

Now, let us discuss the performance of our policy in com-
parison with Multi-kernel. As shown in Figure 11, Multi-
kernel also yields better performance than Round-Robin, but
the performance improvement of our policy against Multi-
kernel is 30.1% on average and up to 42.9%. This is because
our policy accurately analyzes the fine-grained bottleneck
resource for each application and allocates workloads that
do not have the same bottleneck resource on the same SM,
whereas Multi-kernel does this based-on the coarse-grained
classification. The largest improvement is observed in Sce-
nario 1, where the improvement of our policy is 42.9%.
This is because the two workloads in Scenario 1 are all
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FIGURE 11. Comparisons of the round robin, multi-kernel, and the proposed policy for various virtual machine scenarios.

computing-intensive, and thus Multi-kernel cannot co-locate
them within the same SM. However, the bottleneck resources
for the two virtual machines are different. Specifically, VM-1
uses the FP32 unit but does not use the FP64 unit at all,
whereas VM-2 mostly uses the FP64 unit, and thus our policy
can place the two workloads together within the same SM
without conflicting situations, which is not possible in Multi-
kernel.

In Scenarios 2 and 3, the system adopting our pol-
icy performs 35.7% and 34.1% better than Multi-kernel,
respectively. Similar to Scenario 1, all virtual machines in
Scenarios 2 and 3 have homogeneous workloads. That is,
workloads in Scenario 2 are all computing-bound, whereas
Scenario 3 has all memory-bound workloads. Thus, Multi-
kernel cannot co-locate any two workloads within the same

SM, whereas our policy can do so in case the resource that
causes bottleneck is different. When we compare the results
with Scenario 1, the performance gap between Multi-kernel
and our policy becomes relatively small in Scenarios 2 and
3. This is due to the characteristics of virtual machines in
these scenarios. In particular, Scenario 1 has only two virtual
machines, VM-1 and VM-2, which can be placed on the same
SM in our policy, but Scenarios 2 and 3 have three virtual
machines, two of which have the same bottleneck resources,
and thus chances for placing different VMs on the same SM
have been reduced.

Now, let us see the results for Scenarios 4 and 5, in which
the number of virtual machines has been increased to four.
As shown in Figures 11(d) and 11(e), the performance
improvement of our policy against Multi-kernel is 22.7%
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and 22.6%, respectively, for Scenarios 4 and 5. Similar to
previous scenarios, these two scenarios consist of homo-
geneous workloads, and thus Multi-kernel cannot co-locate
any two workloads within the same SM. In this case, some
resource types in the SM are certain to be under-utilized.
For example, if one workload performs single-precision arith-
metic while the other performs double-precision arithmetic,
allocating a single workload to an SM cannot utilize both
types of resources. Unlike Multi-kernel, however, our policy
puts these two computing-bound workloads together on the
same SM as they do not have conflicting resource usage
patterns. Thus, both single- and double-precision arithmetic
units can be fully utilized. This will eventually improve the
throughput of the workloads as well as the host machine.

Scenario 4 consists of 4 computing-bound workloads,
of which VM-9 mainly performs single-precision arith-
metic, whereas VM-10, VM-11, and VM-12 perform double-
precision arithmetic operations. Thus, our policy can locate
VM-9 to any SM to execute single-precision arithmetic with-
out conflicting situations as all the other VMs have different
bottleneck resources of double-precision arithmetic. How-
ever, VM-10 to VM-12 have the same bottleneck resource,
and thus they cannot be co-located within the same SM in our
policy. Thus, the performance improvement is not large com-
pared to previous scenarios. Note that similar results can be
observed for Scenario 5, where computing-bound workloads
are replaced by memory-bound workloads.

Now, let us discuss the performance of our policy in
comparison with Multi-kernel in Scenario 6. This scenario
consists of four virtual machines, of which VM-17 and
VM-18 are computing-bound, whereas VM-19 and VM-20
are memory-bound. Thus, Multi-kernel can co-locate work-
loads with different classifications on the same SM in this
scenario. However, our policy further increases the possibility
of co-locating VMs as the two memory-bound workloads,
VM-19 and VM-20, have different bottleneck resources.
Although the performance gap is not wide, our policy per-
forms better than Multi-kernel by 15.5% on average.

Finally, let us see the results of Scenario 7. This sce-
nario consists of 5 virtual machines, of which VM-21,
VM-23, VM-24, and VM-25 perform computing-bound
workloads, whereas VM-22 performs a dependency-latency-
bound workload. Multi-kernel can co-locate VM-22 with
other VMs as they have different workload classifica-
tions. However, balancing resource utilization is difficult
in Multi-kernel as a majority of workloads have the same
classifications of computing-bound. Our policy has further
chances to balance resource utilizations since fine-grained
resource usage of the computing-bound workloads is dif-
ferent. Specifically, most operations in VM-21 and VM-25
are single-precision arithmetic, whereas those in VM-23 and
VM-24 are double-precision arithmetic. Due to this reason,
the performance improvement of our policy against Multi-
kernel in this scenario is as large as 37.5%.

V. RELATED WORKS
In the early days of GPGPU multitasking, a single SM
could not accommodate multiple workloads, and thus the
main issue with multitasking was determining the number
of SMs assigned to each workload. In these environments,
Kayıran et al. [24] observed that GPGPU performance drops
sharply when some types of memory-bound workloads
occupy more than a certain number of SMs. They found
that such configurations significantly reduce the number of
active instructions due to the stalls caused by global mem-
ory, which is shared between SMs. Based on this, they pro-
posed DYNCTA that limits the number of SMs allocated to
workloads using global memory, not to cause performance
degradations. By doing so, computing-bound workloads have
relatively high priorities, and this incurs the fairness problem
as memory-bound workloads have performance penalties.

Lee et al. [12] showed that GPGPU performance is grad-
ually improved as the number of thread blocks allocated to
an SM increases, but the performance drops sharply when it
exceeds a certain resource limit. To address this problem, they
determine the maximum number of thread blocks allocated
per SM based on the profiling of the first thread block’s
execution. They call this scheme LCS (Lazy Cooperative-
thread-arrays Scheduling). After allocating by LCS, they
observed some idle resources in the SM, and they additionally
proposed mCKE (mixed Concurrent Kernel Execution) to
allocate other workloads with different resource usage char-
acteristics on the same SM.

Studies on GPGPU multitasking increasingly partitions a
single SM across multiple workloads. Xu et al. [25] explored
various intra-SM slicing strategies, and showed that there is
not one intra-SM slicing strategy that derives the best per-
formance for all application pairs. Based on this observation,
they proposed Warped-Slicer, a dynamic intra-SM slicing
strategy that determines how each workload’s performance is
varied as more thread blocks are assigned to an SM based on
an analytical model. They showed that their analytical model
can be applied to each workload by performing short on-line
profiling runs.

SMK [9] co-executes workloads with compensating
resource usage in the same SM to achieve high utilization
and efficiency. Specifically, SMK pairs a memory-intensive
workload with a computing-intensive workload in the same
SM to greatly improve utilization of both memory and com-
puting resources. SMK also takes into account the fairness
among different workloads while dispatching thread blocks.

Park et al. [10] proposed GPGPU Maestro, which runs
multiple workloads on the same SM like SMK, but dynam-
ically manages resource partitioning on GPGPU to max-
imize the system performance. Specifically, they showed
that multitasking performance varies heavily because of
dynamismwithin a workload and interference between work-
loads. To cope with this situation, Maestro monitors the
performance counters for different allocations with a subset
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TABLE 6. A summary of GPGPU multitasking schemes.

of SMs, and discovers the best performing resource partition
exploiting both spatial multitasking and SMK.

Allen et al. [5] presented Slate, a software-basedworkload-
aware GPGPU multitasking framework. Similar to Maestro,
Slate selects concurrent workloads that have complemen-
tary resource demands at run-time to minimize interference
for individual workloads and improve resource utilization.
Unlike Maestro, however, Slate classifies computing and
memory resource usage into three stages: low, medium, and
high, and categorizes each workload through online or offline
profiling. Based on this, Slate determines whether two differ-
ent workloads can be performed on the same SM according
to the resource characteristics of them.

Table 6 briefly compares the aforementioned schemes
with respect to multi-tasking granularities, profiling metrics,
resource granularities, and profiling methods.

VI. CONCLUSION
With the widespread adoption of multitasking GPGPU in
cloud systems, maximizing the resource utilization by judi-
cious allocation of heterogeneous workloads in GPGPU
has become an important issue. In this article, we investi-
gated the resource utilization characteristics of 17 popular
GPGPU workloads, and classified them into computing-
bound, memory-bound, and dependency-latency-bound, and
then refined the classifications based on the detailed resource
that causes the performance bottleneck. As the bottleneck
resource may be different even for workloads with the same
classifications, we presented a thread block scheduling policy
that considers the fine-grained resource utilization for cloud
systems. Unlike previous approaches, we separated profiling
from scheduling, thereby reducing the run-time complexity of
scheduling. By co-locating workloads with complementary
resource demands on the same SM, our policy aims to max-
imize the overall resource utilizations in the GPGPU device.

Experimental results with various virtual machine scenarios
showed that our thread block scheduling policy improves the
GPGPU throughput of cloud systems by 119.5% on average
and up to 191.7%.
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