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ABSTRACT Recent years have witnessed a growing interest in reconfigurable antenna systems. Travel-
ling wave antennas (TWAs) and leaky wave antennas (LWAs) are representative examples of structures
featuring a great level of flexibility (e.g., straightforward implementation of beam scanning), relatively
simple geometrical structure, low profile, and low fabrication cost. Notwithstanding, the design process
of TWAs/LWAs is a challenging endeavor because efficient handling of their electrical/field characteristics
requires repetitive full-wave electromagnetic (EM) analyses, which is computationally expensive. In this
paper, a novel approach to rapid optimization of LWA’s input characteristics is proposed, based on structure
decomposition and rendition of fast surrogate models of the antenna unit cells. The surrogates are combined
into a single metamodel representing antenna input characteristics, which enables low-cost adjustment of
the geometry parameters. The presented methodology is demonstrated through the design of several LWAs
operating in the frequency bands of 8.2 GHz to 11.2 GHz, 6.2 GHz to 8.2 GHz, and 3.8 GHz to 4.7 GHz.
Numerical results are validated through physical measurements of the fabricated array prototype.

INDEX TERMS Reconfigurable antenna, leakywave antennas, beam scanning, EM-driven design, surrogate
modeling, decomposition.

I. INTRODUCTION
Reconfigurable structures have been drawing considerable
attention in the context of high-performancewireless commu-
nication system design. This is primarily due to their ability
to adapt functionality to the operating conditions or system
requirements [1]. Reconfigurable devices such as filters, cou-
plers, junctions, and antennas [2]–[9], belong to the most effi-
cient solutions for improvingwireless communication system
performance. In the case of antennas, reconfigurability is
understood as the ability of altering the electrical and/or
field properties such as operating frequency, polarization,

The associate editor coordinating the review of this manuscript and

approving it for publication was Wen-Sheng Zhao .

or pattern. It has become a key feature for many applications,
including satellite and mobile communications [10], [11],
digital television broadcasting [12], wearable devices [13],
and radar [14]–[16]. Therein, a highly desirable feature is
beam direction control, which can be realized either through
electronic beam steering (to point the radiation direction at
a desired angle at a single frequency), or frequency tun-
ability, i.e., maintaining the beam direction over a range
of frequencies [17].

Reconfigurability can be implemented in traveling
wave antennas (TWAs), which utilize the traveling wave
phenomenon along the guiding structure as the main
radiating mechanism. TWA designs are based on the tra-
ditional microstrip array antennas as proposed by Menzel
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in 1979 [18]. Their advantages include simple topology, low
profile, and easy impedance matching [19]. Traveling wave
antennas fall into two categories, slow-wave and fast-wave
antennas. The fast-wave structures are usually referred to
as leaky-wave antennas (LWAs) [20], [21]. In a slow-wave
antenna, the wave propagates with a phase velocity lower
than the speed of light in the free space, and the radiation
only occurs at discontinuities, typically, the feed and the
termination regions [20]. Obtaining a highly-directive single-
beam radiation pattern is therefore difficult. By contrast,
in LWAs, the wave phase velocity is greater than the speed
of light, and this type of wave radiates continuously along
the antenna length [20]. LWA usually consists of periodical
structures whose geometry parameters have strong effects
on the radiation characteristic. By using this type of anten-
nas, it is possible to achieve highly-directive beams with
low side lobe levels at an arbitrary specified angle. The
wave phase constant, which can be altered by the operat-
ing frequency, allows for controlling the beam angle. This
unique feature of LWA has been used for implementing
high-performance pattern-reconfigurable antennas for beam
scanning applications [22]–[28].

Notwithstanding, design of LWAs—that includes tuning of
geometry parameters—is a challenging task, especially when
stringent performance requirements concerning high gain,
broadband operation without failing into open stop band (one
of the drawbacks of LWAs that are due to coupling of a pair of
oppositely-directed space harmonics; the latter results inmost
of the incident power being reflected, leading to a significant
drop of the radiated power [29], [30]), and reconfigurability
are to be satisfied. A dilemma is to conduct the design at
the level of reliable EM-simulation model which incurs con-
siderable computational costs, often prohibitive, or to work
with lower-fidelity representations, which shortens the design
cycle at the expense of the accuracy. A practical workaround
is utilization of surrogate modelling techniques [31], [32],
which preserves retaining reliability while retaining compu-
tational efficiency. Unfortunately, data-driven modelling of
LWAs is difficult due to a typically large number of geom-
etry parameters, and high cost of antenna simulation. This
paper proposes a novel approach to optimization of input
characteristics of LWAs, which capitalizes on the periodicity
of the antenna structure, its decomposition, and incorporation
of smaller-scale surrogates of the LWA unit cells, which
are then combined into the overall metamodel using circuit
theory rules. Thus, instead of using traditional transmission-
line-equation-based calculation, which tends to differ from
EM simulations and experimental results, data driven based
surrogate modelling techniques are used to predict the
behaviour of the unit elements. For the sake of demon-
strating the flexibility of the approach, three LWA designs
operating at different frequency bands have been obtained.
Design reliability has been validated both numerically
and experimentally. The proposed approach can be con-
sidered a rapid alternative to conventional (both direct
and surrogate-assisted) LWA optimization techniques, and

FIGURE 1. Open-end LWA: (a) conceptual illustration of LWA [33], (b) LWA
Array, (c) Unit Element, (d) 3D EM model of unit element, designs
considered in this work.

constitute a step towards design automation of leak-wave
antennas.

II. CASE STUDY: OPEN-END LEAKY WAVE ANTENNA
Leaky-wave antennas (LWAs) typically consist of open-ended
lines connected to ground. In these architectures, the radiating
characteristic is mainly controlled by a travelling wave on
a guiding structure, with the surface current being a super-
position of electromagnetic waves traveling in the opposite
directions [19]. A conceptual illustration of LWA has been
shown in Fig. 1(a) [33].

LWAs are usually implemented as periodical structures.
Figure 1(b) shows a geometry of a specific LWA proposed
in this work. It is a cascade connection of unit patch ele-
ments presented in Fig. 1(c). Also 3D EM model of the unit
element is presented in Fig. 1(d), where the unit element
design is being fed using two waveguide ports. Its compu-
tational model contains ∼270,000 mesh cells. The average
simulation time for unit element is around 15 seconds with
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FIGURE 2. Conceptual illustration of the proposed LWA design
methodology. The array is decomposed into unit cells represented by
their S-parameter matrices. The transmission matrix of the array is
computed by cascading the T-matrices of the cell, which allows for
yielding the S-matrix of the array. To accelerate the design process, the
matrix SC is represented by a fast data-driven surrogate model.

the following hardware setup: AMD Ryzen 7 3700X CPU@
3.6 GHz with 16 GB installed memory on a 64-bit operating
system.

Some of important design considerations of LWAs are:
(i) the overall gain is monotonically related to the num-
ber of array elements, (ii) increasing the number of ele-
ments improves impedance matching, (iii) the operating band
is mainly effected by the substrate height, patch widths,
and material permittivity, (iv) increasing the antenna length
allows for achieving a wider range of scanning at the expense
of enlarging the array size, (v) with a proper selection of
a periodical unit element design, an appropriate impedance
matching can be achieved for suppression of the open stop
band [29], [30] which becomes one of the main challenges
in design optimization process. Notwithstanding, the main
design factor is determination of the optimal dimensions of
the unit element. This can only be achieved through rig-
orous EM-based optimization, which is a computationally
expensive endeavour. The primary objective of this paper is
to propose an efficient surrogate-assisted approach to rapid
optimization of LWA’s reflection characteristics, as described
in Section III.

III. DESIGN METHODOGY
This section introduces a methodology of fast optimization
of input characteristics of LWAs proposed in this work. The
outline of the main concept is followed by a description of the
unit element modeling procedure and array optimization.

A. LWA DESIGN BY DECOMPOSITION AND SURROGATE
MODELLING
The LWAdesignmethodology proposed in this paper is based
on array decomposition and incorporation of fast data-driven
surrogate models. As indicated in Fig. 2, the unit cells
are represented by their corresponding S-matrices SC . The
S-matrix SA (Eq. 2) of the LWA is obtained from the trans-
mission matrix TA obtained by cascading the T -matrices of
the unit cells, i.e., TA = (TC )N . The major acceleration factor
is that—for design optimization purposes—the matrix SC is
a parameterized data-driven surrogate obtained from sampled
EM-simulation data of the unit cell, which enables rapid
parameter adjustment of the LWA.

TABLE 1. Parameter ranges of unit cell surrogate model in Figure 1(c).

The transformation of the unit cell S-matrix into the cor-
responding cell transmission matrix follows the standard
two-port network rules. We have

TC =
[
TC .11 TC .12
TC .21 TC .22

]

=


SC .12SC .21 − SC .11SC .22

SC .21

SC .11
SC .21

−SC .22
SC .21

1
SC .21

 (1)

where subscript C specified that the above matrices are per-
tinent to the unit cell. As mentioned before, the transmission
matrix of the array is obtained by cascading the transmission
matrices of N cells, i.e., we have

TA = (TC )N (2)

Finally, the S-matrix of the array is obtained by the transfor-
mation inverse to (1), i.e.,

SA =
[
SA.11 SA.12
SA.21 SA.22

]

=


TA.12
TA.22

TA.11TA.22 − TA.12TA.21
TA.22

1
TA.22

−1
TA.22

 (3)

where the subscript A specifies the matrices of the array.

B. UNIT CELL MODELLING
For the purpose of surrogate modeling, the flexibility offered
by the original parameterization of the unit element is exces-
sive, therefore, the following constraints are introduced:
W2 = L3, W3 = L2/2, L2 = L3/2, θ = 90◦. Consequently,
we have three independent parameters, L1, W1, and L3. The
data samples are allocated using a grid sampling as described
in Table 1. It should be noted that the parameter ranges are
very broad (the average upper-to-lower bound ratio is as high
as seven), which is to ensure that the LWA can be designed
over wide ranges of operating frequencies. The substrate
parameters are εr = 3 and h = 1.5 mm. EM simulation of
the unit element is then carried out to extract the S parameters.
The dataset is split into the training (80%) and holdout (20%)
parts.

The surrogate is constructed as a Multi-layer perceptron
(MLP) [34], which is one of the commonly used Artificial
Neural Network (ANN) regression models, proved to be suit-
able for modeling of high-frequency components [1], [32].
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Model identification is carried out to minimize mean abso-
lute error estimated using K -fold cross-validation (here,
K = 4) [35]. Due to the reciprocal characteristic of the
unit cell (Sij = Sji, i, j = 1, 2), and the substrate material
represented as lossless material in the computational model,
by modelling S11 characteristic the SC matrix of the unit
cell can be obtained at the expense of having a slight dif-
ference with experimental results, which will be discussed
in Section IV.

C. ARRAY OPTIMIZATION
Having a fast surrogate, the LWA is optimized with respect to
the parameter vector x = [L1 W1 L3] T , by solving

x∗ = argmin
x
H (x) (4)

where the objective function is defined as

H (x) = max {f ∈ [fc1, fc2] : |S11(x, f )|} (5)

where explicit dependence of S11 on x has been marked.
Thus, (4), (5) is a minimax task oriented towards minimiz-
ing the array reflection response within the target operating
frequency range from fc1 to fc2.

Due to broad ranges of geometry parameters, utilization
of a global search algorithm is instrumental in identifying
the optimum design. On the other hand, as the surrogate
model evaluation cost is negligible as compared to the cost
of EM analysis, the employment of nature-inspired algo-
rithms is feasible. Here, we use Honey BeeMating Optimiza-
tion (HBMO), which is a population-based metaheuristic
algorithm [36].

The flowchart of the complete design methodology has
been shown in Fig. 3.

IV. RESULTS AND EXPERIMENTAL VALIDATION
This section provides simulation and experimental verifi-
cation of the design methodology presented in Section III.
We start by validating the unit cell surrogate, which is
constructed using MLP with 2 hidden layers containing
15 and 30 neurons, respectively, and trained using the
Levenberg-Marquardt back-propagation algorithm [37]. The
hold-out performance of the MLP model is evaluated based
on two error metrics: Mean absolute Error(MAE) and
Relative Mean Error (RME). The numerical data is pre-
sented in Table 2, whereas Fig. 4 shows the surrogate and
EM-simulated unit cell responses at the selected testing
location.

It can be observed that both error metrics are low, and the
visual agreement between the surrogate-predicted cell out-
puts and EM simulation data is satisfactory. Consequently, the
model can be employed for constructing the decomposition
surrogate and rapid dimensioning of the LWA.

In order to demonstrate flexibility and re-usability of
the presented approach, three different LWA designs have
been obtained by optimizing the decomposition-based sur-
rogate. The design task (3)-(4) has been solved using the

FIGURE 3. Flowchart of the proposed surrogate-assisted
decomposition-based LWA design methodology.

TABLE 2. Performance of MLP surrogate model for holdout dataset.

FIGURE 4. Visualization of the data-driven surrogate model (o) versus
EM simulation data (—) for selected testing points. The observed visual
alignment of the two data sets is excellent.

HBMO algorithm as mentioned in Section III C . The target
operating frequencies for the said designs are:

- Design I: fc1 = 8 GHz, fc2 = 12 GHz;
- Design II: fc1 = 6 GHz, fc2 = 8 GHz;
- Design III: fc1 = 4 GHz, fc2 = 4.5 GHz.
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FIGURE 5. Fig. 5. Visualization of the data driven surrogate model
performance for optimized 7 element LWA designs with geometrical
design parameters of (a) Design I [L1 = 2.2, W1 = 3.2, L3 = 8.6],
(b) Design II [L1 = 3.1, W1 = 3.0, L3 = 10.9], (c) Design III [L1 = 5.8,
W1 = 2.5 L3 = 18.0].

Figure 5 shows the reflection response of the LWAs,
as predicted by the surrogate model and EM analysis. The
agreement between the two data sets is good, especially for
Designs II and III. A slight frequency shift can be observed
for Design I, which can be attributed to residual mutual cou-
pling effects not taken into account by the surrogate (the issue
to be address in the future work). Table 3 gathers the major
performance figures of the considered designs, whereas
Fig. 7 shows the radiation characteristics for Design I.
A broad beam scanning range of up to 60 degrees should be
noted.

For the sake of supplementary validation, Design I has
been fabricated and experimentally validated using a 9 kHz-
to-13.5 GHz Vector Network Analyzer, and LB-8180-NF
broadband 0.8-to-18 GHz horn antenna, available in of
Yildiz Technical University. The LWA has been implemented
on Arlon AD300 substrate (εr = 3.0, h = 1.52 mm).
The measured LWA performance can be found in Fig. 6
and Table 4.

TABLE 3. Radiation characteristics of LWA design 1 through 3.

FIGURE 6. Decomposition-based surrogate model and measured
characteristics of LWA Design I [L1 = 2.2, W1 = 3.2, L3 = 8.6]: (a) antenna
prototype, (b) simulated and measured reflection response,
(c) comparison of reflection responses with and without losses as well as
SMA connector included into the computational model.

TABLE 4. Measured/simulated characteristic of LWA design 1.

It can be observed that the measured LWA performance
is in a reasonably good agreement with the predictions
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FIGURE 7. Decomposition-based surrogate model and measured
characteristics of LWA Design I [L1 = 2.2, W1 = 3.2, L3 = 8.6]: (a) antenna
prototype: (a) realized gain (simulation), (d) realized gain (measurement).

obtained through EM simulations. Slight discrepancies can
be attributed to manufacturing and assembly inaccuracies,
but also neglecting losses within the unit elements. Clearly,
experimental verification accounts for conductor (ohmic),
dielectric and radiation losses, which can be reduced by
using properly selected substrate materials [38] such as Arlon
AD300, utilized in this work. Another modelling parameter
that might contribute to the differences between simulation
and experimental results is the feeding configuration. The
unit element used in the considered demonstration example is
configured with ideal waveguide port, whereas the measured
design is fed through the SMA connectors. As it can be
seen from Fig. 6(b), EM analysis results that incorporate
the SMA connectors and material losses are better aligned
with the measures results. However, the computational cost
of the model including these is considerably higher (almost
2,900,000 mesh cells, simulation time ∼13 minutes for the
hardware setup mentioned before). Furthermore, as it can be
seen from the results, with optimal selection of geometrical
parameters of the unit cell designs, an impedance matching
for the suppression of the open stop band has been achieved.
Thus, the proposed method can be used not only for com-
putationally efficient surrogate modelling but it can also be
used to realize stop band suppression within the limits of
unit element and array design for the selected operation
bands.

TABLE 5. Comparison with state-of-the-art LWAs.

Furthermore, Table 5 provides performance comparison
with state-of-the-art designs [19], [39]–[47]. As it can be
observed, although the radiation performance of the con-
sidered LWA is inferior compared to some of the designs
reported therein, it should be noted that the size of the array
of Fig. 6 is 25 percent smaller than the design of [43],
which features a similar scanning range of 60 degrees at
the lower operating band, and almost twice as small in size
compared to most of the arrays in Table 5. At the same time,
the benchmark arrays employ considerably more complex
unit elements that involve Substrate Integrated Waveguide
(SIW) [39], [40], [44], [46], Dielectric Image Line (DIL) [41],
or Composite Right Left Hand (CRLH) [42].

The radiation performance of the design can be improved
by increasing the array size, which would also enable beam
scanning from the backward quadrant to the forward quadrant
and make the design perform better scanning range than most
of the benchmark designs. Still, in this work, the major focus
is on optimization of input characteristics. In particular, the
presented optimization approach can be applied to any a
design with arbitrary number of unit elements, e.g., to ensure
improved radiation characteristics.

The results discussed in this section demonstrate suitability
of the methodology proposed in this work for rapid parameter
tuning of LWAs over broad ranges of operating conditions.
The decomposition-based surrogate provides reliable repre-
sentation of the LWA reflection characteristic, and—once
established— can be reused without incurring any additional
computational expenses. At the same time, the proposed tech-
nique only addresses optimization of input characteristics. Its
generalization that includes handling of radiation patterns and
mutual coupling will be given in the future work.

V. CONCLUSION
This paper introduced a technique for rapid optimiza-
tion of input characteristics of leaky-wave antennas. Our
methodology involved a decomposition-based surrogate,
which capitalizes on the periodicity of the array topology.
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An accurate data-driven model of the array unit cell is com-
posed, using circuit theory rules, into a fast model of the entire
array, which can be then optimized at negligible cost, even
when using global search procedures. The proposed approach
has been demonstrated through the design of three LWAs
operating at different frequency bands (8.2 GHz to 11.2 GHz,
6.2 GHz to 8.2 GHz, and 3.8 GHz to 4.7 GHz) by reusing the
same surrogate model. A good agreement between the array
characteristics predicted by the surrogate and EM-simulated
ones has been observed. The selected design corresponding
to the operating bandwidth of 8.2 GHz to 11.2 GHz has
been fabricated and measured to additionally corroborate the
design utility of the presented procedure.

The future work will be focused on generalizations of the
presented technique, first, to allow modeling of the array
radiation patterns, and, furthermore, to account for mutual
coupling effects. The latter is particularly important in the
context of design of physically-reduced LWA layouts.
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