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ABSTRACT Unmanned Aerial Vehicle (UAV) has been widely used in military reconnaissance, smart
transportation, public security and other fields. UAV-based person tracking is attracting incremental attention
for its wide application requirements. Currently, some state-of-the-art visual tracking methods have achieved
promising performance in common scenarios. However, in the scene of UAV-based person tracking, there
will be long-term target disappearance and unpredictable dramatic target appearance changes, which still
pose a huge challenge to UAV-based person tracking. In this work, a human-machine hybrid augmented
tracking system based on eye tracking is proposed to cope with the challenge. During tracking, through the
interaction between humans and machines, humans can provide real-time guidance and corrections to the
tracker, and the tracker can also learn interesting targets from humans to enhance itself. The experimental
results show that human-in-the-loop can remarkable improve the success rate and robustness of the tracking
and our tracking system outperforms the state-of-the-art tracker in complex environments.

INDEX TERMS UAV-based person tracking, human-in-the-loop, gaze-based human computer interaction,
human-machine collaboration, long-term tracking.

I. INTRODUCTION
Unmanned aerial vehicle (UAV) has been widely used in
military reconnaissance, smart transportation, public security
and other fields., which has the advantages of high con-
cealment, small size, and strong maneuverability. UAV-based
person tracking, which greatly expands the application of
UAV, is attracting incremental attention. Most studies of
visual tracking are based on the assumption that the tracking
target changes smoothly and does not disappear for a long
time [1]–[4]. However, due to the complex working envi-
ronment of UAV and the uncertainty of person targets, these
assumptions may be broken in UAV-based person tracking.
We summarize the challenges of UAV-based person tracking
as fast motion, severe occlusion, background clutter, long-
term disappearance, and dramatic changes in appearance.
Among them, long-term disappearance and dramatic changes
in appearance are rarely studied and most trackers can’t
handle such situations. Figure 1 shows several typical failure
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cases of some state-of-the-art(SOTA) trackers when the tar-
get disappears for a long time and the appearance changes
dramatically.

In this paper, we propose a human-in-the-loop tracking
framework to handle the challenges of UAV-based person
tracking by combining visual attention and context-aware
functions of the human visual system with SOTA methods
in computer vision. On the one hand, human visual focus
is captured by the eye tracker as human predictions of the
target position based on empirical knowledge and intuitive
reasoning. On the other hand, humans can act as the highest
priority decision makers to intervene or correct the com-
puter’s tracking results. In the interaction between humans
and computers, our method can accurately retrieve the target
that has disappeared for a long time and consistently locate
the target whose appearance has changed dramatically. More-
over, human demonstrations are also constantly improving
the automatic tracking capabilities of computers. Specifically,
the main contributions include:

1. A novel human-in-the-loop tracking framework is pro-
posed (Figure2). In this framework, humans will act as an
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FIGURE 1. A comparison of our approach with state-of-the-art trackers. While a person is walking through the woods, there are long-term
disappearance caused by occlusion and dramatic changes in appearance due to illumination variations and changing clothes. SPLT [5],
ATOM [6], DaSiamRPN [7] cannot find the target and keep tracking when the target reappears. Our approach successfully handles these
challenges and gets robust and accurate tracking results.

instructor and the highest priority decision maker to influ-
ence the entire tracking process. The framework contains a
local tracking module, a global search module, and a human
attention analysis module. As far as we know, this is the
first long-term tracking framework based on human-machine
collaboration.

2. A novel gaze-based interaction paradigm with computer
tracking system is designed in the human attention analysis
module. According to this interactive method, human visual
attention can be captured naturally. Moreover, the tracking
result can be corrected in time by specific eye gestures. The
learning cost of this paradigm is very low, and humans only
need to keep their attention on the target when they want to
intervene in the tracking process. Through this paradigm, the
natural advantages of the human visual system in tracking
tasks can be fully utilized.

3. A high-quality manually labeled test dataset for
UAV-based person tracking is established. Compared with
the existing datasets, such as OTB100 [8], VOT2018-LT [9],
UAV123 [10], it contains a series of longer image sequences
and more complex challenges of tracking, especially the
long-term disappearance of the target and the dramatic
appearance changes of the target.

II. RELATED WORK
Most trackers and datasets in visual object tracking focus on
the short-term tracking problem, which implicitly assumes

that the target will not disappear for a long time. Although
numerous trackers achieved promising performance in short-
term tracking [2], [3], [6], [11], [12], there is still a big
gap with application. In order to make the tracker better
meet the requirements of the application, more and more
researchers begin to pay attention to long-term tracking,
which requires the tracker to recognize the disappearance of
target and retrieve the target. TLD [13] was the first tracker
to re-detect lost targets. It proposed the local tracking and
global search paradigm, which is still widely used in long-
term tracking recently. MBMD [14] used an offline training
regression network to return the bounding box of the target
in a local area directly and reused the local regression net-
work in a sliding window to retrieve the lost target. MBMD
won the first long-term tracking champion in VOT2018 [15].
SPLT [5] used the SiamRPN [12] as the local tracker and
designed a long-term tracking framework called ‘‘Skimming-
Perusal’’. The framework proposed a lightweight ‘‘skim-
ming’’ module to reduce the number of sliding windows,
which significantly improved the efficiency of the global
search module. LTMU [16] used a deep network tracking
algorithm that can be learned online as the local tracker
and proposed a meta-update module to predict the update
reliability from spatial-temporal multi-cue informationwhich
effectively reduced the cumulative noise. LTMU won the
VOT2019 [17] and VOT2020 [18] long-term tracking cham-
pions. Although these long-term trackers have the ability
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FIGURE 2. Human-in-the-loop tracking framework proposed in this work. The framework includes a local tracking module, a global search module,
and an asynchronous human attention analysis module. Humans can guide and correct the tracking in the loop, while the machine will recognize
target-of-human-interest (TOHI) by capturing the human visual focus and verify the tracking results by the guidance of TOHI.

to search for targets again, the robustness of these methods
is still not enough, particularly when the target appearance
changes dramatically, it is hard for these methods to find and
track the target again. (Figure 1 and Figure 11 show some
typical tracking failure scenarios of SPLT as SOTA long-term
tracker.)

Compared with the above long-term tracking methods, the
method proposed in this work uses a similar strategy of local
tracking combined with global search However, what is new
is that our method can accept human guidance at each step of
tracking to obtain additional prior knowledge based on human
experience and learn the latest target appearance feature from
human demonstration, so as to better cope with the changing
complex environment.

III. HUMAN-IN-THE-LOOP TRACKING FRAMEWORK
A Human-in-the-loop tracking framework is proposed to
address the challenges of UAV-based person tracking, espe-
cially the long-term disappearance and the dramatic changes
in appearance. The overall framework is shown in Figure 2.
The whole frame-work can be divided into three modules:
local tracking module, global search module and human
attention analysis module. Local tracking module is used for
robust tracking in the local search area. Global search module
is used to retrieve the target after the target disappears.

Human attention analysis module is used to analyze
eye movements to extract target-of-human-interest (TOHI)
as well as support human intervention in the framework.

In addition, a TOHI-guided validator is embedded to verify
the tracking results and the candidate results of the global
search.

The tracking workflow is shown in Figure 3. When the
tracking starts, the local tracking module first searches for
the target in the local search area, and the results are sent to
the TOHI guided validator. The validator queries the TOHI
library to measure the similarity between the current result
and the TOHI. The result with high similarity is considered
reliable. If the reliability of the current result exceeds the
preset threshold, the local tracking result will be output and
used as initial position in the next frame. If the reliability of
the current result is below the preset threshold, the local track-
ing result is considered unreliable, and the tracker will open
a window of human intervention. During the intervention
window, humans can intervene according to two paradigms
described in the human attention analysis module. During
the window, if humans intervene, the target area of human
visual focus will be output as the tracking result. It is worth
noting that if humans do not intervene but are still within the
intervention window, the current results will be output, and
the local trackingwill continue in the next frame. The purpose
is to establish a fault-tolerant mechanism for the local track-
ing results and allow the local tracker to cope with occlusion
and short-term disappear. If humans do not intervene and the
intervention window is over, the local tracking result will be
considered unreliable and judged as target lost in the local
area.
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FIGURE 3. Human-in-the-loop tracking system workflow. After tracking initialization, local tracking will be performed first. If local tracking fails and
humans do not intervene, global search will start. Local tracking will not continue until human intervention or the target is found globally.

When the target is lost in a local area, global search module
will detect people in the whole image and send the detected
people targets to TOHI-guided validator for verification one
by one. If the candidate human target with the highest score
exceeds the preset threshold, it will be output as the result
of global search module. Otherwise, the window of human
intervention will be open again. If the human intervenes, the
target area of human visual focus will be output as the track-
ing result. If there is no intervention, there will be no tracking
result in this frame, and the global search will continue in the
next frame.

In this framework, humans not only guide or cor-
rect the tracking results in the loop, but also indirectly
improve the tracking ability through TOHI. The machine rec-
ognizes the TOHI by analyzing human fixation point (details
in human attention analysis module) and the validator works
under the guidance of these TOHI (details in TOHI-guided
validator). With the continuous addition of new TOHI to the
TOHI library, the TOHI-guided validator can identify people
whose appearance has changed drastically, thus enhancing
the discriminant ability of the tracker. The detailed descrip-
tion of each part is as follows.

A. LOCAL TRACKING MODULE
Local tracking module uses the offline trained SiamRPN [12]
model, which is an efficient tracking algorithm that intro-
duces region proposal network [19] into SiamFC [11]. The
basic principle of SiamRPN is that the model learns a sim-
ilarity function to judge the similarity between the target
template and the candidate bounding box in the search area.
The accuracy and efficiency of SiamRPN are sufficiently
balanced, which allows our tracking framework to track as

accurately as possible while meeting real-time requirements
at the same time.

The specific human-attention-guided SiamRPN we pro-
posed in this work is shown in Figure 4. The input of the
model is the target template obtained by initialization and the
surrounding area of the tracking result. SiamRPN will output
the similarity score between the template and the candidate
bounding box in the local area. However, the discrimination
ability of SiamRPNmodel is not accurate enough when there
is background clutter [7]. As shown in Figure 5a, when the
tracked person is blocked by trees and passing pedestrians,
SiamRPN cannot make effective judgments based on the
similarity score, which leads to abnormal tracking results.
Therefore, we introduce the Euclidean distance between the
candidate bounding boxes and the user’s fixation point to
evaluate the attention score of each candidate bounding box.
Specifically, an evaluation method is designed to make the
candidate bounding boxes closer to the visual focus get a
higher attention score. The final score Zi can be calculated
as equation 1:

Zi = Si + ξRDst(bi,g)Dst (bi, g) , (0 < ξ < 1) (1)

where Si is the similarity score corresponding to the bi gener-
ated by SiamRPNmodel.Dst (bi, g) is the Euclidean distance
between the center of the candidate bounding box bi and the
fixation point g. R represents the sensitivity value, and a small
value corresponds to a higher sensitivity. The specific setting
of R should be determined according to the experimental
environment setting and the type of tracking target. In our
experiment, R is set to 0.8 and ξ is set to 0.3. The final score
of each candidate bounding box is expressed as the weighted
sum of the similarity score and the attention score, so the
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FIGURE 4. Human-attention-guided SiamRPN. The human attention score and the similarity score are fused to determine the final candidate box.

FIGURE 5. The effect of human attention on local tracking(The red area represents the high score and the blue area represents the low
score): (a) Tracking process and similarity score of SiamRPN when there is no human guidance (Tracking fails after being interfered by
similar targets); (b) Human attention score; (c) Tracking process and fusion score guided by human attention.

candidate bounding box around human visual focus will be
more likely to get a high score. It’s worth noting that when
the human is not in the loop, local tracking module can also
work based on the similarity score. Our purpose is not to take
over or manually track, but to design a reasonable method to
make the tracker more accurate and robust when humans are
in the loop.

Figure 5 shows the effect of human attention on local
tracking. In a pedestrian tracking scene, the target is blocked
by passing pedestrians and trees. As shown in Figure5b, when
the target is occluded, humans consciously search for the
target and pay attention to the area where the target may
appear. Human vision provides the tracker with a strong prior
position information and guides the tracker to pay attention

to the area of human attention. When the target reappears, our
local tracker can continue to locate the target accurately. This
tracking process shows that when interference or occlusion
occurs in a local area, human attentionmakes the local tracker
more robust.

B. HUMAN ATTENTION ANALYSIS MODULE
In this module, we analyze human attention and identify
TOHI through two interaction paradigms. All TOHI that
have been successfully identified by these paradigms will
be added to the TOHI library and used as the TOHI-guided
Validator’s query set (details in TOHI-guided validator). The
workflow of TOHI identification is shown in Figure 6. Firstly,
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FIGURE 6. TOHI identification workflow. When humans are in a state of concentration, there will be two interactive paradigms to
identify TOHI according to the location of the attention area.

FIGURE 7. The example of TOHI identification process when tracking result within the visual focus area. Red shows gaze velocity, blue
shows the distance deviation, and yellow shows the accumulated attention time. The distance deviation threshold is set to 70 pixels,
and the gaze velocity threshold is set to 30◦/s. The dwell time threshold is set to 3 seconds.

we discriminate the state of human attention by analyzing
the patterns of human eye movement and the accumulated
attention time. If humans keep gazing or smooth pursuit over
a period of time, they are considered to be in a state of
concentration. Subsequently, two interaction paradigms are
designed to deal with the case when the tracking result is in
the human visual focus area and the case when the tracking
result is outside the visual focus area.

If the tracking result is in the human visual focus area,
the result will be regarded as TOHI and added to the TOHI
library. If the tracking result is outside the human visual focus
area, a certain local area centered on human fixation point
will be identified as TOHI and output as the result of human
correction. Human eye movement patterns can be divided
into gaze, smooth pursuit and saccade, among which gaze
and smooth pursuit reflect the attention state when human
tracking a single target. Specifically, ‘‘gaze’’ and ‘‘smooth
pursuit’’ can be distinguished from ‘‘saccades’’ by the gaze
velocity, which is calculated using human real-time fixation
point [20]–[22]. If the gaze velocity is within the preset

velocity threshold, we consider it to be ‘‘gaze’’ or ‘‘smooth
pursuit’’, otherwise it is ‘‘saccade’’. When the duration of
‘‘gaze’’ or ‘‘smooth pursuit’’ exceeds the dwell time thresh-
old, we think that human attention is focused on the gaze area.
In addition, the distance deviation between the fixation point
and center of the output tracking result will be calculated in
real time and the tracking result will be divided into within or
outside the visual focus area according to the preset deviation
range.

Figure 7 shows an example of the TOHI identification pro-
cess when the tracking result is within the visual focus area.
The attention time starts to accumulatewhen the gaze velocity
and the distance deviation are both less than their respec-
tive thresholds. If the accumulated attention time exceeds
the dwell time threshold, the current tracking result will be
successfully identified as TOHI. The corresponding inter-
active interface is shown in Figure 8a. As the human gaze
follows the target, the target bounding box will fade from
green to red as feedback, reminding humans that the system
is capturing their attention on the target and encouraging
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FIGURE 8. The eye movement interaction paradigm: (a) When the tracking result is within the human attention area, the TOHI area can be recognized by
smooth pursuit; (b) When the tracking result is outside the human attention area, the selection is confirmed for the second time by capturing eye
gestures looking toward the random guide point.

humans continuous focus. The color change of the target
box reflects the change of the accumulated attention time,
green means that the user is not paying attention to the
target, red means that the target is about to be identified
as TOHI. Since a complete attention process may include
many small gaze processes and micro-saccades, in order to
avoid the influence of micro-saccades, we set up an insurance
mechanism. Specially, in the duration of gaze or smooth pur-
suit, a slight glance will not clear the accumulated attention
time but punish the accumulated attention time. When the
saccade exceeds the tracking result range, or the accumu-
lated attention time is reduced to 0, the attention process is
over.

When the tracking result is outside the visual focus area,
there are two possibilities. One is the unconscious accidental
touch caused by human distraction. The other is that there is
a more concerned target or there is an error in the tracking
system, and humans want to correct the current tracking
result. Since the system cannot confirm whether humans
are intentional, we need to obtain further confirmation from
humans. Therefore, we design an interaction paradigm that
requires humans to consciously trigger a second confirma-
tion. (Figure 8b). When the tracking result outside the visual
attention area is sensed, a circle showing accumulated atten-
tion time appears on the fixation point.When the accumulated
attention time exceeds the dwell time threshold, a random
guide point appears near the fixation point. Humans need to
look at the guide point to make a second trigger, thus proving
its active operation. The tracking result will be corrected to
human visual focus area after the second trigger, and the
tracking will be reinitialized. The design of this secondary
trigger avoids the Midas problem and greatly reduces the
misidentification of TOHI. More importantly, this interaction

method is asynchronous with the computer tracking system,
so that humans have the highest priority to correct the result
whenever they want. Once the system has an error which is
difficult to recover, this asynchronous interaction provides a
reliable way to intervene in the system and ensures absolute
human control.

C. TOHI-GUIDED VALIDATOR
In our tracking framework, the local tracker cannot guarantee
the tracking result is correct. Therefore, a validator is needed
to verify the local tracking results. In this section, the TOHI
identified in human attention analysis module will serve as
the query set of our validator. We evaluate the reliability of
the local tracking result by calculating the similarity between
TOHI and the result to be verified. Specifically, an embedding
function is learned to embed the local tracking result and
TOHI into the same discriminative Euclidean space. Then we
calculate the distance in Euclidean space between each TOHI
and the result to be verified. If the minimum distance is less
than the preset distance threshold, the tracking result is con-
sidered to be credible. Otherwise, we believe that the tracking
results are unreliable. With the interaction between humans
and computers, new TOHI is continuously identified and sent
to the query set of the validator, so that the tracker can cope
with constantly changing situations. We adopt ResNet50 [23]
as the backbone. The parameters of the network are initialized
with the ImageNet pretrained models and then finetuned on
the Market1501 [24] and DukeMTMC-reID [25], [26]. The
discriminative ability is ensured by the TriHard loss [27], [28]
denoted as LTriHard :

LTriHard =
∑

a∈batch

(
max
p∈A

dp,a − min
n∈B

dn,a + m
)
+

(2)
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where dp,a and dn,a are feature distances of positive and
negative pairs, m is the margin of triplet loss. The feature
distance is calculated by a non-squared Euclidean distance.

When the validator judges that the result is unreliable,
a short time window for human intervention will be open.
During this window, local tracking will continue. Humans
can focus on the correct tracking target to intervene, so that
the new TOHI is added to the query set. This process will
continue until the local tracking result is successfully verified,
or the intervention window is over. In our experiment, the
intervention window is set to 4 seconds. If the human does
not perform any operation on this target during the window,
the global search will start.

D. GLOBAL SEARCH MODULE
In this module, YOLOV3 [29] serves as our person detection
model, which has been widely recognized for its excellent
detection performance and efficiency. All detected candidate
person will be sent to TOHI-guided Validator, and the suc-
cessfully verified candidate person will be considered as the
result of global search module.

IV. EXPERIMENT
A. PARTICIPANTS
In this work, there are 5 graduate students as participants,
including 3 males and 2 females, aged 23 to 26. Participants
have normal or corrected-to-normal vision. They all gave
informed consent to participate in the study. This experiment
was approved by the Bioethics Committee of National Uni-
versity of Defense Technology.

B. DATASET PREPARATION
In this work, we collected videos with UAV and manually
labeled them as our dataset to verify the unique advantages
of our tracker in person tracking. The image resolution is
1920 pixels × 1080 pixels, collected at 30fps. The dataset
contains 15 sequences, of which the longest sequence
is 10084 frames and the shortest sequence is 1608 frames.
To further illustrate the characteristics of our dataset, we list
several typical challenges in UAV-based person tracking:

• Fast Motion (FM): In two consecutive images, the dis-
tance between the center point of the target is more
than 20 pixels.

• Appearance Change (AC): Changes in appearance
caused by environmental influences or subjective human
will. Such as changes in appearance caused by illumina-
tion variation or people changing clothes.

• Long-termDisappearance (LD): The tracking object dis-
appears for more than 60 frames.

• Occlusion (OCC): The tracking object is completely or
partially occluded

• Background Clutter (BC): There are humans or objects
similar to the target in the background.

Figure 9 shows the ratios of representative attributes in
different datasets. OTB [8] is themost commonly used dataset

FIGURE 9. The ratios of representative attributes in different datasets.

for single object tracking which consists of short videos from
generic real-world scenarios. UAV123 [10] is the first widely
accepted dataset for tracking with UAV. VOT2018LT [9] is
the long-term tracking dataset used in VOT2018 challenge.
It can be seen from Figure 9 that our dataset contains more of
these tracking challenges than the current public test datasets,
especially the long-term disappearance and the appearance
change. Therefore, the test results on our dataset will more
truly reflect the application ability of the tracker in complex
scenes of UAV-based person tracking, especially when the
target disappears for a long time and the appearance of the
target changes.

C. EXPERIMENTAL SETUP AND PROCEDURE
The eye tracker we use is Tobii Pro Nano with a sampling
frequency of 60Hz. The screen size of the ground operation
station is 23.8in and the screen resolution is 1920 pixels ×
1080 pixels. The proposed method is tested on a PC with
an Intel i9-10900KF CPU and a NVIDIA GTX2080Ti GPU
(11G memory).

This experiment simulates the scene in the UAV ground
station. Subjects will act as a UAV operator to observe the
images transmitted back in real time. The image captured by
the UAV’s high-definition camera is displayed on the screen
of the ground station. The subject sits about 60cm in front of
the monitor with an eye tracker set at the bottom of the screen.
To ensure more accurate eye movement data, each subject
was asked to place his chin on the bracket, then calibrate the
eye tracker.

Before the experiment, we informed each subject that the
purpose of the experiment was to track the specified target.
Subjects need to be familiar with the paradigm of interaction
with the system mentioned in human analysis module. For
example, target color change represents that the target is being
paid attention to and themeaning of the guide point is to make
the subject consciously confirm and choose. After the subject
confirmed that the interaction method and the purpose of the
experiment were fully understood, we started the experiment.

During the experiment, we played videos one by one to
simulate person tracking by UAVs in different scenarios.
Before each video played, we stayed in the first frame to
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TABLE 1. Experimental results of 5 subjects and the ablation experiment result.

confirm the tracking target to the subjects. Subjects can see
their gaze points in real time on the screen. In simple sce-
narios, subjects can be more relaxed and do not have to keep
looking at the target. But in complex scenarios, the subjects
were asked to focus on the target as much as possible. If the
subject finds that the tracking result is wrong, the subject
should make corrections in accordance with the interaction
paradigm.

Through our experiment, we want to answer the following
questions:

• Ablation experiments: Does the human-in-the-loop
improve the tracking ability of the tracker, especially in
the complex environment?

• Effect of human visual attention on tracking: In
our method, how does human attention affect person
tracking?

• Comparison with SOTA trackers: Compared with the
SOTA method, does our method perform better in a
complex environment?

D. EVALUATION PROTOCOL
We refer to the method in VOT2018-LT challenge [9]. Differ-
ent trackers are compared using F-score (Equation 3), where
Pr is tracking accuracy (Equation 4) and Re is tracking recall
rate (Equation 5).Gt is the target position of the ground truth,
and At is the predicted position of the tracker. � (At ,Gt)

is the intersection over union (IOU) which is a measure of
the overlap between At and Gt . If the target is absent, the
ground truth is an empty set, namelyGt = ∅. Similarly, if the
tracker did not predict the target, the output is At = ∅. Np
represents the total number of frames in which At 6= ∅, and
Ng represents the total number of frames in which Gt 6= ∅.
One reason why we adopted F-score is that it can be used
as an evaluation standard for long-term trackers as well as a
standard for short-term trackers.

F − score = 2Pr × Re/ (Pr + Re) (3)

Pr =
1
Np

∑
t∈{t:At 6=∅}

� (At ,Gt) (4)

Re =
1
Ng

∑
t∈{t:Gt 6=∅}

� (At ,Gt) (5)

FIGURE 10. Distribution of the deviation between gaze and ground truth.

In addition, we also considered Sr0.3 as an evaluation
standard, which refers to the proportion of � (At ,Gt) over
0.3. In the UAV tracking task, we are more concerned about
whether the target can be successfully tracked and� (At ,Gt)

greater than 0.3 is sufficient for locating a target with a
UAV [13], [30].

V. EFFECT OF HUMAN VISUAL ATTENTION ON TRACKING
In this part, we show the experimental results of 5 subjects
in Table 1 and analyze the relationship between each sub-
ject’s attention and his tracking results. At the same time,
the results of the ablation experiment are also shown in
Table 1(Ours-without-human). Specifically, in the ablation
experiment, we remove human-related functions in the frame-
work, in which only the local tracker and the global search
modules were retained.

All subjects said that they felt natural and comfortable
during the experiment and could focus on the target. We eval-
uate the attention of each subject from four aspects, namely,
the number of successfully identified TOHI, the number of
human corrections, the proportion of the total attention time
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FIGURE 11. Success plots of one pass evaluation on our dataset.

and the deviation between fixation point and ground truth.
The total attention time refers to the total time of gaze and
smooth pursuit identified in the Human Attention Analy-
sis Module, which reflects the subjects’ attention initially.
Furthermore, the number of successful TOHI identified can
indicate the subjects’ attention to the tracking target and their
adaptation to the system.

Correction numbers can represent the enthusiasm of
humans to make active corrections. The distribution of the
deviation intuitively shows the difference of each subject’s
attention to the target. A smaller and concentrated deviation
indicates that the subjects pay more attention to the target.
The distribution of the deviation is shown in Figure 10.

As shown in Table 1, S3 has the longest attention time, the
most TOHI and the most correction times, which is consistent
with the results of Sr0.3. In addition, the attention deviation of
S3 is relatively concentrated, and the median deviation is the
lowest among the five subjects. Based on the above analysis,
we believe that S3 has the most concentrated attention to the
target and achieve the best Sr0.3. S2’s attention time, number
of corrections, and TOHI number are second only to S3, and
S2’s attention distribution is more distracted than S3, which
may reveal that his concentration is inferior to S3. This still

allows him to get the highestF-score and second Sr0.3. From
the results of the ablation experiment, we also find that the
F-score and Sr0.3 of S1, S2, S3, and S4 far exceed our tracker
without humans, which shows that human-in-the-loop can
improve the performance of the tracker.

S5 has the least attention time, the least correction times
and the least TOHI, which may indicate that S5 did not pay
all attention to the target during the experiment. In addition,
his attention is not concentrated sufficiently, and the attention
deviation is relatively scattered. S5 obtained the lowest score
in both F-score and Sr0.3, which is slightly lower than our
tracker without humans. It is probably due to the incorrect
guidance and inappropriate intervention of S5, which leads
to the system’s misunderstanding of human intentions. The
results of S5 confirm that humans have a dominant role in
this method when human-in-the-loop. Actually, our method
is designed for operators of UAV ground control stations,
who have received professional UAV operation training and
are experts in tracking tasks. We believe that in an open task
environment, the confidence of human experts’ judgments is
higher than the results of the machine algorithm itself. There-
fore, if the experts’ judgments are erroneous, the results of
the tracking system will be unstable or even wrong. The user
should focus on the task when using this system, otherwise
the system should be switched to unmanned mode.

From the analysis of the above results, we believe that in
our framework, humans play a decisive role in the loop.When
humans focus on the target, the performance of the tracker
will be greatly improved. Moreover, the more humans pay
attention to the target, the greater the improvement of the
tracking system.

VI. COMPARISON WITH STATE-OF-THE-ART TRACKERS
Several typical SOTA trackers are comparedwith ourmethod.
The compared trackers include SPLT [5], ATOM [6] and
DaSiamRPN [7]. SPLT is a real-time long-term tracker,
while ATOM and DaSiamRPN are short-term trackers. These
SOTA methods are all without human intervention

Figure 11 shows the success plot of one pass evaluation on
our dataset which illustrates the percentage of successfully

TABLE 2. One pass evaluation for SOTA trackers on our dataset.
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FIGURE 12. IOU over tracking frame.

tracked frames whose overlap is larger than a given thresh-
old. In addition, the recall rate (Re), tracking accuracy (Pr),
F-score and Sr0.3 are shown in Table 2. We respectively
show the best result(Ours-S3), the average result and the aver-
age result without S5. Since S5 is not focused on the target,
we believe that the average results of S1-S4 may better reflect
the true capabilities of our method. Nevertheless, we still
listed the average results of 5 subjects in Table 2.

In our experiment, ATOM and DaSiamRPN lost their tar-
gets soon and could not retrieve the target, which led to

their poor results. SPLT achieved similar results with Ours-
without-human, because it has the ability to retrieve the
target. However, since SPLT cannot identify targets whose
appearance has dramatically changed, its success rate is far
lower than ourmethod. As shown in Figure 11, our tracker has
a higher success rate at each threshold. Ours (Mean value of
S1-S4) is 26.8% ahead of SPLT in Sr0.3 and 12.2% ahead
of SPLT in F-score. Furthermore, Ours-S3 is 29.1% ahead
of SPLT in Sr0.3 and 13.7% ahead of SPLT in F-score,
which illustrates the absolute advantages of our approach in
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FIGURE 13. Tracking recall rate on different attribute image sequences.

dealing with complex environmental challenges. Even con-
sidering S5, Ours(Mean value of S1-S5) still significantly
outperformed SPLT.

Figure 12 shows several examples of the tracking process.
The top group of pictures shows the person disappearing in
the woods. At the beginning of the tracking, all trackers can
accurately track the target, but when the target enters the
woods, other trackers cannot determine whether the target
still exists. When the target reappears, only our tracker can
find the target in time and accurately. The middle group
of pictures shows pedestrian changing clothes and waking
through illumination variations. Only our tracker keeps track-
ing the target. The bottom group of pictures shows the person
changing his clothes and hiding in the woods, then only our
tracker retrieves them. We have also calculated the recall
rate(Re) of Ours(Mean value of S1-S4) on image sequences
with different attributes (Figure 13), which proves that our
method is more effective in the five challenges, especially in
the emphatic challenges of appearance change and long-term
disappearance.

Our method needs to ensure smooth interaction between
the user and the system when human-in-the-loop, so we pay
special attention to real-time performance. Each module in
our tracking framework uses the offline trained model to
maximize efficiency as much as possible, so as to ensure the
real-time performance of the entire framework. We recorded
the computation time of each sequence and calculated the
average speed. Due to the different intervention processes
of users in our method, the algorithm computation time
is also different. Finally, the average speed of our method
in the experiment is 26.3 FPS, which can meet the real-
time requirements of most tracking systems. Ours-without-
human reached a speed of 29.1 FPS. It can be seen that
human-in-the-loop does not bring too much computational
burden, but it can greatly improve the performance of the
algorithm.

In ourmethod, human-in-the-loop can deal withmore com-
plex challenges. It is worth noting that our method does not
require humans to stay in the loop at all times. Our approach
without human is enough to deal with simple scenarios.
We hope that humans can give the tracker enough guidance
in complex scenes, so that the tracker can learn the target of
human interest and improve the tracker’s ability to respond
to environmental changes. On the one hand, machines can
reduce the cognitive burden of humans and help humans to
complete tasks more easily. On the other hand, human-in-the-
loop improves the ability of the tracker, so that the tracker
can gradually deal with challenges in complex scenes on its
own.

Computer vision is usually used as the basic technol-
ogy of human-computer interaction [31], but it is rarely
found that the performance of computer vision algorithms
can be improved through human-computer collaboration.
Some existing human-like automatic visual tracking meth-
ods [32]–[34] try to analyze contextual information based
on human cognition and introduce part of expert experience
into the tracking method. The human-like methods and our
human-machine-collaboration-based method have the same
original intention, which is to improve the ability of the
algorithm through human experience. In an open and com-
plex task environment, a large amount of human experience
and knowledge is required to support decision-making. How-
ever, the human-like methods can only solve problems in
very limited scenarios by presupposing some simple human
experiences which can be formalized. Therefore, the cur-
rent human-like tracking methods cannot perform tasks in
an open environment. In contrast, the method we proposed
introduces human perception and decision-making capabil-
ities of complex changing scenes in real time. Human-in-
the-loop will guide and help the machine understand the
changing task environment and tracking targets during the
tracking process, thereby building an application-oriented
human-machine hybrid robust tracking system.

VII. CONCLUSION
This work demonstrates a human-machine hybrid augmented
tracking system, which is used to improve the person tracking
capabilities of UAV in complex environments. Humans can
guide and correct UAV tracking through the eye movements
interactive paradigm. Meanwhile, machines recognize and
learn TOHI from humans, so as to improve the adaptabil-
ity to changing environment. The experimental results show
that human participation in our framework can effectively
improve the tracking success rate and tracking robustness.
Compared with the SOTA trackers, our approach has an
absolute advantage in complex scenarios, especially when
the target disappears for a long time and the target’s appear-
ance changes dramatically. We believe that our method is
a meaningful attempt of human-machine collaboration in
visual tracking and provides a novel and reliable solution for
UAV-based person tracking.
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