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ABSTRACT Identifying important actors (or nodes) in a two-mode network is a crucial challenge in mining,
analyzing, and interpreting real-world networks. While traditional bipartite centrality indices are often
used to recognize key nodes that influence the network information flow, inaccurate results are frequently
obtained in intricate situations such as massive networks with complex local structures or a lack of complete
knowledge about the network topology and certain properties. In this paper, we introduce Bi-face (BF), a new
bipartite centrality measurement for identifying important nodes in two-mode networks. Using the powerful
mathematical formalism of Formal Concept Analysis, the BF measure exploits the faces of concept intents
to detect nodes that have influential bicliques connectivity and are not located in irrelevant bridges. Unlike
off-the shelf centrality indices, it quantifies how a node has a cohesive substructure influence on its neighbour
nodes via bicliques while not being in network core-peripheral ones through its absence from non-influential
bridges. In terms of identifying accurate node centrality, our experiments on a variety of real-world and
synthetic networks show that BF outperforms several state-of-the art bipartite centrality measures, producing
the most accurate Kendall coefficient. It provides unique node identification based on network topology.
The findings also demonstrate that the presence of terminal nodes, influential bridges, and overlapping key
bicliques impacts both the performance and behaviour of BF as well as its relationship with other traditional
centrality measures. On the datasets tested, the computation of BF is at least twenty-three times faster than
betweenness, eleven times faster than percolation, nine times faster than eigenvector, and ten times faster
than closeness.

INDEX TERMS Formal concept analysis, two-mode networks, influential node, cross-clique connectivity.

I. INTRODUCTION
In today’s world, complex real-life systems are ubiquitous.
For example, mobile phone as well as Facebook and Twit-
ter networks facilitate the way we interact with others. The
energy and electric power networks play a significant role
in supplying our domestic and industrial lives. Most of these
systems frequently feature two types of data with complex
substructures and can thus be represented as two-mode net-
works (also known as bipartite graphs or affiliation net-
works). Due to the complex structure of such networks, the
spread of information across the network makes some nodes
more important than others in certain contexts. Our main
motivation here is to solve the problem of identifying key
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actors in such networks. This is the case for a wide range
of real-world applications, such as the identification of the
most active agents who serve customers in call centres at var-
ious locations, the most popular products in various hot-spot
regions, the most cited authors collaborating on scientific
papers published in top-tier conferences, the actors who have
a major influence on audiences in different movies, or pro-
teins that have a large impact on various metabolic processes.
As such, the interesting question of how to measure the
relative importance of nodes in a two-mode network is often
increasingly challenging in the field of complex network
analysis (CNA). As it is frequently used to understand the
role of nodes within a network, node centrality analysis can
provide efficient answers to this question.

The centrality measure ranks nodes based on how
they influence or are effected by other nodes via their
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connection topology. Since no consensus holds on a unique
definition of centrality for two-mode networks in the CNA
literature, while opening the door for the invention of
new ones, different centrality scores have been presented
(cf. [1], [2] for a detailed survey), each of which takes into
account a distinct aspect of a central node. In the mainstream
CNA research area, the bipartite centrality is frequently clas-
sified as local or global. The local centrality metrics focus
on the relative importance of a node in its neighbourhood
within local cohesive communities. For example, the degree
centrality [3] is a basic local metric that counts the number
of links that each node has. However, it frequently captures
irrelevant local information about a node in practice. Intu-
itively, it is assumed that only the node with the highest
degree should be in the centre (because it is the most densely
linked node i.e., a hub), but it does not account for the
cascade effects of its neighbour nodes. Hence, it is sometimes
necessary to remove nodes with high degree values because
they provide no information. For example, Angelina Jolie
has a high degree centrality in Facebook’s network because
so many people follow her. However, if you explore your
friends’ Facebook pages to find out what they are interested
in or who among them enjoy soccer the most, Angelina Jolie
becomes completely irrelevant in that network.

The k-shell centrality [4] is a community-based local cen-
trality that enhances the degree of a node in terms of its neigh-
bourhood connections using the k-core.1 Thus, the higher the
portions of k-cores contain a node, the more likely it is a hub
in the cores of a network, and thus the more important it is in
a network. However, k-shell frequently produces inaccurate
results when the network structure has a small number of
k-cores, which is prevalent in two-mode networks. This is
due to the fact that in this case, many nodes are assigned an
approximately equal number of k-cores. From the perspective
of the topological graph of a two-mode network, k-bicliques
may be more accurate graphical components than k-cores.
That is, the number of k-bicliques among a node neighbours
is counted in order to estimate its importance using the Cross
k-bicliques connectivity measure, which quantifies how the
node affects information propagation through the network.
However, in general, its calculation requires an exponen-
tial time and space complexity and is often sensitive to the
k parameter. To compute Cross k-bicliques connectivity for
a given node, we must first extract all k-bicliques from the
network containing this node, which is an NP-hard prob-
lem. Furthermore, the determination of the optimal value
of k may be problematic in many applications. Strictly speak-
ing, picking a large k value may result in the overstepping
of all k-bicliques with k less than the chosen one, leading to
an underestimation of the influence of other nodes in local
cohesive communities within the network. A small k value
may stimulate overestimation of the importance of other

1A k-core of a graph G is a maximal connected sub-graph of G such that
all nodes have at least k neighbours.

neighbour nodes, generating a behaviour similar to degree
centrality.

Bipartite closeness [3], [5] is a common type of local
centrality that is based on the geodesics. It computes the
reciprocal of the sum of the distances between the node and
all of the other nodes in the network. Its basic form intuitively
assumes that information can efficiently flow from one node
to every other node via the shortest distances. The important
node is therefore the independent one that is close to other
nodes in the network in terms of shortest paths. Thus, at a high
level, it can address the degree centrality limitation in a few
cases. However, on non-spatial networks, bipartite closeness
frequently produces inaccurate results [6], and its values on
spatial networks tend to span a rather small dynamic range
from the smallest to the largest. This is because most complex
real-world networks may have a high average length of the
shortest path as their largest distance increases exponentially
in terms of the number of nodes. That is, assuming that
the minimum distance is equal to one, the asymptotic ratio
between the minimum and the largest distances is O( 1

log n ).
This frequently implies that numerous nodes, with diverse
roles in the network information flow, may have comparable
closeness scores. On the contrary, most non-spatial networks
feature low geodesic distances among nodes given that high
geodesic distances increase logarithmically with their net-
work size. As a result, the dynamic range of variations, as well
as the network diameter, will be too small, and even slight
changes in the network structure can have a significant impact
on nodal closeness values.

The bipartite betweenness [3], [5], [7] is another common
geodesic-based measure. To evaluate the importance of a
node, it computes the number of times it exists in the bridge
along the geodesic paths among the other nodes in the net-
work. Thus, it considers other nodes’ dependence on a given
node, and measures its optimal flow control on information
passing among nodes, whether closeness perceives the con-
nection efficiency or independence from potential flow con-
trol through the use of intermediary nodes (cf. [8], a detailed
study differentiating between closeness and betweenness).
In general, bipartite betweenness does not consider node
connectivity and its calculation is frequently time-consuming.
The fundamental assumption of betweenness is that every
pair of nodes exchanges information through shortest-paths
with equal probability. However, this is, in many situations,
not a realistic assumption since information does not neces-
sarily take the shortest path [9] (e.g., news related to a friend
might not be directly known from another close friend but
from other mutual friends). As a result, it does not provide
a precise representation of the most influential nodes within
these groups, but rather a fair approximation (see [10] for a
more detailed explanation). Furthermore, its exact centrality
computation on large or dense two-mode networks requires
a time complexity of O(n31 + n32), where n1 and n2 are the
number of the two types of nodes, respectively.

Looking at local centrality from a different angle, bipar-
tite percolation centrality [11] estimates a node’s relative
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importance by counting the number of percolated paths that
pass through it. The percolated path is the shortest path
between two nodes in which the source node is percolated
(e.g., infected) but the target node may not be. The perco-
lation centrality fully captures the essential mechanics of
contagion-mediated network spreading by associating per-
colation paths with weight terms that determines how much
importance is given to potential percolation paths originating
from given nodes. This is indeed helps percolation centrality
to avoid the limitation of both betweenness and closeness,
which rely solely on topological and random diffusion pro-
cesses via random shortest-paths. It may, however, produce
inaccurate results when the spread of contagion has no effect
on changing the node state, and it is frequently compu-
tationally expensive to calculate. Because the percolation
through a network is affected by both the level of contagion
and the network structure [12], the spread of contagion in
a complex network (CN) may not change node states in a
few scenarios. From a theoretical standpoint, it is possible
that there is no transmissibility, and in this case, the perco-
lated contagion spreads over the edges of a complex network
without changing the state of a node to either recoverable or
infected, leaving it in the default state. Moreover, computing
the percolation centrality in worst-case scenarios with large
bipartite networks having complex local structures requires a
cubic time complexity in the two types node numbers.

Globalmeasures, on the other hand, consider a node promi-
nence in the context of the entire network. Its principle
emphasizes the hypothesis that a few important neighbours
can weight more than a large number of unimportant ones.
That is, a node is important if it is connected to other impor-
tant nodes. For example, Bipartite Eigenvector centrality [3],
[5] quantifies whether a node is central based on its connec-
tions to other high-score nodes. It utilizes indefinite-length
random walks to estimate the number of node traversals.
From a conceptual standpoint, a node’s eigenvector can be
thought of as the global extension of its local degree cen-
trality, in which both count walks that begin and terminate
at that node. Eigenvector may include a localization transi-
tion, which frequently results in inaccurate centrality scores.
As demonstrated in [13], eigenvector centrality has a local-
ization transition under the common conditions of a network
regime, causing the majority of the weight of the centrality to
concentrate on a small number of nodes in the network. This
implies that when a network structure contains many hubs,
the eigenvector weights are skewed toward some few nodes:
The eigenvector values of the hub node and its neighbours
are the highest, while the other nodes have identical centrality
values (likely close to zero).

In this paper, we present Bi-face (BF), a new bipartite
centrality that can be used to identify key nodes in two-mode
networks. From the standpoint of graphmodelling, the superi-
ority of the bipartite graph formulation of two-mode networks
over other graphical models such as concept lattices, factor
graphs, or graph neural networks is still uncertain. That is,
it is dependent on the task we aim to apply to the problem.

One of our goals here is to show that the concept lattice
model of such problems is more advantageous than bipar-
tite graph formulation for efficiently computing two-mode
node centrality. Thus, the guiding idea of BF is to use a
formal concept analysis framework to bring together the
centrality aspects of cohesiveness via bicliques, network flow
via bridges, and influence of important neighbour nodes for
the benefit of actionable node identification. Its conceptual
hypothesis is based on the fact that important nodes should be
found in influential bridges and overlapping bicliques with a
large number of important nodes. That is, it quantifies how
a node affects, and is affected by, its important neighbours
via bicliques while also connecting the densely substructures
of a network through its presence in influential bridges. Thus,
it differs from betweenness in that it deems influential bridges
rather than all bridges. Unlike closeness and eigenvector,
it can efficiently deal with the diverse topological structures
of a network, without potentially having localization transi-
tion, due to this hybridization of the influential bridges and
overlapping bicliques aspects. Furthermore, it leverages the
powerful mathematical formulation of Formal Concept Anal-
ysis (FCA) to overcome the limitation of Cross k-bicliques
connectivity. That is to say, it utilizes the concept lattice
related to the network to efficiently extract concepts that
capture bridges and k-bicliques from the network while being
insensitive to the k parameter. Technically, BF computation is
based solely on the set of these extracted concepts, which is
often quite small in comparison with polynomial functions
in terms of nodes and edges. As a result, in contrast to
percolation, it is relatively quick to compute in practice.

The paper is organized as follows. In Section II, we review
some basic definitions and concepts including: FCA and
traditional bipartite centrality measures in social networks.
In Section III, we demonstrate our proposed Bi-face centrality
for detecting influential nodes of two-mode networks in fur-
ther more detail. In Section IV we conduct a thorough exper-
imental study and a discussion. Finally, Section V presents
our conclusions.

II. BACKGROUND
This section will briefly review the main concepts that sup-
port the comprehension of our proposed centrality measure
by using an illustrative example, which is a two-mode net-
work of airline companies and their flying destinations in the
year 2000. As shown in Figure 1, the network is modelled as
an undirected bipartite graph ϒ = (G,M, I), where G is
a set of 13 objects (also called type-I nodes) representing
Star Alliance airline companies, M is a set of 9 attributes
(type-II nodes) representing flying destinations, and I is a set
of edges where an edge (ui, vj) ∈ I links two nodes ui ∈ G
and vj ∈M, if a flight from airline company ui lands at the
destination vj.

A. FORMAL CONCEPT ANALYSIS
In the following we recall notions of FCA [14] that will be
used in this paper.
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FIGURE 1. A two-mode graph network representing flights from 13 star alliance airline companies (in red) landing at 9
destinations (in green) in year 2000.

TABLE 1. The formal context K̃ for the two-mode network of Figure 1.

Definition 1 (Formal Context): It is a triple K = (G,
M, I), where G is a set of objects,M a set of attributes, and
I a binary relation between G and M with I ⊆ G ×M.
For g ∈ G and m ∈ M, (g,m) ∈ I holds (i.e., (g,m) = 1)
iff the object g has the attribute m, and otherwise (g,m) /∈ I
(i.e., (g,m) = 0).
Table 1 is the formal context equivalent to the adjacency

matrix that expresses the two-mode network exhibited in
Figure 1.
Given arbitrary subsets A ⊆ G and B ⊆M, the following

derivation operators are defined:

A′ = {m ∈M | ∀g ∈ A, (g,m) ∈ I}, A ⊆ G
B′ = {g ∈ G | ∀m ∈ B, (g,m) ∈ I}, B ⊆M

where A′ is the set of attributes common to all objects of A
and B′ is the set of objects sharing all attributes from B. The
closure operator (.)′′ implies the double application of (.)′,
which is extensive, idempotent and monotone. The subsets A
and B are closed when A = A′′, and B = B′′.

Definition 2 (Formal Concept): The pair c = (A,B) is
called a formal concept of K with extent A and intent B if
both A and B are closed and A′ = B, and B′ = A.

The object concept g ∈ G is expressed by γ g :=(
g′′, g′

)
and the attribute concept of m ∈ M is defined by

µm :=
(
m′,m′′

)
.

Definition 3 (Partial Order Relation �): A concept c1 =
(A1,B1) � c2 = (A2,B2) if:

A1 ⊆ A2 ⇐⇒ B1 ⊇ B2. (1)

In this case, c2 is called a superconcept (or successor) of c1,
and c1 is called a subconcept (or predecessor) of c2. The set
of all concepts of the formal context K is expressed by C(K)
or simply C.
Definition 4 (Concept Lattice): The concept lattice of a

formal context K, denoted by B(K) = (C,�), is a Hasse
diagram that represents all formal concepts C together with
the partial order that holds between them. InB(K), each node
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represents a concept with its extent and intent while the edges
represent the partial order between concepts.

Figure 3 is the Hasse diagram of the concept lattice
that corresponds to the context of Table 1. More precisely,
it is a diagram with reduced labeling. This means that the
label g is written below γ g and m above µm. The extent of
a concept represented by a node a is given by all labels in G
from the node a downwards, and the intent by all labels inM
from a upwards. For example, the node indicated by the red
arrow represents the formal concept whose extent contains
Mexicana, ThaiAirways, UnitedAirlines, and AirCanada by
collecting the object labels in white boxes from the cur-
rent node downward to the lattice infimum, while its intent
contains the attribute labels in grey boxes LatinAmerica,
Caribbean, and USA collected from the current node upward
to the lattice supremum. Here the current node whose label
is Caribbean is one of the direct predecessor (lower cover)
of the node named UnitedAirlines, and the direct succes-
sor (upper cover) of the nodes labeled by Mexicana and
ThaiAirways.
Definition 5 (Formal Context): It is a formal context K̃ =

(G,M, I) in which G is set of objects and G is the set of
attributes, and I is a set of relations defined on G and M
with I ⊆ G ×M. For gi ∈ G and gj ∈ G, (gi, gj) ∈ I holds
iff object gi is linked to gj.

There are several methods (cf. [14]–[16]) that build the
lattice, i.e., compute all the concepts together with the partial
order.
Definition 6 (Lower and Upper Covers): For any two for-

mal concepts c1 = (A1,B1) � c2 = (A2,B2) if:

(A1,B1) � (A2,B2),@ c3 = (A3,B3) such that

(A1,B1) � (A3,B3) � (A2,B2), (2)

or

A1 ⊆ A3 ⊆ A2 ⇐⇒ B1 ⊇ B3 ⊇ B2, (3)

then c1 = (A1,B1) is a lower cover of c2 = (A2,B2), and
c2 = (A2,B2) is an upper cover of c1 = (A1,B1); represented
as c1 ≺ c2 and c2 � c1 respectively.
We will use U(c) and L(c) to denote the sets of upper and
lower covers of the formal concept c respectively.
Definition 7 (Concept Intentional Face [17]): The inten-

tional face fin(c, cd ) of a concept c = (A,B) w.r.t. its d-th
upper cover concept, cd = (Ad ,Bd ) ∈ U(c), is the difference
between their intent sets as: fin(c, cd ) = B \ Bd .
Definition 8 (Concept Extensional Face): The extensional

face fex(c, cl) of a concept c = (A,B) w.r.t. its l-th lower cover
concept, cl = (Al,Bl) ∈ L(c), is the difference between their
extent sets as: fex(c, cl) = A \ Al .
Definition 9 (Blocker [17]): Given the family of faces3c,

the set Z is said to be a blocker of3c if ∀fi ∈ 3c, fi∩Z 6= ∅,
and the blocker Z is said to be minimal if @Zj ⊂ Z , ∀fi ∈
3c, fi ∩ Zj 6= ∅.
Definition 10 (Generator [18]): Given a concept c =

(A,B) in a formal context K = (G,M, I), a subset H ⊆ B

is called a generator of c iff H ′′ = B, and it is a minimal
generator when @H1 ⊆ H such that H ′′1 = B. We use Hex

c
andHin

c to denote the sets of minimal generators of a concept
c w.r.t. its extent and intent respectively.
For example, {Canada} is a generator associated with the

intent {Canada,USA}, and allows us to infer that whenever
an airline has a Canada destination, then it necessarily has an
USA destination.

B. SOCIAL NETWORK ANALYSIS
Definition 11 (Biclique): Let ϒ = (G,M, I) be an

undirected bipartite graph defined over the objects G and
attributesM. A biclique Q̃ = (G̃,M̃) is a complete subgraph
of ϒ induced by a pair of two disjoint subsets G̃ ⊆ G,M̃ ⊆

M, such that G̃ 6= ∅, M̃ 6= ∅, ∀u ∈ G̃, ∀v ∈ M̃, (u, v) ∈ I.
The disjoint subsets Q̃ = ({AirCanada,Mexicana,
ThaiAirways,UnitedAirlines}, {LatinAmerica,Caribbean,
USA}) is an example of a biclique. Henceforth, we use Q̃ as
our illustrative biclique (see the lattice node indicated by a red
arrow in Figure 3) to support the understanding of definitions
and principles related to the Bi-face centrality.
Definition 12 (Bridge): An edge (u, v) ∈ I of a two-mode

data network ϒ is a bridge iff it is not contained in any
cycle and its removal increases the number of connected
components in the graph ϒ .

For instance, the edge (AnsettAustralia,AsiaPacific) rep-
resents a bridge in ϒ .
Definition 13 (Bipartite Centrality Measure): The cen-

trality measure of a type-I node u ∈ G is a function that
assigns a positive real number to u quantifying its centrality
w.r.t. to all other type-II nodes v ∈M in the network ϒ (and
vice versa).

In two-mode networks, bipartite (also known as two-mode)
centrality measures are commonly utilized to detect impor-
tant nodes. Although numerous centrality metrics have been
proposed, the degree, closeness, betweenness, and eigen-
vector have been demonstrated to be the most outstand-
ing in a variety of applications, and they are thus widely
used.
Definition 14 (Degree Centrality Dc [3], [19]]): The

degree centrality of a node in a two-mode graph network ϒ
is defined as:

Dc(ui) =
∑
vj∈M

Iij, ∀ui ∈ G, (4)

Dc(vj) =
∑
ui∈G

Iij, ∀vj ∈M (5)

where Iij is equal to 1 when a link exists between ui and vj,
and 0 otherwise. Thus, the summation in Eq. (4) represents
the number of edges (or ties with other type neighbour nodes)
involving the node.
Definition 15 (Closeness Centrality Cc [3], [5]]): The

normalized closeness centrality of a node gi, in a two-mode
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graph network ϒ , is defined as:

Cc(ui) =
|M| + 2(|G| − 1)∑

vj∈M d(ui, vj)
, ∀ui ∈ G, (6)

Cc(vj) =
|G| + 2(|M| − 1)∑

ui∈G d(ui, vj)
, ∀vj ∈M (7)

where d(ui, vj) is the geodesic distance (shortest path)
between the nodes ui and vj.
Definition 16 (Betweenness Centrality Bc [7]): In bipar-

tite networks ϒ , the normalized betweenness centrality of a
node is defined as in [5]:

Bc(ui) =
∑

uj 6=uk 6=ui, uj,uk ,ui∈G

σujuk (ui)

σujuk
, ∀ui ∈ G, (8)

Bc(vj) =
∑

vj 6=vk 6=vi, vj,vk ,vi∈M

σvigk (vj)
σvivk

, ∀vj ∈M, (9)

where σxjxk denotes the total number of shortest paths
between nodes xj and xk , and σxjxk (xi) is the number of
those paths that traverse gi. To normalize the betweenness,
we simply divide Bc(ui) and Bc(vj) by the corresponding term
to its node set [5]:

Bc(G) =
1
2

[
|M|2(s+ 1)2

+ |M|(s+ 1)(2t − s− 1)− t(2s− t + 3)
]
, ∀ui ∈ G,

(10)

where s = (|G − 1| div |M|) and t = (|G − 1| mod |M|),

Bc(M)

=
1
2

[
|G|2(p+ 1)2

+ |G|(p+ 1)(2r − p− 1)− r(2p− p+ 3)
]
, ∀vj ∈M,

(11)

where p = (|M− 1| div |G|) and r = (|M− 1| mod |G|)
Definition 17 (Eigenvector Centrality EVc [3], [5]): The

eigenvector centrality of a node gi, in a graph network ϒ ,
can be iteratively computed as:

EVc(ui) =
1
λ

∑
vj∈M

auivjEVc(vj), ∀ui ∈ G, (12)

EVc(vj) =
1
λ

∑
ui∈G

auivjEVc(ui), ∀vj ∈M, (13)

where the eigenvalue λ 6= 0 is a constant, and auivj is the
adjacency element which is equal to 1 if node ui is linked to
node vj, and 0 otherwise.

III. BI-FACE FRAMEWORK
From a conceptual standpoint, and as depicted by the
flowchart in Figure 2, the Bi-face centrality approach consists
of the following basic steps.

1) We construct the formal context associated with the
network and then its corresponding concept lattice.

FIGURE 2. A flowchart illustrating the basic steps of the bi-face
framework.

We then extract the set of bicliques that coincide with
the set of formal concepts whose extent or intent is not
empty.

2) We detect what we call face-bridges, which are the
non-influential bridges in the network that contain ter-
minal nodes.

3) We refine the bicliques by removing non-influential
nodes in order to obtain face-bicliques (see Defini-
tion 20).

4) We compute the Bi-face centrality measures of nodes
using face-bridges and face-bicliques.

5) Eventually, we use the Bi-face centrality measures to
rank the two types of nodes in a descending order of
importance before identifying the key ones.

A. BUILDING THE FORMAL CONTEXT OF A TWO-MODE
NETWORK
We first construct the formal context of the two-mode net-
work ϒ = (G,M, I) by calculating the adjacency matrix as
follows:

K̃ = (G,M, I) =
{
(ui, vj) = 1, ∃ (ui, vj) ∈ I
(ui, vj) = 0, Otherwise.

(14)

In Eq. (14), If the object ui (node type-I) is linked to the
attribute vj (node type-II) in the network ϒ , we set 1 to K̃
element in the row i and column j. Otherwise, we assign 0 to
it. For instance, Table 1 shows the constructed formal context
K̃ of our toy graph in Figure 1.
We then construct the concept latticeB(K̃) from the formal

context, as it is shown in Figure 3. Note that Figure 3 shows

159554 VOLUME 9, 2021



M. H. Ibrahim et al.: Identifying Influential Nodes in Two-Mode Data Networks Using Formal Concept Analysis

FIGURE 3. The Hasse diagram of the concept lattice B(K̃) that
corresponds to the context of the two-mode network in Figure 1. More
precisely, it is a diagram with reduced labeling. This means that the label
g is written below γg :=

(
g′′,g′

)
and m above µm :=

(
m′,m′′

)
. The

extent of a concept represented by a node a is given by all labels in G
from the node a downwards, and the intent by all labels in M from a
upwards. The red downward arrow indicates the illustrative biclique cited
after Definition 11.

the Hasse diagram ofB(K̃) with reduced labelling, where the
label g is written below γ g and m above µm. The extent of
a concept represented by a node a is given by all labels in G
from the node a downwards, and the intent by all labels inM
from a upwards.

B. OVERLAPPING BICLIQUE EXTRACTION AND
REFINEMENT
Using the constructed lattice B(K̃), it is now possible to
extract concepts that capture the corresponding bicliques of
the two-mode network as follows:
Proposition 18: Given a network ϒ and its corresponding

concept latticeB(K̃), a concept c = (A,B) ∈ B with |A| ≥ 1
and |B| ≥ 1, represents a biclique Q = ({u : u ∈ A}, {v : v ∈
B}) in ϒ .

Proof: Given a concept c = (A,B) ∈ B(K̃), then we
have fromDefinition 2 that ∀u ∈ A,∀v ∈ B, ∃(u, v) ∈ I. This
entails that the concept c represents a sub-matrix Q̂ ⊆ K̃ of
size |A|×|B| that contains all 1’s. Now, given that the concept
lattice B, which is constructed from the formal context K̃,
is equivalent to the network ϒ – where the sets of objects
G, attributes M and relations I in K̃ correspond to the two
disjoint sets of nodes and set of edges in ϒ respectively –
we can then deduce that the sub-matrix Q̂ of the concept c
coincides with a complete sub-graph Q = (A,B) in ϒ such
that ∀u ∈ A,∀v ∈ B there is an edge (u, v) that connects the
two nodes u and v. Pursuant to Definition 11, this complete
sub-graph Q represents a biclique ({u : u ∈ A}, {v : v ∈
B}) ∈ ϒ . This implies that the concept c = (A,B) ∈ B is

equivalent to a biclique Q ∈ ϒ in which both extent A and
intent B involve only the objects {u : u ∈ A} and attribute
{v : v ∈ B} nodes of Q respectively.

An interesting question that could be raised now is how
to determine the non-influential nodes in a given con-
cept (or biclique). To answer this question, let us define a
non-influential node from the viewpoint of FCA.
Definition 19 (Non-Influential Node): For a formal con-

cept (biclique) ci = (Ai,Bi) ∈ C, a type-I node u ∈ Ai is
non-influential if its removal from ci (and accordingly from
the graph G) does not violate the closure conditions of other
biclique concepts C \ {ci} that involve it:

∀cj ∈ C \ {ci} and u ∈ Aj, (Aj \ {u})′′ = Aj. (15)

In a dual manner, a type-II node v ∈ Bi is non-influential if:

∀cj ∈ C \ {ci} and v ∈ Bj, (Bj \ {v})′′ = Bj. (16)

That is, the subset of concepts (or bicliques) that contain
either node u or node v nevertheless preserve their conceptual
substructures even after eliminating u from their extents or v
from their intents. In fact, this implies that the node u or v
is non-influential (e.g., has no essential conceptual informa-
tion) since removing it from the bicliques does not influence
the network’s intrinsic connectivity (e.g., which may clearly
appear through the non-expansion of the concepts’ extents or
intents). In fact, Definition 19 raises another interesting ques-
tion of how to identify the non-influential nodes in bicliques.
Fortunately, the faces of corresponding concepts, w.r.t. their
upper and lower covers, can reveal information about their
non-influential nodes. As a result, one efficient way to
answer this question is to juxtapose the corresponding con-
cept (biclique) with its lower and upper covers through exten-
sional and intentional faces to determine its non-influence
type-I and type-II nodes respectively. That is, the set of faces
of its concept ci = (Ai,Bi), w.r.t. its lower and upper covers,
have in common the same non-influential (type-I and type-II)
nodes in its (extent and intent) respectively:

∀u ∈ {∩cl∈B(ci)fex(ci, cl)} H⇒ (Aj \ {u})′′ = Aj,

∀cj ∈ C \ {ci} and u ∈ Aj. (17)

∀v ∈ {∩cd∈U (ci)fin(ci, cd )} H⇒ (Bj \ {v})′′ = Bj,

∀cj ∈ C \ {ci} and v ∈ Bj. (18)

For example, the corresponding concept of Q̃ has two
extensional faces f 1ex = {ThaiAirways} and f

2
ex = {Mexicana}.

Since the intersection of the faces f 1ex and f 2ex is empty, Q̃
contains no non-influential type-I nodes. It also has only one
intensional face f 1in = {Caribbean}. Thus, the intersection
is also f 1in, which entails that Caribbean is a non-influential
type-II node in the Q̃.
On the basis of Equations (17) and (18), we can leverage

the faces of concepts to define a key biclique2 as follows:
Definition 20 (Face Biclique): Given a two-mode net-

workϒ and its corresponding concept latticeB(K̃), a concept

2Note that a biclique is key when all of its nodes are influential.
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(representing a biclique) c = (A,B) ∈ B, is called a face
biclique if all of its (type-I and II) nodes are influential, i.e.,
no one of them satisfies the conditions in Equations (17)
and (18).

Based on Definition 20, we can obtain the face biclique
ĉ = (Â, B̂) by refining the original biclique c = (A,B) as
follows:

Â =

{
A \ {∩cl∈L(ci)fex(ci, cl)}, |A| > 1
A, otherwise,

B̂ =

{
B \ {∩cd∈U (ci)fin(ci, cd )}, |B| > 1
B, otherwise.

(19)

In Equation (19), we remove non-influential type-I nodes
from its extent and non-influential type-II nodes from its
intent. It is worth noting that when the extent or intent con-
tains only one node, no refinement is applied because this
node is influential by default. This is due to the fact that
removing this node clearly violates the closure conditions in
Equations (17) and (18).

C. FACE-BRIDGE DETECTION
Definition 21 (Face-I Bridge and Terminal Type-I Node):

Given a 2-mode networkϒ and its corresponding concept lat-
ticeB(K̃), an edge (u,B) represents a non-influential (face-I)
bridge containing a terminal (type-I) node u ∈ G when there
is an attribute concept c = (A,B) ∈ B(K̃) with |B| = 1 that
satisfies the following:

u ∈ A and ∃hi ∈ Hex
c S.t. hi = u and |hi| = 1 (20)

For instance, the attribute concept c = ({AirCanada,
AirNewZealand,AllNippnA,TheAustrianAG,
BritishMidland, Lufthansa,ScandinavianA,SingaporeA,
ThaiAirways, UnitedAirlines,Varig}, {Europe}) that appears
in blue/black in Figure 3 has an extensional minimal gen-
erator set Hex

c = {BritishMidland}. This implies that
BritishMidland (framed in yellow in Figure 3) is a terminal
(type-I) node and the edge (BritishMidland,Europe) repre-
sents a non-influential (face-I) bridge. Similarly, we have:
Definition 22 (Face-II Bridge and Terminal Type-II

Node):Given a 2-mode networkϒ and its corresponding con-
cept lattice B(K̃), an edge (A, v) represents a non-influential
(face-II) bridge containing a terminal type-II node v ∈ M
when there is an object concept c = (A,B) ∈ B(K̃) with
|A| = 1 that satisfies the following:

v ∈ B and ∃hj ∈ Hin
c S.t. hj = v and |hj| = 1 (21)

The question now is, how can we obtain the minimal gen-
erators of object and attribute concepts? We can efficiently
compute the set of minimal generators Hin

c of a concept c
intent by applying Minigen() procedure, which is given in
Algorithm 1. It iteratively calculates the face of c w.r.t. each
upper cover in U(c) (Line 3). If the set of intentional minimal
generators is empty, it then assigns the individual attributes
in the first face toHc (Lines 4-5). Otherwise, it progressively
checks the intersection between the calculated face fu and

Algorithm 1 Minigen() Procedure for Computing the
Intentional Minimal Generators of a Concept Intent
Input: Concept intent B, Set of upper covers U(c).
Output: Set of minimal generatorsHin

c .
1: Hin

c ← ∅;
2: for each cu = (Au,Bu) in U(c) do
3: fu← B \ Bu;
4: ifHin

c == ∅ then
5: Hin

c ← {a|∀a ∈ fu};
6: else
7: Gen← ∅;
8: for each hi inHin

c do
9: if hi ∩ fu == ∅ then

10: Gen← (Gen ∪ {hi ∪ a|∀a ∈ fu});
11: else
12: Gen← (Gen ∪ {hi});
13: end if
14: end for
15: Hin

c ← minimal(Gen);
16: end if
17: end for
18: Return Hin

c ;

each generator hi in Hin
c (Line 8). If the intersection with

the current generator hi is empty, then hi is not in the family
blocker formed by the face (Line 9). This entails that the
generator hi must then be modified so that it belongs to
the minimal blocker family of faces. Thus, the new minimal
generators will be obtained by adding each element of the
current face fu to hi (Line 10). If the intersection is not empty,
then the current generator hi, which exists in the family of
minimal blockers of previous faces, is also a minimal blocker
of the family formed of the current face fu. So, we add
the generator hi, without performing any modification to the
minimal generator setHin

c (Line 12). It ultimately verifies the
minimality of the obtained set (Line 15) and returns the final
set of minimal generators Hin

c (Line 18). Note that, in a dual
way and using the set of concept’s lower-covers L(c), we can
apply Minigen() procedure to compute the set of extensional
minimal generatorsHex

c of a concept w.r.t. its extent A.

D. BI-FACE CENTRALITY
Definition 23 (Bi-face Centrality BFc): The Bi-face cen-

trality of nodes u ∈ G and of v ∈M, in a given graph network
ϒ , can be computed as:

BFI(u) =

Face-bicliques containing u︷ ︸︸ ︷
|{ĉ ∈ Ĉ | u ∈ Â|}

|Ĉ|

+
[
1−

Face-I bridges containing u︷ ︸︸ ︷
|{g ∈ 0I | g == u|}

|0I |

]
, (22)
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BFII(v) =

Face-bicliques containing v︷ ︸︸ ︷
|{ĉ ∈ Ĉ | v ∈ B̂|}

|Ĉ|

+
[
1−

Face-II bridges containing v︷ ︸︸ ︷
|{m ∈ 0II | m == v|}

|0II |

]
. (23)

Ĉ stands for the set of face bicliques while 0I and
0II represent the two sets of non-influential (face-I) and
(face-II) bridges, respectively. In Eq. 22, the Bi-face centrality
calculates the sum of face-biclique3 and face-bridge terms.
The numerator of the face-biclique term simply counts the
number of refined concepts, with extent and intent sizes
greater than 1, that involve a type-I node u. That is, it mea-
sures the amount of face bicliques to which node u belongs
in the graph network ϒ . From a conceptual viewpoint, this
term effectively approximates the cross connectivity [20],
[21] of the node u using refined overlapped bicliques that only
contain influential nodes. In the face-bridge term, we first
quantify the ratio of the face bridges that involve the node
u. This ratio is then subtracted from 1 to approximate the
portion of influential bridges in the graph that contain the
node u. It is worth noting that the numerators of two Bi-Face
terms in Eq. (22) are unnormalized quantities. As a result,
the denominators in Eq. 22 act as normalization factors to
scale the two terms between 0 and 1. In a similar manner, the
Bi-face centrality in Eq. (23) can be interpreted and used to
compute the centrality of type-II nodes in the graph.

The pseudo-code for calculating the Bi-face centrality of
all type-I nodes in the two-mode network ϒ is given in
Algorithm 2. The algorithm takes as input the set of all
extracted concepts C =

{
cj = (Aj,Bj)

}|C|
j=1. For each

type-I node ui ∈ G, it first iteratively refines the extents
of the bicliques to obtain the face ones by removing all
their non-influential type-I nodes (lines 4-5). It then counts
the number of those refined face bicliques in the graph
that involve ui (lines 7-9). Hereafter, it iteratively computes
the minimal generators of the attribute concepts w.r.t. their
extents to identify the face-bridges that involve the node ui
(lines 11-12). Subsequently, it counts how many face-bridges
containing the node ui as a terminal (type-I) one (lines 13-15).
It then calculates the Bi-face centrality BFI of a node ui
(lines 19-21). Eventually, it returns a list with the Bi-face
centrality measures BFI of all type-I nodes in the graph
respectively (line 22). Without loss of generality, and in a
dual manner, algorithm 2 can be applied to compute the
Bi-face centrality for each type-II node vj ∈ M as fol-
lows. It iteratively obtains the face bicliques by refining the
non-influential type-II nodes from the intents of their corre-
sponding concepts. It then identifies the face bicliques in the
graph that involve vj. It then uses the minimal generators of
object concepts to count the number of the face-bridges that
involve the node vj as a terminal (type-II) one. Eventually,

3Note that the face-clique of a node is the number of overlapping face
bicliques to which it belongs to.

it returns a list containing the Bi-face centralitymeasures BFII
of all type-II nodes in the graph.

Consequently, we can now use the resulting Bi-face cen-
trality lists to rank the two types of nodes in descend-
ing order based on their importance. Table 2 summa-
rizes the ranked lists of the most important airlines and
destinations, in Figure 1, based on five bipartite central-
ity measures: Bi-face, betweenness, eigenvector, closeness
and degree. For example, because the node Lufthansa has
slightly fewer geodesics than AirCanada, Betweenness con-
siders AirCanada to be the most important type-I node.
In contrast, the Bi-face centrality ranks the node Lufthansa
as the most important type-I node because Lufthansa
exists in considerably more overlapped bicliques than
AirCanada. Closeness, degree, and eigenvectors are unable to
distinguish which node Lufthansa or AirCanada is more
important than another. Furthermore, neither degree nor
closeness centrality can determine which type-I node from
{TheAustrianAG, SingaporeA,Varig} is more influential than
the others. The eigenvector centrality cannot distinguish
between type-II nodes in {MiddleEast,Africa,Caribbean}.

Algorithm 2 Calculating Bi-Face Centrality (BFc) for All
Type-I Nodes in a Two-Mode Network

Input: Set of bicliques (C =
{
(Aj,Bj)

}|C|
j=1).

Output: Bi-face centrality (BFI) of all type-I nodes.
1: BFI← 0I ← ∅;
2: for each ui ∈ G do
3: countI ← γI ← [0]|G|i=1;
4: for each Aj ∈ C do
5: Âj← Refine(Aj); //usingEq. 19
6: // Counting face bicliques that contain the node ui
7: if |Âj| > 0 and ui ∈ Âj then
8: countI [i]← countI [i]+ 1;
9: end if

// Counting face-bridges that contain the node ui
10: if |Bj| == 1 then

// using the extensional version of Algorithm 1.
11: Hex

Aj ← Minigen(Aj);
12: if ∃h ∈ Hex

cj , h == ui then
13: γI [i]← γI [i]+ 1;0I .append(ui);
14: end if
15: end if
16: end for
17: end for
18: for each i = 1 to |G| do
19: BFI[i]←

(
countI [i]/|C|

)
+
(
1− (γI [i]/|0I |)

)
;

20: end for
21: Return BFI

1) COMPLEXITY ANALYSIS
The calculation of the face biclique term has a time and
a space complexity equal to O(|C|) since we store and
proceed through the extent of all the bicliques to count
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TABLE 2. The ranking of all nodes in the two-mode network of Figure 1 based on five bipartite centrality measures: Bi-face (BFc), betweenness (Bc),
eigenvector (Ec), closeness (Cc) and degree (Dc).

the face bicliques that contain the node. The Face-bridge
term of type-I node needs iterating through the attribute
concepts C̃ and calculates their minimal generators w.r.t. their
corresponding lower covers. Thus, the Bi-face centrality BFI
of all type-I nodes requires

(
|G| × |C| + |C̃| × |L̃| × |H̃ex|),

where C̃ is the set of attribute concepts, |H̃ex| is the largest
size of an obtained set of minimal generators for attribute
concepts, and L̃ is the largest number of lower covers for an
attribute concept. Now, since we often have |C̃| � |C| and
also |L̃| � |G|, then the first term frequently dominates the
second one. This entails that computing the Bi-face centrality
BFI of all type-I nodes needs a time and space complexity of
O(|G| × |C|). In a dual way, the calculation of the Bi-face
centrality BFII of all type-II nodes has a time complexity of
O(|M| × |C|). In total, the Bi-face centrality has time and
space complexity of O

(
|C| × (|G| + |M|)

)
.

2) BI-FACE VS. CROSS-FACE
One might contrast the bipartite Bi-Face (BF) and our
Cross-face (CF) centrality introduced in [22], which is a
prominent FCA-based centrality for one-mode networks.

At a high level, BF can be considered as a generalized form
of CF (with a larger size and a higher level of details and
depth) for two-mode networks. However, it is well-known
that two-mode networks have distinct characteristics with
more complex substructures than the one-mode ones, which
leads to a different computation of node centrality and distinct
applications. Thus, recalling the basic formulations used in
both centrality approaches, the BF and CF are fundamentally
different measures that share a similar FCA-based route.
Technically, some of these differences can be summarized
as follows: (1) In the preprocessing step of BF, a different
adjacency matrix (see Eq. (14)) adapted for two-mode net-
works is used to build the formal context; (2) In the BF
framework, we extract bicliques and bridges using concepts
rather than symmetrical concepts as in the CF framework.
This is due to the fact that the symmetrical ones do not exist
in the constructed lattice representing two-mode networks;
(3) In the BF approach, we use a refinement step to obtain
what we name face bicliques by pruning the non-influential
nodes from the original bicliques (see Definition 20 and
Eq. (19)). This step does not exist in the CF one-mode
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formulation centrality. In practice, this step significantly
improves the outcome (as demonstrated by the results of
experiment I in subsection IV-C); (3) Face bridges in
BF are identified in a completely different way than in
one-mode networks for CF. Specifically, we leverage the
minimal generators of concepts in BF (see Definitions 21-22
and Eqs. (20)-(21)) instead of the interesting faces and
meet-irreducible concepts in CF; (4) We detect the ter-
minal nodes in the BF framework, which is not taken
into account in CF. Due to the aforementioned differ-
ences, the two terms (i.e., face-bicliques and face-bridges
in Eqs. (20)-(21)) formulations of BF meaningfully differ
from the corresponding terms of CF formulation presented
in [22].

IV. EXPERIMENTAL EVALUATION
The objective of our experimental evaluation is to find robust
answers to the following essential questions.
• (Q1) Is the accuracy of Bi-face centrality competitive
with the prominent centrality measures?

• (Q2) Is Bi-face centrality performing fast compared to
state-of-the-art centrality measures?

• (Q3) Is there a correlation between the Bi-face cen-
trality approach and other state-of-the-art centrality
measures?

We first consider the following five (real-life? and synthetic‡)
two-mode networks, which possess various configurations to
support the investigation of different scenarios.

A. DATASETS
•
?Norwegian Interlocking Directorates [23], which
contains interlocking boards of 1542Norwegian director
women in 373 Norwegian public limited companies.
A link represents a board membership connecting a
woman as a director of a public company in Norway on
August 2009.

•
?PediaLanguages [24] involves the semantic web of
316 official languages spoken by people living in 169
different countries. An edge connects an official lan-
guage to a country if people in that country speak that
language.

•
?Southern-Women-Davis [25], [26], which is a
two-mode social network of 18 women reporting their
participation to 14 events (such as a meeting of a social
club, a church event or a party) over a nine-month period.
A woman is connected to an event if she attends that
event.

•
‡CoinToss, which is a random bipartite network gener-
ated from indirect Coin-Toss model generator [27].

•
‡Dirichlet [28] which is a random formal context gen-
erated using the Dirichlet model generator.4

Table 3 gives the basic statistics of the networks.5

4publicly available at: https://github.com/maximilian-felde/formal-
context-generator

5Publicly available at: https://toreopsahl.com/datasets/
http://konect.cc/networks/opsahl-collaboration/
https://networkdata.ics.uci.edu/netdata/html/davis.html

TABLE 3. The basic statistics of the two-mode networks about the
number |G| of type-I nodes, the number |M| of type-II nodes, the
number |I| of edges, and the density 2 in %.

B. METHODOLOGY
The results of our proposed Bi-face centrality measure are
then compared to the following state-of-the-art measures:
• Bipartite closeness [Definition 15].
• Bipartite betweenness [Definition 16].
• Bipartite eigenvector[Definition 14].
• Vote-Rank [29], which is a well-known method for
identifying decentralized spreaders. It calculates the
ranking of the nodes in the bipartite graph based on a
voting scheme. That is, at each turn, all nodes iteratively
vote in a spreader. The node with the highest vote num-
ber is elected iteratively, while decreasing the voting
ability of the elected spreader’ neighbours in the next
turn.

• Percolation [11], which measures the proportion of per-
colated paths6 that go through a given node. So, it quan-
tifies the relative impact of nodes in various percolation
scenarios based on their topological connectivity over
time. The percolation state is commonly assigned a value
between 0.0 and 1.0, with 0.5 being the most commonly
used value that we used in our experiment.

• Bipartite degree [Definition 14], which can act as an
effective baseline for comparison.

Subsequently, the two ranking lists of (type-I and type-II)
nodes calculated from the underlying centrality measures are
then compared with the corresponding lists obtained from
the spreading process of the node. We specifically evaluate
the tested centrality’s performance for each type of node by
applying the following common schema [30], [31]:

1) Calculate the centrality metric for all nodes and record
their ranking list

2) Simulate the spreading ability of nodes using SIR
model [30]. The node in the SIR model can be suscep-
tible, infected, or recovered. We set only one node to
be infected at a time, and the other remaining nodes
are susceptible, then we examine how the information
spreads on the network. With a spreading (or infection)
probability, the infected node can spread its infection
to nearby susceptible nodes. In practice, we noticed
that investigating the spreading in the early stages is
more meaningful than examining each node recovered
state, so we concentrate on the effect within a t =
10 time range rather than the recovered state of each

6We recall that the percolated path is the shortest one between two nodes
in which the source node is percolated (i.e., infected).
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node. Following the completion of the SIR simulation,
we obtain the node influence ranking list by computing
the spreading efficiency for all nodes.

3) Compute the joint score list J = {(xi, yi)}ni=1 using the
SIR model’s ranking list and the centrality measure’s
ranking list. The xi and yi in each pair (xi, yi) ∈ J are
the centrality-based and SIR-based measures of a node
gi ∈ G, respectively. The two randomly chosen pairs
(xi, yi), (xj, yj) ∈ J are concordant if both (xi < xj)
and (yi < yj) or if both (xi > xj) and (yi > yj). They are
discordant if both (xi < xj) and (yi > yj) or if both (xi >
xj) and (yi < yj). If (xi = xj) and (yi = yj), then the
pair is neither concordant nor discordant.We use nc and
nd to denote the number of concordant and discordant
pairs in J , respectively.

Based on J , we then calculate the following Kendall’s tau
rank correlation coefficient τ metric:

τ =
2(nc − nd )
n(n− 1)

, (24)

If the underlying centrality measure has a high τ value,
this indicates that it produces an accurate ranked list. The
ranked list produced by the centrality measure is identical
to the ranked list obtained from the real spreading pro-
cess when τ = 1, which is, in fact, the ideal scenario.
To evaluate the accuracy of the results, we now calculate
the average Kendall’s tau rank correlation coefficient as
follows:

τ̂ =
τI + τII

2
, (25)

where τI and τII are the Kendall’s tau correlation coefficients
calculated using Eq. (24) for type-I and type-II of nodes,
respectively.

To assess the scalability, we consider the average elapsed
time metric as:

ξ =
1
2

[∑ui∈G ti
n

+

∑
vj∈M tj

m

]
(26)

where ti and tj are the elapsed times for calculating the
centrality measure of a type-I node ui ∈ G and a type-II one
vj ∈M, respectively.
We carried out our experiments on a MacOS Mojave com-

puter with an Intel(R) Core-i7 CPU @2.6GHz and 16 GB of
memory. As an extension to the NetworkX Python package,
we implemented all of the centrality measures. We also used
the Concepts 0.7.11 Python package, developed by Sebastian
Bank,7 to extract formal concepts.

C. RESULTS
1) EXPERIMENT I
This experiment is devoted to answering Question 1. Each
infected node has a spreading probability β of infecting its
susceptible neighbours in the SIR model simulation. As a
result, and in accordance with the scheme described above,

7publicly available at: https://pypi.python.org/pypi/concepts

we iteratively increase the spreading probability in the range
β = (0, 0.1] with increments of 0.01. At each step-size,
we compute the joint listJ of each centrality measure and the
real spreading of the nodes for each individual type of nodes
separately. We then calculate the corresponding evaluation
metric τ̂ in Eq. (25).

Figure 4 displays the average Kendall’s tau correlation
coefficient τ̂ between the seven tested centrality measures
and the ranking list generated by the SIR model, with a
spreading probability β ∈ (0, 0.1] and at a given time
t = 10. Overall, Bi-face outperforms all the compared
centrality measures, achieving the most accurate Kendall
coefficient τ̂ on Norwegian-Directorate, PediaLanguages,
CoinToss and Dirichlet networks. On the Women-Davis net-
work, Bi-face has the highest τ̂ value when the spread-
ing probability β ≥ 0.03, otherwise vote-rank, closeness,
betweenness and degree slightly compete with Bi-face. The
percolation comes close behind Bi-face on Women-Davis,
but considerably further behind on Norwegian-Directorate,
PediaLanguages, CoinToss and Dirichlet networks. Except
on the Women-Davis network with spreading probability
β < 0.03, the vote-rank is clearly less accurate than
Bi-face on all the tested networks, but it is more accurate
than percolation, betweenness, closeness, eigenvector and
degree onPediaLanguages,CoinToss andDirichlet networks.
On the Norwegian-Directorate and Women-Davis networks,
the vote-rank and percolation compete with each other. The
percolation is clearly more accurate than betweenness and
eigenvector when the spreading probability β ≥ 0.05 on
all the tested networks. Both betweenness and eigenvector
dominate degree and closeness on Norwegian-Directorate,
PediaLanguages and CoinToss networks, but closeness out-
performs betweenness centrality on Dirichlet network. The
betweenness is more accurate than eigenvector on Pedi-
aLanguages network when the spreading probability β ≥
0.04, but it is outperformed by eigenvector on CoinToss and
Dirichlet networks. The betweenness centrality is almost bet-
ter than eigenvector for the Norwegian-Directorate network
while they have an opposite behavior for the Women-Davis
network.

2) EXPERIMENT II
The second experiment is dedicated to answer Question 2.
The goal here is to evaluate the performance of the centrality
measures. To that end, we rerun Experiment I while reporting
their computational time as in Eq. 26. The average elapsed
time ξ of the seven centrality measures on the five underly-
ing networks is depicted in Figure 5. On all the tested net-
works, the Bi-face dominates all centrality measures (except
degree). It finishes at least twenty-three times faster than
betweenness, eleven times faster than percolation, nine times
faster than eigenvector and ten times faster than closeness.
Degree is very competitive with Bi-face on Women-Davis,
CoinToss and Dirichlet networks, but Bi-face clearly pre-
vailed over the degree by a significant margin on Norwegian-
Directorate and PediaLanguages networks. Apart from
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FIGURE 4. The average Kendall’s tau coefficient τ̂ between the tested centrality measures and the ranking list generated by the SIR model, with
β ∈ (0,0.1], at t = 10 on the five underlying datasets.

Bi-face, the percolation is marginally slower than both the
closeness and eigenvector by at least factors of 1.15 and 1.25
on all networks (except Women-Davis) respectively. In addi-
tion, the closeness is considerably faster than betweenness,
and competes with eigenvector on Norwegian-Directorate

and CoinToss networks. Vote-rank is significantly faster
than closeness, eigenvector and percolation on Norwegian-
Directorate, PediaLanguages, CoinToss and Dirichlet net-
works, but on the contrary, closeness is slightly quicker than
vote-rank onWomen-Davis network.
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FIGURE 5. Average elapsed time ξ (in secs) of the seven tested centrality measures: Bi-face, closeness, betweenness, degree, eigenvector,
percolation and vote-rank on the five underlying datasets.

3) EXPERIMENT III
In this experiment, we focus on Question 3. That
is, we are interested here in exploring the monotonic

relationships between Bi-face and the other underlying
centrality measures. Table 4 records the average Kendall’s
tau rank correlation coefficient between Bi-face and the other
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six bipartite centrality measures. Overall, all the centrality
measures are positively correlated with Bi-face, which is
remarkably consistent and supplement the finding of Exper-
iment I. The Bi-face has moderate monotonic relationships
with vote-rank and percolation on all tested networks. There
is clearly a weak relationship between Bi-face and between-
ness on the Norwegian-Directorate, PediaLanguages, and
CoinToss networks. Furthermore, it has a weak correlation
with eigenvector on theWomen-Davis, CoinToss and Dirich-
let networks. Moreover, there is weak correlation between
Bi-face and closeness on theWomen-Davis andDirichlet net-
works. Noticeably, the Bi-face has a very weak relationship
with degree on all networks except theWomen-Davis.

D. DISCUSSION
Taking the identification of accurate node centrality
into consideration, the results of Experiment I in
Subsection IV-C1 indicate that Bi-face outperforms tradi-
tional bipartite centrality measures such as vote-rank, perco-
lation, degree, closeness, betweenness, and eigenvector. This
is attributed to the use of its face biclique and face-bridge
terms in tandem to leverage local and global aspects of
network topology, respectively. That is, the face-biclique term
quantifies the structural embeddedness of cohesive regions in
a network involving each individual (type-I and type-II) node.
From a conceptual perspective, this term considers the local
information on how the node influences its immediate impor-
tant neighbour nodes through the lens of its overlapping face
bicliques. The face-bridge term quantifies a node’s global role
based on how the information flows through influential (face)
bridges (i.e., important geodesics).

In terms of effective performance, the results of
Experiment II from the previous Subsection IV-C2, suggest
that the Bi-face is considerably faster than all other tested
bipartite centrality measures (except degree). This is due to
the fact that Bi-face primarily calculates the centrality of all
nodes based on the set of concepts C, which is frequently too
small in comparison to all other tested centrality measures
with polynomial time complexity in terms of nodes and
edges, i.e., |C| � np and |C| � mq, with p, q > 1.
Besides that, several well-known observations are clearly

consistent with the obtained results in Subsection IV-C. First,
in some real-world applications, we may end up with several
nodes having approximately similar low or high degrees, and
in these cases, degree centrality cannot serve as a descrip-
tive measure that can distinguish between nodes. Second,
closeness can address the degree centrality limitation in a
few situations. For example, consider node u that is linked
to node v. Assume that node v is in close proximity to the
other nodes in the network, resulting in a high closeness score.
Node u has a very low degree score of 1, but a rationally
high closeness score, because node u can propagate infor-
mation to all other nodes that node v reaches with one extra
step. However, closeness, like degree, is usually inappropri-
ate for irregularly connected bipartite networks. Because the
shortest-path distance between two nodes is infinite when

they are not reachable through a path, the closeness score is
equal (or very close) to zero for those nodes in the network
that do not reach all other nodes. Third, since betweenness
lacks any form of measuring local nodal connectivity, it is
expected to produce relevant results only if the goal is only
to quantify influence on communication among local groups,
which is not always the case when studying the centrality
in real-world networks. Finally, and in practice, using the
efficient implementation adopted from the fastest algorithm
proposed in [7], the calculation of percolation centrality for
all nodes requires a time complexity ofO(m2(n1+n2)), which
still seems to impose a computational bottleneck even with
fairly medium-sized networks.

As frequently asked, are these centrality measures corre-
lated? The results of Experiment III in Subsection IV-C3
expound that Bi-face centrality gives unique node identi-
fication based on network topology. The presence of ter-
minal nodes, influential (also known as face) bridges, and
overlapping key bicliques impacts both the performance and
behaviour of Bi-face as well as its relationship to other tra-
ditional centrality measures. When the network contains a
large number of cohesive regions with many nodes having
high degrees and there is a small number of hole structures or
terminal nodes, the role of the face-biclique term dominates
the face-bridge one, and here it is anticipated that the Bi-face
centrality could be partially correlatedwith vote-rank, degree,
eigenvector and (maybe) closeness centrality measures. This
is due to the fact that in this scenario, the network tends to
decompose into multiple bi-clusters (or two-mode commu-
nities), with the nodes with the highest degree potentially
serving as the central nodes. On the flip side of the coin, when
the network contains a small number of cohesive regions or
a large number of sparse ones, as well as a large number
of terminal nodes and bridges, the role of the face-bridge
term dominates the face-biclique one, even when structural
holes are present. This is due to the effect of face-bridges
in determining the central nodes, and here the Bi-face
centrality may be slightly correlated with percolation and
betweenness.

It is worth noting that the existence of the two scenarios,
mentioned above in the network, could potentially increase
Bi-face centrality to behave slightly similar to vote-rank or
percolation. In an extreme scenario, such as the Women-
Davis network with a large number of overlapping bicliques
and no terminal nodes, the likelihood of having face-bridges
decreases dramatically. This indeed imposes a harsh situation
on Bi-face because it will depend solely on its face biclique
term, and here it is clearly expected that Bi-face will behave
similarly to degree, closeness, eigenvector, and vote-rank, but
not similarly to betweenness. From a statistical perspective,
the low and moderate (i.e., not high) correlations between
Bi-face and other centrality measures suggest that it is, in fact,
a distinct measure that is likely to be associated with different
outcomes than other centrality measures. This is due to the
fact that if the measures are highly correlated, they may be
somewhat redundant and behave similarly.
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TABLE 4. Average Kendall’s tau rank correlation coefficient between Bi-face (BFc) and the other six bipartite centrality measures: betweenness (Bc),
eigenvector (Ec), closeness (Cc), degree (Dc), Percolation (PCc) and Vote-rank (VRc) on the five underlying datasets. The moderate, weak, highly weak
correlation values are represented in blue, red and black respectively.

Furthermore, one conjecture inferred from the experiment
results (I-III) is that two-mode network properties (e.g., den-
sity, reciprocity, centralization) may affect the correlation
among bipartite centrality measures, as well as their accu-
racy and performance. For instance, one observation from
Table 4 and Figure 4 is that as network density increases,
the correlation between Bi-face and closeness, eigenvector,
and degree increases, while its correlation with betweenness
decreases. This observation, however, does not clearly reflect
the correlation between Bi-face and both percolation and
vote-rank because Women-Davis has a lower density than
CoinToss and Dirichlet, and Bi-face is more correlated with
the two centrality measures on Women-Davis than on Coin-
Toss. While this shows that network density influences how
well different centrality measures correlate with one another,
it also indicates that the network density is not the only factor
and that other network properties may have an impact on
such correlations. Since the study of the network properties is
outside the scope of this paper, we could explore the effects of
reciprocity and centralization on Bi-face in our future work.

V. CONCLUSION
The detection of influential nodes in a two-mode network
is frequently an important task in scientific and industrial
data analysis pipelines for explaining various behaviours and
outcomes. Our work here addressed an obvious gap in the
present CNA literature, namely the efficient identification of
key nodes by combining both local cohesiveness and global
network flow aspects of centrality through the use of FCA
mathematical formalization. On this basis, we devised Bi-
face, a new bipartite centrality measure that quantifies the
prominence of a node in a two-mode network based on its
presence in influential overlapping bicliques and bridges.
While we focused on two-mode networks here, the approach
can easily be modified to accommodate other complex net-
work representations like multilayer networks.

From a conceptual perspective, the Bi-face score is a dis-
tinct centrality in the following three elements: (i) it uses the
concept lattice formulation to efficiently extract overlapping
bicliques and bridges, (ii) it leverages concept faces to refine
bicliques from non-influential nodes and detect influential
bridges, and (iii) it exploits the fact that influential bridges
and overlapping bicliques with a large number of important
neighbour nodes are likely to contain key central nodes.

As a result, it measures how a node affects and is influenced
by its important neighbours through refined bicliques, while
also linking the network dense substructures via its existence
in influential bridges. According to a thorough empirical
study on several synthetic and real-life two-mode networks
(see Section IV), the Bi-face score can identify key nodes
more accurately and efficiently than other state-of-the-art
centrality indices such as degree, betweenness, closeness,
eigenvector, percolation, and vote-rank.

ACKNOWLEDGMENT
The authors thank the anonymous reviewers for their care-
ful reading of the manuscript and their numerous insightful
comments and suggestions.

REFERENCES
[1] M. Jalili, A. Salehzadeh-Yazdi, Y. Asgari, S. S. Arab, M. Yaghmaie,

A. Ghavamzadeh, andK. Alimoghaddam, ‘‘CentiServer: A comprehensive
resource, web-based application and R package for centrality analysis,’’
PLoS ONE, vol. 10, no. 11, Nov. 2015, Art. no. e0143111.

[2] S. Oldham, B. Fulcher, L. Parkes, A. Arnatkevic̆iūtė, C. Suo, and
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