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ABSTRACT In this paper, the three-phase generalization of a single-phase power flow (named PFPD)
developed by the first author is presented. This three-phase formulation is chiefly conceived for HV/EHV
transmission network applications, but it preserves a general validity for any power system. An iterative
method for the solution achievement is throughout expounded. The algorithm quantitatively aims at investi-
gating the impact of the asymmetrical transmission structures on power systems. This impact is evaluated in
terms of voltage and current sequence components. Moreover, discussions on possible improvement actions
to enhance the power quality are developed. The algorithm is implemented in Matlab environment and tested
by several fictitious networks. Eventually, extensive comparisons in terms of execution time, number of
iterations and solution accuracy with the software DIgSILENT PowerFactory are presented.

INDEX TERMS Power flow, three-phase power flow, power system analysis, power quality, industrial power
systems, transmission network.

I. NOMENCLATURE
A. SETS AND INDICES
Symbol Quantity
a Slack-section.
b÷g Generator sections.
h÷m Load sections.
NG Total number of the generator sections.
NM Total number of the network sections.
G Set of the generator sections a÷ g.
L Set of the load sections h÷ m.
S Shunt branches.
0, 1, . . . k Initial, first, . . . , k-th iteration.
t Load typology.
_q Quadrature component.
c Corrected value.
R Radial network.
JABCa Slack bus three-phase ideal current

source.

The associate editor coordinating the review of this manuscript and

approving it for publication was Flavia Grassi .

Y , YN , YSGL Total bus admittance, network
admittance, shunt admittance
matrices (three-phase).

YG, YL Generator and load admittance
submatrices.

YGG, YGL,YLG, YLL Admittance submatrices of
Y (three-phase).

YGeq, ZGeq Admittance and impedance equiv-
alent matrices as seen at the gen-
erator buses (three-phase).

Tx Transformation matrix.
F Generalized Fortescue transfor-

mation matrix.
ABC Phase frame of reference.
0PN Sequence component frame of

reference.
0 Zero sequence component.
P Positive sequence component.
N Negative sequence component.

B. VARIABLES AND PARAMETERS
j Imaginary unit.
u Complex voltage.
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u Complex voltage vector.
|u| Voltage magnitude.
δ Voltage angle.
i Complex current.
i Complex current vector.
1i Correcting current vector.
y Complex admittance.
r Per unit length resistance.
x Per unit length reactance.
S Complex power.
p Active power.
q Reactive power.
α Phasor rotation operator.

C. SYMBOLS
T Matrix transposition.
∗ Complex conjugate.
−1 Matrix inversion.
÷ From . . . to . . . .
⊗ Hadamard element-wise multiplication.
� Positive sequence multiplication.
/ Element-wise division.
Im Imaginary part of a complex quantity.

D. ACRONYMS
HV High Voltage.
EHV Extra- High Voltage.
MV Medium Voltage.
LV Low Voltage.
OHL Over Head Line.
GIL Gas Insulated Line.
OPGW Optical fiber composite overhead Ground

Wire.
ITER Number of iterations.
MCA Multiconductor Cell Analysis.
DGS DIgSILENT PowerFactory.
PFPD Power Flow of the University of Padova.
PFPD_3P Power Flow of the University of Padova (3

Phase Power Flow) developed in this paper.
PF[24]_3P Power Flow implementation of [24] (3

Phase Power Flow).

II. INTRODUCTION
The three-phase power flow problem is a widely investigated
topic in the technical literature, e.g. [1]–[19]. The hypothesis
of perfectly balanced three-phase network, in fact, cannot
be achieved in real power systems. Nonetheless, the great
number of publications is chiefly focused on the distribution
networks (some considerable examples are [1]–[7]). This fact
is mainly due to the unbalanced distribution load configura-
tions, the typical low voltage four-wire distribution system
structures, and the growing presence of distributed genera-
tion [1]–[4]. Moreover, the high r /x ratios of the distribution
lines make the problem particularly challenging and worthy
of research [5], [6].

For the transmission networks, instead, few contributions
are presented in the last fifty years (after a careful review
in the international technical literature, only the contribu-
tions [8]–[19] were found). In fact, it is often taken for granted
that the transmission systemsmust be systematically operated
in a balanced manner [1], [6], [8]. Therefore, power flows of
transmission power systems can be computed by means of
their equivalent single-circuit at the positive sequence.

Notwithstanding, an accurate knowledge of the voltage/
current unbalance factors for the HV and EHV networks is
fundamental tomake power quality evaluations [9], [20]. This
topic is becoming more and more important for transmission
networks and ought not to be underestimated. In fact, the
network unbalance factors in the transmission power systems
are going to increase [21], mainly for the following reasons:

• Increase of the existing transmission line loading due to
the growing electricity demand (also due to the recent
difficulty of erecting new OHLs),

• The possibility of incrementing the lengths of the trans-
mission lines,

• The transpositions of transmission lines are very rarely
adopted [20], [22].

In this paper, a three-phase power flow algorithm (named
as PFPD_3P) is presented. Beyond the evaluation of power
quality, this algorithm can have a further practical/industrial
fall out, by foreseeing the values of negative sequence cur-
rents in each section of the network. This is particularly
important for synchronous generator/compensator negative
sequence protections [21], [23]. Too high values of negative
sequence currents, in fact, can bring to undesired generator
and synchronous compensator protection trippings.

Twenty years ago, the first author had developed a matrix
three-phase power flow algorithm (in the following named
as PF[24]_3P) [24]. In the present paper, instead, the new
three-phase power flow algorithm PFPD_3P is discussed and
it takes its inspiration from a single-phase power flow algo-
rithm (PFPD) recently developed [25]. In this way, a compact
matrix approach can be exploited in order to achieve more
rapidly the power flow solution. In fact, the interpretation
of the (three-phase) slack generator inside an ‘‘all-inclusive’’
(three-phase) admittance matrix allows reducing the CPU
time, decreasing the number of iterations, and achieving
greater precisions compared to those of the other methods.
This englobing is made possible by treating the slack gen-
erator as quasi-ideal current source at positive sequence.
In PFPD_3P, it is demonstrated that such way of modelling
the slack generator is also possible if the three-phase exten-
sion of PFPD is considered. Thus, this paper further demon-
strates the possibility of treating the slack generator as a
quasi-ideal current source, at positive sequence, in power
flow problems.

With regard to the existing resolution approaches, the
three-phase power flow algorithms are basically divided into
two resolution categories [10]. The first ones only operate
in the phase component frame of reference [5], [10]–15],
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so both symmetrical and asymmetrical components are mod-
elled by means of their phase matrices. With the phase
sequence approach, however, it is not possible to exploit
the main advantage of the symmetrical component approach
by means of Fortescue Transformations. The second ones
only operate in the symmetrical component frame of refer-
ence so, in order to model the asymmetrical devices (like
non-transposed lines), proper compensation techniques are
adopted [9], [16]–[19]. These compensation techniques allow
‘‘symmetrizing’’ the asymmetrical components, so that the
problem can be studied by using the three single-phase
sequence circuits.

In the present algorithm, instead, each iterative cycle alter-
nates the use of a sequence approach with that of phases
by means of the Fortescue’s transform and its inverse. As it
is explained in the following, this is possible because some
formulae involve the symmetry of some network devices
(e.g., the formulae for computing the correcting currents into
the synchronous generators). Whenever the Fortescue trans-
form cannot be adopted (for instance, when non-transposed
lines are involved), a phase approach is chosen. There-
fore, differently from the existing three-phase power flow
methods [8]–[19], PFPD_3P can be considered a hybrid
one, by combining the merits of each frame of refer-
ence and without englobing the demerits deriving from the
choice of a unique frame of reference. Thus, PFPD_3P is
a novel three-phase matrix algorithm suitable for the study
of transmission networks, characterized from a computa-
tional (hybrid) paradigm different from the existing ones.

As it is explained in the paper, the algorithm is easily
self-implementable, since only five matrix iterated formu-
lae are employed. Eventually, such three-phase evaluations
can be carried out efficiently (as it is described in the
section dedicated to the computational performances) with-
out the need of using the classical numerical techniques (e.g.,
Newton-Raphson and derived).

III. THE THREE-PHASE POWER FLOW
ALGORITHM BASED ON PFPD
Recently, the first author published anAC single-phase power
flow algorithm (named PFPD) based on an ‘‘all-inclusive’’
bus admittance matrix. This means that all the power flow
data (i.e., the network elements and the technical constraints)
are embedded in a unique matrix, and an iterative procedure
to achieve the solution is developed from it. Therefore, a con-
cise, efficient, and rapid power flow has been presented [25].

The reasons that persuade the authors to investigate this
topic is understanding if the three-phase extension of PFPD
preserves its computational advantages. Obviously, the size of
the three-phase power flow problem is greater than the corre-
sponding single-phase one. Thus, any computational advan-
tage is useful, even if the three-phase power flow is often
intended as an off-line planning tool [12]. In light of this,
a three-phase power flow formulation (PFPD_3P) inspired
by PFPD is described in the following. In general, power
flow solutions are determined by solving a set of equations

formulated from some technical constraints (typically power
and voltages) known a priori. In the present approach, all the
three-phase network sections are divided into three sets: the
slack, the generator, and the load sections. For these ones,
the following technical constraints are set:
1. For the SLACK section: the three-phase positive-

sequence voltage ua,P = ua,P is con-
strained, and the phasor ua,P is assigned as the system
angle reference;

2. For the Generator sections: the positive-sequence
injected active power pb,P , . . . , pg,P and the positive-

sequence voltagemagnitudes
∣∣ub,P∣∣ . . . ∣∣∣ug,P∣∣∣ are con-

strained;
3. For the Load sections: the constrained quantities are the

complex power ph+jqh, . . . , pm+jqm absorbed when
they are subjected to their positive sequence nominal
voltage (even null, when transit sections are considered).

It is worth noting that all these constraints are specified in
the symmetrical component frame of reference. All these ele-
ments representing the constraints are included in the phase
admittance matrix YABCSGL represented in Fig. 1. For the generic
generator/load (i.e., shunt) element connected to the section
i, in fact, the following relation can be written:

iABCS,i = YABCi uABCi , i = a÷ m (1)

where YABCi is the (3×3) admittance matrix linking the phase
vector of the three entering currents in the shunt elements
iABCS,i (i.e., passive sign convention) with the phase vector of
the three phase-to-ground voltages uABCi .
Obviously, for the active generators, (1) gives a set of

negative currents (since they are injected from the generator
terminals). By considering the total number m of the network

FIGURE 1. The diagonal block-matrix Y ABC
SGL storing the constraints of the

three-phase power flow.
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FIGURE 2. Schematic representation of the three-phase power system (a: slack generator section, G: generator sections, L: load sections).

sections, a (3m)×(3m) square diagonal block matrix YABCSGL
can be defined. This matrix allows writing the following
phase relation including all the m elements connected to the
m sections:

iABCS = YABCSGL u
ABC (2)

where

iABCS =

is the (3m)×1 block vector of the entering currents in all the
section phases of the elements and

uABC

=

is the (3m)×1 block vector of all the phase-to-ground volt-
ages. In a section i where no elements are connected (i.e.,
transit sections), the matrix YABCi is null. These situations, for
instance, occur in the busbar sections connecting power trans-
formers with electrical lines. Moreover, it must be reminded
that also the slack generator is modelled and included inside
YABCSGL . This inclusion is due to the formal possibility to
consider the slack generator as a quasi-ideal current source,
similarly to [25]. The three-phase admittance matrix YABCN ,
instead, links the phase currents entering the network with its
phase-to-ground voltages:

iABCN = YABCN uABC (3)

where the network system is of course supposed linear and

iABCN =

is the (3m)×1 block vector of the phase currents entering the
network and uABC is the same of (2). It is worth reminding

that the construction of YABCN is similar to the single-phase
one, by using the Linear transformation techniques [12], [24].

By summing (2) and (3) member to member, the following
relation is obtained:

iABC = YABCuABC , (4)

where YABC is the three-phase ‘‘all-inclusive’’ admittance
matrix containing all the network information, uABC is the
set of the phase-to-ground voltages, whereas

iABC

=

is the vector of the net three-phase currents injected at the
sections a÷ m of Fig. 2.
It is worth noting that all the current sub-vectors are null

except the first one (JABCa ): it represents the three-phase
external current injection due to the current source modelling

FIGURE 3. Partitioned form of iABC = YABC uABC .

162636 VOLUME 9, 2021



R. Benato et al.: Three-Phase Power Flow Algorithm for Transmission Networks

the slack generator at positive sequence. As in [25], YABC

allows obtaining a series of matrix relations describing the
steady-state regime of the entire three-phase power system of
Fig. 2. By introducing the matrix partitioning shown in Fig. 3,
the following two sets of linear equations are obtained:

iABCG = YABCGG uABCG + YABCGL uABCL (5)

0ABC = YABCLG uABCG + YABCLL uABCL (6)

and by applying the standard Gauss-Rutishauser matrix
reduction techniques, (6) can be written as:

uABCL = −

[
YABCLL

]−1
YABCLG uABCG (7)

and substituted in (5), it follows:

iABCG =

[
YABCGG − Y

ABC
GL

(
YABCLL

)−1
YABCLG

]
uABCG

= YABCGeq u
ABC
G . (8)

The phase matrix YABCGeq models the Ward equivalent net-
work [33] as seen at the generator sections. By observing the
reversed structure of (8), i.e.,:

uABCG =

[
YABCGeq

]−1
iABCG = ZABCGeq i

ABC
G , (9)

it can be seen that the vector of the injected currents by the
slack current generator can be computed as follows:

JABCa = YABCGeq,aau
ABC
a , (10)

where YABCGeq,aa is the inverse of the diagonal first block matrix
of the impedance matrix ZABCGeq (see Fig. 4): it represents the
three-phase concept of admittance as seen at the slack bus
section.

It is worth noting that the above-mentioned mathematical
steps can be thought as the three-phase generalization of the
steady-state formulation of PFPD [25].

Notwithstanding, differently from PFPD, the current vec-
tor JABCa of the slack bus is not immediately known by means
of (10). In fact, only the positive sequence slack voltage ua,P
is scheduled, whereas uABCa is not completely known a priori,
as it depends on the negative and zero sequence voltages of
the slack section, i.e.,

uABCa = ua,P + ua,N + ua,0. (11)

In turn, the negative and zero sequence slack generator
voltages depend on the negative and zero current circulations
in its sequence networks, as shown in Fig. 5.

However, the slack section sequence voltages are not ana-
lytically determinable. In fact, if the network as seen at the
slack section is assumed to be unbalanced, the extent of this
network unbalance varies from case to case. Thus, an iterative
scheme to determine such sequence voltages allows finding
uABCa . This iterative scheme is described thoroughly in Sect.
IV. Once the convergence is achieved, the knowledge of
ua,P,ua,N ,ua,0 allows computing uABCa by means of (11).
As a result, JABCa can be computed by means of (10), so the

FIGURE 4. ZABC
Geq,aa represents the network as seen at the slack section:

its inverse allows computing the vector JABC
a from uABC

a .

vector iABC is immediately known. The subsequent applica-
tion of (9) and (7) allows computing uABCG and uABCL respec-
tively. Therefore, the three-phase steady state regime of the
network is completely defined.

IV. THE PHASE COMPONENT MODELLING OF THE
NETWORK COMPONENTS
In this section, it is explained how both the power flow con-
straints and the network elements are modelled and included
inside the three-phase matrices YABCSGL and YABCN .

FIGURE 5. Dependency of the slack generator voltage uABC
a on its

sequence networks.
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A. THE ELEMENTS BELONGING TO THE MATRIX YABC
SGL

The YABCSGL matrix holds all the generator and load models of
the network.

1) SLACK GENERATOR
One of the main novelties of this paper deals with the slack
generator treated as a quasi-ideal current generator. This
choice comes from the possibility to make a source trans-
formation by considering the impedance of the equivalent
positive sequence network exciting the system as infinitesi-
mal [25] (e.g., j10−5 p.u.). Hence, the slack generator positive
sequence network can be considered as an ideal current
source in parallel with an infinite shunt admittance (see
Fig. 5). However, it was demonstrated in [25] that from
an engineering point of view, an infinite admittance is an
admittance with a very arbitrarily large value (e.g., -j105 p.u.,
as it will be detailed in Sect. IV).

Thus, the sequence component admittance matrix Y0PN
a

modelling the three-phase slack generator can be built (see

Fig. 5), and its phase matrix YABCa can be derived by means
of the Fortescue transformations:

YABCa = F−1Y0PN
a F. (12)

Therefore, the three-phase slack generator modelled
as an admittance matrix can be embedded inside the
‘‘all-inclusive’’ YABCSGL matrix.

2) GENERATORS
Synchronous machines are the most employed devices for
power generation in the transmission networks. From a struc-
tural point of view, a synchronous machine can be considered
a symmetrical device, so its steady-state regime can be stud-
ied by means of the sequence networks represented in Fig. 6:

FIGURE 6. Calculation of the phase admittance matrix Y ABC
g of the

generator connected to the section g and its inclusion inside Y ABC
SGL .

only the positive sequence network is the active one, since
the electromechanical power conversion takes place in this
sequence. The presence of the negative and zero sequence
passive networks, however, is fundamental to consider pos-
sible voltage distortions, due to negative and zero-sequence
current flows. For steady-state transmission networks, these
current flows are caused by the structure asymmetries (i.e.,
mainly non-transposed lines), and by the unbalanced loads.
By considering a generator connected to the section g, its
equivalent positive sequence admittance can be computed as
in the following relations:

Sg,P = −ug,Pi
∗

g,P; ig,P = −
S∗g,P
u∗g,P
= y

g,P
ug,P;

→ y
g,P
= −

pg,P∣∣∣ug,P∣∣∣2 + j
qg,P∣∣∣ug,P∣∣∣2 . (13)

Eq. (13) is the three-phase generalization of the PV
constraints modelled in PFPD [25] as negative (sign, not
sequence!) passive admittances: this generator modelling
allows their inclusion into the unique YABC . Therefore, the
building of the diagonal sequence admittance matrix Y0PN

g ,

shown in Fig. 6, is immediate. The phase matrix YABCg can
be immediately found by means of the Fortescue transforma-
tions applied to Y0PN

g :

YABCg = F−1Y0PN
g F

Eventually, the phase admittance matrix YABCg can be
stored in the g-th position of YABCSGL (Fig. 6).

FIGURE 7. Treatment of the three-phase balanced load (at the section m)
as the composition of two types of load and a shunt capacitive
compensator.

162638 VOLUME 9, 2021



R. Benato et al.: Three-Phase Power Flow Algorithm for Transmission Networks

3) LOADS
A three-phase balanced load in sectionm can be easily treated
by means of the sequence approach [24].

For such loads, the complex power absorbed by each
section terminal are equal to:

Sm,A = Sm,B = Sm,C .

As shown in Fig. 7, these loads can be thought as composed
of three different types: (1) the asynchronous load, (2) the
static, and (3) the reactive power compensation (to achieve
a specific power factor target) devices. Such kinds of loads
can be considered in parallel with each other and no mutual
coupling is considered.

By denoting with St the complex power absorbed by each
of the three types of load under the nominal positive voltage
(1 p.u.), its positive sequence star admittance can be com-
puted as:

y
P,t
=

S∗P,t∣∣uP,t ∣∣2 =
pP,t − jqP,t

12
, t = 1, 3 (14)

Obviously, the positive complex power SP,t absorbed by
each load typology must be known a priori.
Eq. (14) is the generalization of PQ constraints modelled in

PFPD [25] as passive admittances: this load modelling allows
computing its corresponding phase frame of reference matrix
to be included into the unique YABC total bus admittance
matrix (see (15)).

For the static load and the reactive power compensa-
tion devices, the positive and negative sequence admittances
are equal. In the case of the asynchronous loads, instead,
the negative sequence admittance can be considered equal
to ξy

P,1
ejψ , where ξ = 5÷7 and ψ = −60◦ ÷−75◦ [24].

Moreover, since each type of load is considered as being
symmetrical, its corresponding sequence admittance matrix
is diagonal (Fig. 7).

Eventually, by exploiting the linearity of the system, these
sequence matrices can be summed, and the phase admittance
matrix YABCm of the balanced load in the section m can be
computed by means of the Fortescue transformations:

YABCm = F−1
(
Y0PN
1,m + Y

0PN
2,m + Y

0PN
3,m

)
F. (15)

Similarly to the generator shown in Fig. 6, YABCm can be
stored in the m-th position of YABCSGL .
Moreover, the conciseness of this matrix approach allows

modelling all the radial subtransmission/distribution net-
works supplied by the EHV/HV transmission sections as
single equivalent loads (see Fig. 8).

For instance, the equivalent load formation of the radial
network of Fig. 8 is described. This network consists of ten
sections, so the associated three-phase network admittance
matrix is (3·10)×(3·10), and it must be summed to the shunt
admittance matrix (in which the loads are stored in the 8-th,
9-th and 10-th positions).
Consequently the (3·10)×(3·10) ‘‘all-inclusive’’ matrix

YABCR can be computed. Therefore, the impedance matrix

FIGURE 8. Transformation of a radial sub-transmission/distribution
system into an equivalent load.

FIGURE 9. Representation of (16).

ZABCR is derived by inversion, i.e.,

uABC =
[
YABCR

]−1
iABC = ZABCR iABC . (16)

It can be immediately noted (see Fig. 9) that the sub-vector
of the absorbed currents at the section 1 can be computed as
follows:

iABC1 = YABCR(1,1)u
ABC
1 , (17)

whereYABCR(1,1) is the inverse of the first diagonal block element

of ZABCR (ZABCR(1,1)). Thus, Y
ABC
R(1,1) is the (3 × 3) admittance

matrix modelling the entire network as an ‘‘equivalent load’’
as seen at the section 1.

YABCeq,1 = YABCR(1,1)

B. THE ELEMENTS BELONGING TO THE
NETWORK MATRIX YN
The network matrix YABCN holds all the other elements of the
network but the generators, and the loads. The steady-state
three-phase modelling of the network devices and their inser-
tion inside YABCN is a well-investigated topic [12], [24], and
different modelling approaches can be adopted.

The modelling used in this paper is briefly presented in the
following.
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1) ELECTRICAL LINES (OHLs, INSULATED CABLES, GILs)
Transmission OHLs, insulated cables, and GILs are firstly
modelled by considering the presence of all their active
and passive conductors (e.g., ground wires, metallic
screens/armours, and enclosures). For this purpose, a mul-
ticonductor approach with n conductors in parallel with each
other and with the ground is exploited [27]–[29]. Thus,
single and double-circuit lines, and other complex configu-
rations can be indifferently considered, without neglecting
the real asymmetries of each line. The method is known as
Multiconductor Cell Analysis (MCA) developed in 2009 by
R. Benato. In order to provide some brief reminders, in
Fig. 10, an elementary cell 1 of a generic line is shown:
it is modelled by means of three blocks: the longitudinal
one (L), and the two transversal ones (TS and TR). These
blocks form a generalised multiconductor π -circuit, and are
modelled through the admittance matrices YL, YTS, and
YTR. For electrical lines, it is almost always YTR = YTS =

YT . It is worth reminding that YL, YT are computed by
means of the Carson/Schelkunoff-Pollaczek/Carson-Clem
formulations [30]–[32], and the classical formulations for
the capacitive and conductive couplings between all the line
conductors respectively.

By combining YL, YT , the matrix formulation linking the
entering currents at the sending and receiving ends of the cell
1 with their voltages is represented in (18).

Then, the matrix cascade of each cell for computing the
matrix of the entire line is applied. Fig. 11 shows the analytic
formulation of the equivalent matrix of two cells: this opera-
tion must be repeated depending on the number of cells (if c
is the number of cells, c-1 computations must be done). Thus,
a unique (n × n) admittance matrix of the entire line as seen
at its terminals can be computed.

It is important to highlight that this MCA allows represent-
ing each element inside each cell. All these elements must
be modelled by means of suitable circuits: their admittance
matrix representations are performed by considering elec-
trotechnical evaluations [27], [28], [33], [34].

Once the (n × n) admittance matrix of the electrical line
is computed, the Kron’s matrix reduction [35] is applied in
order to consider the behaviour of the system as seen only at
the phase conductors (see Fig. 12).
This reduction is fundamental and unavoidable since this

power flow involves only the three phase active conductors.
This reduction can be achieved under the assumption that

either the voltages or alternatively the currents of the passive

FIGURE 10. Multiconductor cell represented as a generalized
5-circuit [30].

FIGURE 11. Matrix equivalent to the cascade of two multiconductor
cells [31].

conductors at the ends of the electric line are null. Hence,
the dimensions of the line admittance matrices decrease (e.g.,
(6 × 6)-matrices for single-circuit lines). Thus, the effects
of the passive conductors on the phase conductors is not
neglected, even if this assumption of null voltages of the pas-
sive conductors is not completely true. For instance, Fig. 12
shows this matrix reduction for a five-conductor OHL line
(three phases and two ground wires) for two different ground
wire arrangements: 1) the two ground wires are earthed at
their ends, 2) the two ground wires are unearthed or insulated
at their ends. In both cases, the null voltage/current compo-
nents allow erasing the columns of the Zline/Yline matrices
associated to the passive conductors. Similarly, the rows of
the Zline/Yline matrices associated to the passive conductors
can be erased also, since both the voltage and current quanti-
ties of the passive conductors must not be considered. There-
fore, the (6×6) admittance matricesYline,eq can be computed
for both the cases. In Sect. VI, the influence on power losses
of the two different groundwire practices are thoroughly eval-
uated. In this paper, this procedure is named as row/column
elimination technique. It is worth noting that for the formation
of Yline,eq in the first case (earthed ground wires), no matrix
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inversion is needed. This fact is relevant, since the great
majority of the OHL ground wires in real power systems
are earthed (at the substation earthing grids and also at each
tower). It can be proved that the computation of Yline,eq can
be obtained also by means of the standardGauss-Rutishauser
matrix reduction techniques. However, this procedure is more
computational expensive than the row/column elimination
one. This matrix reduction is also applicable to insulated
cables, and to GILs. However, the following considerations
must be kept in mind when the power flow solutions are
assessed:

• The Kron’s reduction on OHL is generally based on a
‘‘light’’ assumption. In fact, the passive conductors of
such lines are earthed at each tower and at the substation
earthing grids, so the assumption of null voltage is quite
accurate.

• The Kron’s reduction on insulated cables is generally
based on a ‘‘heavy’’ assumption. In general, in fact,
the induced voltages in the passive conductors could not
be negligible. In particular, they depend on the different
screen bonding/earthing techniques (e.g., cross bond-
ing arrangement for HV/EHV cables [36], single-point
bonding for very short HV/EHV cables, and solid bond-
ing arrangements for MV/LV cables). Differently for
GILs, the solid-bonding arrangement (or even the mul-
tiple point-bonding 37], [38]) allows considering the
enclosure voltages practically null.

In any case, these simplifying hypotheses are considered
licit for a good three-phase power flow study of a transmis-
sion network, as shown in Sect.V. A very precise steady-state
regime evaluations on the passive conductors can be achieved
by means of MCA [27], [28], [33], [39] which is a powerful
circuital tool, but not a power flow one. Further researches
are ongoing to combine MCA with this power flow so to
obtain a general multiconductor power flow. It is worth
reiterating that the steady state regimes of passive conduc-
tors cannot be intrinsically known with the present power
flow.

2) POWER TRANSFORMERS
As the synchronous machines, the two/three-winding trans-
formers can be considered symmetrical devices from a struc-
tural point of view. Thus, their steady-state regime can be
licitly studied by means of their sequence networks. For
a two-winding transformer, its positive-sequence two-port
network is immediately inferable from its nameplate data.
Its negative-sequence two-port network is the same of the
positive one, except for the phase shift angle which is always
the opposite of the positive one. The zero-sequence two-port
network, instead, depends on its particular winding earthing
and configuration.

For these networks, their (2 × 2) admittance matrices can
be computed, and opportunely put together in a unique (6×6)
admittance sequence matrix Y0PN

2w−tr .

FIGURE 12. Kron’s reduction applied to two different five-conductor
OHLs (with the OHL ground wires earthed and unearthed).

Then, the phase admittance matrix YABC2w−tr can be com-
puted by means of the Fortescue generalised transforma-
tion [24]:

YABC2w−tr = F−1Y0PN
2w−trF (19)

where F is the generalized (6 × 6) Fortescue matrix.
The aforementioned procedure is also applicable to the
three-winding transformers. The three-port sequence net-
works are described by means of (3×3) admittance matrices.
These matrices are put together in a unique (9×9) admittance
sequence matrix Y0PN

3w−tr , and then the phase matrix YABC3w−tr is
computed.

3) SHUNT ELEMENTS
The following power system shunt elements are considered:
• capacitive/inductive shunt compensation in electrical
substations;

• shunt compensation of long EHV/HV cable systems.
Their admittance matrices can be easily computed by

means of the inspection method or by inversion of
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their impedance matrices [28] and must be overlapped
in the suitable positions of the three-phase admittance
matrix YABCN [36].

V. THE HYBRID ITERATIVE PROCEDURE
The complete knowledge of YABCN and YABCSGL (and thus

of the ‘‘all-inclusive’’ matrix YABC ) allows computing the
three-phase power flow solution by means of the procedure
described in Sect. II. However, the elements of YABCSGL are
not completely known since they depend on the power-flow
solution.

Thus, an iterative method to compute the three-phase
power flow problem is proposed. The iterative method does
not need any numerical analysis technique, as in [25].

It is well known that a good initial guess is necessary for
any iterative algorithm. In particular, the initial guess ofYABCSGL
is built by considering the following values:
For the Slack Section:

y
a,P
= −j · 105p.u.

As in [25], the slack generator is conceived as a quasi-
ideal current source: hence, the slack section constraint can
be stored inside YABCSGL . Since the scheduled slack voltage is
the positive one, the quasi-ideal current generator is set in the
positive sequence network, as shown in Fig. 5.

The discussion about the choice of the initial value of ya,P
is the same of the one described in [25].

For the negative and zero sequence networks, instead, the
typical synchronous machine admittance values are consid-
ered, according to the machine typology chosen for the slack
one.
For the Load Sections: The load matrices YABCm of all

the load typologies described in sect. IV are initially com-
puted by considering their positive sequence nominal voltage,
i.e., 1 p.u.

The three-phase voltages in the load sections, in fact, are
actually the unknowns of the problem. However, if the net-
work interconnections do not introduce high voltage drops,
the choice to keep the load voltages to their nominal positive
sequence value (1 p.u.) can be considered as a valid initial
guess.
For the Generator Sections: Eq. (13) allows computing the

first guess for the positive sequence admittance whichmodels
the generator in section g:

y
g,P
= −

pg,P∣∣∣ug,P∣∣∣2 + j
qg,P∣∣∣ug,P∣∣∣2 , for k = 0. (20)

Eq. (20) is the application of (13) for the initial guess of
the iterative procedure.

For the positive sequence, it is worth noting that the only
unknown value is the reactive power injected qg,P in the
section g, since it depends on the power flow solution. Thus,
all the generator reactive power initial guesses qb÷qg (for
k = 0) must be estimated in detail.

FIGURE 13. Initial guess (k = 0) of the generator reactive power qb ÷ qg.

The discussion on the choice of the initial reactive power
of the generators is the same of [25]: the network is firstly
considered as ideal (the matrix YABCN is imaginary), and (8)
is applied. Then, after the Fortescue transformation, the vec-
tor of the positive sequence reactive power injected by the
generators can be computed. Fig. 13 summarizes the reactive
power estimation procedure.

In this paper, the three-phase power flow region of attrac-
tion of the solution can be also assessed [40]. In fact, also in
this algorithm, the only initial guesses are the reactive power
qb÷qg, of the generator sections. Therefore, evaluations on
how ITER. changes with the initial generator reactive power
guess can be made (see Sect. V).

A. THE LOAD/GENERATOR CORRECTING
CURRENT METHOD
After the initial guess, the correcting-vector iterative proce-
dure [25] is achieved by means of the formulae (21)÷(25)
and depicted in the flow-chart of Fig. 14.

This iterative scheme is basically the generalization of the
procedures in [25].

The formulae (21)÷(25) are represented for the k-th
iteration:

uABCG = ZABCGeq

[
1iABCG,c_q − Y

ABC
GL (YABCLL )−11iABCL,c

]
(21)

uABCL,c = −

[
YABCLL

]−1
YABCLG uABCG +

[
YABCLL

]−1
1iABCL,c

(22)

1i0PNL,c = −YL,P �
(
1−

∣∣uL,c,P∣∣2)/(uL,c,P)∗ (23)

1iABCG,c = YABCGeq u
ABC
G,c + Y

ABC
GL

[
YABCLL

]−1
1iABCL,c (24)

1iG,c_q,P = −j
[
Im
(
uG,c,P ⊗1i∗G,c,P

)] /
u∗G,c,P (25)
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Eq. (25) represents the positive sequence quadrature com-
ponent current vector that springs out the same injection
of positive sequence reactive power of (24). These gener-
ator current injections computed in (25) are more suitable
to correct the positive sequence reactive power which are
the real unknowns of the three-phase power flow (the pos-
itive sequence active power are constrained, as explained in
Sect. II). This is the three-phase generalization of the concept
already presented in PFPD [25].

Eq. (25) must not be applied for the slack section since both
the active and reactive power are unknown quantities:

1iG,c_q,P(1, 1) = 1iG,c(1, 1)

For each iteration, (21) and (22) allow computing the
phase voltages of the generator and load sections, and can
be obtained considering the generalization of (5) and (6).

Eq. (23), (24), and (25) allow computing the positive
sequence correcting currents to be applied iteratively in each
load and generation section. These correcting currents are
computed starting from the technical constraints given to the
sequence component frame of reference. Afterwards, these
currents must be converted in the phase frame of reference to
be embedded into (21) and (22) of the subsequent (k+1)-th
iteration.

Differently from the other methods, these formulations are
defined in both the sequence component and phase frame
of reference. Therefore, the impact of the system unbalance
due to the presence of negative and zero sequence currents/
voltages can be assessed. For this reason, this three-phase
approach is referenced as a hybrid one.
Fig. 14 schematically represents the three-phase power

flow algorithm flow-chart. It is worth noting the alternations
of the phase formulations with the sequence component ones
through the F and F−1 transformations for each cycle (once
again the hybrid approach).

In Fig. 14, it can be seen that the correcting currents
for k = 0 are all set to zero except for the slack bus
sub-vector. After using (21), the application of F allows
computing the generator voltages in sequence component
frame of reference. In this way, the Tx transformation allows
correcting the positive sequence voltage of all the generators:
a new corrected vector uG1,c can be built by changing
the calculated positive sequence voltage magnitudes with
the constrained ones, but by keeping δb . . . δg angles
unchanged.

Afterwards, the application of F−1 allows passing to the
phase frame of reference and applying (22) to compute the
phase voltage vector of loads uABCL,c . Thus, all the phase com-
ponents of the voltage vectors are computed. These block vec-
tors are necessary to compute the correcting current vectors
by means of F and F−1 transformations, and (23), (24), (25).
The procedure is iterated until convergence, i.e., until any
mismatch of positive sequence generator voltage is within the
tolerance.

B. THE GENERATOR CORRECTING CURRENT METHOD
So far, the algorithm is based on the calculation of two
correcting current sets (one for the generator sections 1iABCG ,

and one for the load sections 1iABCL ). In order to reduce
the computational cost of each iterative cycle, this section
investigates the possibility of using an alternative iterative
scheme, by exploiting only the generator correcting current
set.

Thus, by posing 1iABCL = 0 the above-mentioned formula-
tion becomes:

uABCG = ZABCGeq 1iABCG,c_q (26)

1iABCG,c = YABCGeq u
ABC
G,c (27)

1iG,c_q,P = −j
[
Im
(
uG,c,P ⊗1i∗G,c,P

)] /
u∗G,c,P (28)

Eq. (28) (which is the same of (25)) must not be applied
to the slack section since the active and reactive power are
unknown quantities:

1iG,c_q,P(1, 1) = 1iG,c,P(1, 1).

As it will described in the following section, the series
of (26), (27), and (28) allows computing the power flow,
bringing to a CPU-Time and ITER reduction.

FIGURE 14. Flow chart of the PFPD_3P load/generator correcting current
iterative scheme for the first iteration.
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FIGURE 15. Flow chart of the PFPD_3P load/generator correcting current
iterative scheme for the first iteration (i.e., 1iABC

L = 0).

The authors think that this result is remarkable since a
three-phase power flow solution is achieved by applying only
three iterated formulae.

Fig. 15 shows the flow-chart of the algorithm without
correcting the load sections.

No matrix inversion is necessary for each iteration, dif-
ferently from [24], and this advantage is fundamental when
considering three-phase power flows.

VI. PFPD_3P PERFORMANCE ASSESSMENTS
A. PRELIMINARY COMPARISON BETWEEN THE NEW
PFPD_3P AND THE OLD PF[24]_3P
In order to check the improvements and the enrichments
of PFPD_3P versus the old algorithm [24] (which is called
as PF[24]_3P in the following), a performance comparison
between their two implementations is shown. These two
algorithms are implemented in Matlab environment and their
performance are assessed under the same conditions. Sev-
eral fictitious transmission networks are tested, which differ
in topologies and load/generation scenarios. Table 1 shows
ITER. and CPU-time comparisons between PFPD_3P and
PF[24]_3P for a voltage tolerance equal to 2 mV, by testing
the 18-section network (see Fig. 16 for the representation
and App. II for the description) and other test networks.
The convergence tolerance used is very small to produce a
very accurate power flow solution. In these networks, all the
loads are considered as ‘‘equivalent loads’’ (see Sect. III A3),
hence only the generator correcting current method (see
Sect. IV B) is employed. Furthermore, it is worth underlining
that the old PF[24]_3P allowed only the generator correcting
current method and not also the generator/load correcting
current one. The tests are performed in a PC using an Intel
(R) Core (TM) i7-7700K CPU @ 4.2 GHz processor, with

a 32 GB RAM. By observing Table 1, it is possible to note a
CPU-time improvement for PFPD_3P, and this fact is espe-
cially observed for the 300 section case: a considerable CPU
time reduction is achieved. In fact, the novel iterative cycle
is composed of only three formulae, i.e., (26)÷(28), and this
synthetic formulation is due to the three-phase slack gener-
ator inclusion inside the ‘‘all-inclusive’’ admittance matrix.
Hence, the single-phase improvements of the algorithm pre-
sented in [25] are still valid in the three-phase generalisa-
tion presented in this paper. Moreover, in order to check
the PFPD_3P solution consistency, extensive comparisons
with the solutions of PF[24]_3P show negligible maximum
solution differences (i.e., 10−7 p.u. for the phase magnitudes,
and 10−6 deg. for the phase angles).

B. COMPARISON BETWEEN THE NEW PFPD_3P AND DGS
In order to validate PFPD_3P with a reliable software bench-
mark, all the analysed networks are also tested in the com-
mercial software DGS. The DGS software implements the
Newton-Raphson method to compute the three-phase power
flow solution. As in [25] and in [41], a self-made interface
procedure to automatically pass all the network data from
Matlab environment to DGS software is exploited. Firstly, all
the power flow solution differences between PFPD_3P and
DGS are assessed, and maximum differences of the orders
of magnitude equal to 10−3 p.u. for the phase magnitudes,
and 10−2 deg. for the phase angles are found. The minimum
differences are instead of the orders of magnitude of 10−6 p.u.
for the phase magnitudes, and 10−4 deg. for the phase angles.
Such differences confirm the very good agreement between
PFPD_3P and DGS solutions.

Table 2 compares ITER and CPU-time of PFPD_3P and
DGS by considering both the generator and generator/load
correcting current methods (see Sect. IV A, and Sect. IV B,
respectively), thus the 18-section network loads are consid-
ered both as lumped and equivalent. When the network loads
are considered as equivalent ones, it is not possible to run
the simulations with the generator/load correcting current
method (grey area in Table 2).

Table 3 compares ITER and CPU-time of PFPD_3P and
DGS by considering both the iterative approaches for four
tested networks (18, 41, 60, 300 section networks). The
300-section network is a three-phase version of the classical

TABLE 1. CPU-times and iter for new PFPD_3P and old PF[24]_3P with a
maximum positive sequence voltage tolerance of 2mV.
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FIGURE 16. The 18-section test network.

TABLE 2. CPU-times and iter for PFPD_3P and DGS with a maximum
acceptable power flow mismatch of 1 kVA for both PFPF_3P and DGS.

TABLE 3. CPU-times and iter for PFPD_3P and DGS with a maximum
acceptable power flow mismatch of 1 kVA for both PFPF_3P and DGS.

single-phase IEEE-300 bus network, and it is chosen to
demonstrate the efficiency of PFPD_3P when dealing with
large three-phase networks. Eventually, a 600 section network
is considered for further testing the algorithm. Eventually,
to use the same convergence criterion adopted by DGS,

all the iterative cycles of Table 2 and 3 are stopped for a
maximum acceptable power flow mismatch equal to 1 kVA.
Table 2 and 3 allow inferring the following considerations:
• The CPU times of PFPD_3P are always lower than the
ones of DGS for the first four networks. However, the
last case study shows a slightly trend reversal: this is
due to the fact that DGS is an optimized software com-
pared with a self-implemented Matlab-based algorithm.
This means that each PFPD_3P iterative cycle (i.e.,
(21)÷(25) or (26)÷(28)) is faster than each DGS one.

• The generator correcting current method allows reduc-
ing the CPU-Time and ITER compared to the
load/generator correcting current method. In fact, in the
generator correcting current method, only three-iterated
formulae are used (i.e., (26)÷(28)).

About the two different above-mentioned iterative
approaches, also their regions of attraction are different. This
concept is graphically represented, for the 18-section net-
work, in Fig 17. It is worth noting that the region of attraction
for the generator correcting current method is almost always
beneath the region of attraction of the other iterative method.
But most importantly, the region of attraction of the gen-
erator correcting current method is more variable/sensitive.
This is because, in this approach, the iterative scheme is
based on the computation of the correcting currents in the
generator section only. Thus, the initial generator reactive
power estimation has a greater impact in the correcting
current calculation, and consequently in the convergence
achievement.
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VII. POWER QUALITY EVALUATIONS
BY MEANS OF PDPD_3P
In this section, some power quality evaluations on the
18-section fictitious network are presented. These evaluations
are increasingly important for the challenging future net-
works. Moreover, the remarks/comments for the 18-section
network are still valid/confirmed by the other tested networks.
Therefore, PFPD_3P makes possible the following technical
evaluations:

A. POWER QUALITY VARIATION WITH THE
LENGTH OF THE LINES
The great majority of HV/EHV electrical lines are not trans-
posed [20, 22]. This fact contributes to the power system
unbalance increase, and this effect is stronger the longer the
transmission lines are.

Fig. 18 shows, for instance, the section voltage unbal-
ance factors for different line lengths: all the considered line
lengths are the 50%, or 100%, or 150% of the 18-section net-
work ones. Fig. 18 allows confirming how much the voltage
unbalance factors grow in all the sections (both generation
and load sections) as the line lengths increase.

B. POWER QUALITY VARIATION WITH THE POWER
SYSTEM LOADING
In order to have a safe power system operation, the load sec-
tions should not be characterised by excessively high power

FIGURE 17. Regions of attraction of the 18-section network for the two
correcting current (c.c.) iterative procedures (10−8 p.u. tolerance).

FIGURE 18. Voltage unbalance factors of each section of the 18-section
network as all the line lengths change.

FIGURE 19. Voltage unbalance factors of each section of the 18-section
network as the overall power system loading changes.

absorptions. One of the reasons is due to the power system
power quality. In fact, the more power the system absorbs,
the higher the unbalance factors are (this is due to the higher
current circulation in the power lines).

Fig. 19 shows the section voltage unbalance factors for
different values of the apparent power absorbed by each
section (the apparent power values are the 50%, 75%, 100%,
125% of the 18-section network ones: the scheduled active
power of all the generators are also changed proportionally
to guarantee the balance between generation and loading).
It can be noted that the voltage unbalance factors tend
to grow in the network sections as the network loading
increases.

C. POWER QUALITY VARIATION WITH THE PERCENTAGE
OF ASYNCHRONOUS SHARE
The load composition affects the unbalance factors of the
system. In fact, the presence of a remarkable percentage of
electrical machines into a load section have positive effects
on the network power quality.

It is known, in fact, that the rotating electrical machinery
can play a key role in the lowering of the negative sequence
voltage levels, due to their high negative sequence admittance
values.

For instance, Fig. 20 shows a voltage unbalance factor
comparison (considering the 18-section network) by consid-
ering all the loads with the asynchronous shares equal to 0%
(static load) and 60% respectively, at the same conditions
(same power flow technical constraints and same network
data). It is worth noting that, in the case of an asynchronous
share percentage of 0%, the voltage unbalance factors are
higher. Physically, this is due to the higher negative sequence
admittances of the asynchronous loads, which drain the nega-
tive sequence currents. Fig. 21 shows this concept: in the load
sections the absorbed current unbalance factors grow (red
line) when the percentage of the asynchronous share is turned
up to 60%. The voltage symmetrisation, in fact, is due to the
higher negative sequence current drain in the load sections
(the transit sections are excluded from the representation of
Fig. 21, since no current drain can occur in these network
sections).
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D. POWER QUALITY IMPROVEMENT BY MEANS OF
SYNCHRONOUS COMPENSATORS
Synchronous compensators could play an important role in
the future transmission networks, although the massive pen-
etration of static devices which regulate the reactive power.
In fact, the synchronous machines, in addition to regulating
the reactive power flows, can lower the network voltage
unbalance factors. Fig. 22 shows, for instance, how the
voltage unbalance factor decreases in all the network sec-
tions when a unique synchronous compensator is applied at
section 9 (see Fig. 17).

The presence of negative sequence currents in the network
may have detrimental impacts on rotating equipment, i.e.,
synchronous machines or induction motors. In fact, negative
sequence currents cause rotating field moving in opposite
direction to the rotor rotation. These fields produce pul-
sating torques/vibrations, induced currents, and machinery
temperature rise which reduce both the machine life and
efficiency. Table 4 shows the negative sequence current flows
in rotating equipment, by considering asynchronous shares
equal to 0% and 60%. The case where a synchronous com-
pensator is inserted at section 9 of the 18-section network
is also shown. In addition to the considerations on power
quality, an important industrial fall out can be derived from
the application of PFPD_3P, e.g., on the operation of the pro-
tections. In fact, suitable protections are installed to preserve
the generators from continuous negative sequence current,
which are typically set in a range 8÷15% of themachine rated
current [20]. Therefore, the ability to compute the negative
sequence current values is a basic knowledge to predict pro-
tection behaviours.

E. POWER LOSSES COMPARISONS BY CONSIDERING
DIFFERENT GROUND WIRE EARTHING METHODS
The passive conductors of the AC electrical lines are sub-
jected to induced voltages. Therefore, induced currents can
circulate in such conductors, and their entities depend on the
passive conductor earthing methods. These currents globally
affect the power losses of the power system and their evalua-
tions can be assessed by the present PFPF_3P. The 18-section
network is considered, and all the electrical lines are treated
as OHLs (see Fig. 23). For this network, two different ground

TABLE 4. Negative Sequence Current Flows (in p.u.) in Rotating
Equipment of the 18-section Network for Two Different asynchronous
Load Configurations using PFPD_3P (Tolerance = 10−7p.u.)

FIGURE 20. Voltage unbalance factor comparison for the 18-section
network with the asynchronous shares (a.s.) equal to 0% (static load) and
60% respectively.

FIGURE 21. Current unbalance factor comparison for the 18-section
network with the asynchronous shares (a.s) equal to 0% (static load) and
60% respectively.

FIGURE 22. Voltage unbalance factor comparison without and with the
synchronous compensator (s.c.) inserted at the section 9.

wire earthing arrangements are considered: the former with
all the ground wires unearthed and insulated from the towers
and from the substation earthing grids, and the latter with all
the ground wires earthed.

These two configurations are modelled by considering the
two different procedures expounded in Sect. III B,1 (Fig. 12),

VOLUME 9, 2021 162647



R. Benato et al.: Three-Phase Power Flow Algorithm for Transmission Networks

FIGURE 23. The single and the double circuit line towers used to perform
the power loss evaluation of Sect. VI E.

TABLE 5. 18-section Network Power Losses for Two Different (Earthed
and Unearthed) Ground Wire Configurations Computed by Means of
PFPD_3P (Tolerance = 10−7p.u.)

and by considering suitable resistance values to model the
earth wire links along the lines by means of MCA.

In particular, the single-circuit line (see Fig. 23a) has two
different ground wires (i.e., a steel and an OPGW ground
wires: r = 2.66 �/km and r = 0.28 �/km, respectively),
whereas the double-circuit line (see Fig. 23b) has only one
steel ground wire (r = 2.66 �/km). Moreover, the tower
footing resistance (rtower = 15 �), and the soil resistivity
(rsoil = 100 �m) are supposed to be equal for the two
cases. The main difference between the two configurations
is the ground wire/tower contact resistance which is r1cr =
1 G� for the insulated ground-wire towers, whereas rso =
1 m� for the earthed ground wires. In Table 5 the power loss
comparison between these two ground wire configurations is
carried out: the network power losses, by considering all the
ground wires earthed, are 3.17% greater than the case with
the insulated ground wires. This percentage increase is the
0.03% of the global active power generated in the 18-section
network (2.3722 GW). These simulations are performed by
using the load/generation correcting current method with a
convergence tolerance of 10−7 p.u. However, a thorough
power loss evaluation can be directly carried out by knowing
exactly the steady state-regime of the passive conductors (that
can be assessed with a passive conductor power flow tool,
which it has never been developed). Therefore, the global
losses can be estimated thoroughly. Moreover, the network
losses due only to the ground wire presence can be estimated.
A further research could combine PFPD_3P with the MCA
method in order to achieve this goal.

VIII. OPEN QUESTIONS
From the knowledge of the phase voltages in all the sections
of the analysed network, all the section phase currents are
determinable by means of the nodal (three-phase) admittance
matrix. This is valid only for the active conductors (the

phases), but obviously not for the passive ones (for instance
the ground wires of OHLs or metallic screens of insulated
cables). Nevertheless, in this paper, the effects due to those
passive conductors can be included in the admittance matrix
modelling such lines, by the Kron’s reduction matrix tech-
niques [35]. However, further researches are developing a
multiconductor power flow, by combining the present tech-
nique with the MCA [27]–[29], [42], [43].

Thus, that future multiconductor power flow would allow
directly considering both the currents and voltages in each
section of all the active and passive conductors (metallic
screens, ground wires, or enclosures of GILs [37], [38]) of
the transmission lines. That future result could be conceived
as the final generalization of this research.

IX. CONCLUSION
A novel hybrid (with the simultaneous use of phase and
sequence component frames of reference) three-phase power
flow algorithm based on the slack generator treatment as
a quasi-ideal current source, at positive sequence, is pre-
sented. This open algorithm combines the merits of each
frame of reference without englobing the demerits deriving
from the application of a unique frame of reference. Two
different iterative procedures are developed (i.e., the gener-
ator and the load/generator correcting current methods), and
their validation is carried out by means of extensive solution
comparisons with the old power flow algorithm PF[24]_3P,
developed in 2000, and the commercial software DIgSILENT
PowerFactory. Moreover, the paper shows a strong CPU-time
improvement compared with the other methods. This is due
to the low number of formulae for each iteration of PFPD_3P.
By using the generator correcting current method only, it is
possible to include in the model also large radial subtrasmis-
sion/distribution systems by considering them as equivalent
lumped load sections, so to reduce the dimensions of the
system. By this new three-phase power flow, a detailed power
quality assessment of the HV/EHVnetwork can be performed
in terms of unbalance factors, and power losses also consid-
ering the passive conductors (e.g., ground wires of OHLs).
A possible improvement of power quality is also presented
by means of a synchronous compensator insertion into the
EHV grid: the forecast of negative sequence currents into the
synchronous generator and compensator sections plays a key
role in investigating possible tripping of negative sequence
protections. PFPD_3P, namely the three-phase generaliza-
tion of the single-phase PFPD, keeps all the merits of his
‘‘parent’’:

• It is an open and fast algorithm, a tool for researchers
and a powerful ally to Transmission System Operators;

• The convergence procedure is based on the circuit theory
and not on numerical analysis techniques;

• All the load, generator and slack bus sections are
englobed into a unique bus admittance matrix: this is
possible also for slack generator, since it is considered
as a quasi-ideal current source at positive sequence;
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• Convergence is guaranteed by the suitable injections of
two correcting current vectors into all the generators
(including slack one) and all the loads: alternatively,
only correcting current vectors into all the generators
(including slack one) can be used in order to further
speed up the algorithm;

• This open algorithm allows obtaining strong perfor-
mances in terms of greater precision of the solution
(tolerance up to 10−15 p.u.), shorter execution times.

In addition to all the above-mentioned advantages, the
algorithm could be further enhanced by considering all
the passive conductor models inside the ‘‘all-inclusive’’
three-phase admittance matrix. These models would improve
the algorithm, even if all the considered (‘‘hard’’ and ‘‘soft’’
as defined in Sect. IV) hypotheses of PFPD_3P are proven
to be licit for a good three-phase power flow study of any
transmission network.

Further researches, in fact, are on-going towards the com-
bination of MCA with this power flow algorithm in order to
evaluate any steady-state regime of both active and passive
conductors without any simplifying hypothesis. This future
result could be conceived as the final generalization of this
research.

APPENDIX A
In the load/generator current iterative procedure, a clarifica-
tion about (23) i.e.,

1i0PNL,c = −YL,P �
(
1−

∣∣uL,c,P∣∣ .2)/(uL,c,P)∗.
is necessary. In (23), the symbol ‘‘�’’ takes on the meaning
of ‘‘positive sequence multiplication’’. This notation is intro-
duced to summarize the procedure giving the sequence cor-
recting currents due to the positive sequence voltages uL,c,P
only. Therefore, uL,c,P and the elements connected to the
positive sequence voltages of the load admittance submatrix
Y L must be considered in (23). All the elements connected to
the positive sequence voltages of Y L are stored in the matrix
indicated as Y L,P .

In order to explain how to compute Y L,P , an example
involving only the (3 × 3) block load admittance Y m mod-
elling them-th load is considered. Bymaking a simple consid-
eration on the matrix/vector multiplication, it is clear that the
impact of the positive sequence voltage um,P on the sequence
correcting currents 1i 0PNm,c is due to the second column of
the matrix Y m only (see Fig. 24). Therefore, each element
of 1i 0PNm,c is simply the product of the second column of
Y m for the scalar um,P. However, (23) indicates that the
above-mentioned procedure must be applied for each load
section: thus, the complete vector1i 0PNL,c representative of all
the load sections can be computed, bymeans of (23) uniquely.

Eventually, it is worth clarifying that the squaring present
in (23) is a point-wise squaring (each element of the vector∣∣uL,c,P∣∣ must be squared).

FIGURE 24. Computation of the correcting currents in the load section m
only due to the positive sequence voltage.

APPENDIX B
The 18-section network (see Fig. 16) consists of three gen-
erator sections, fifteen load sections (eight of which are
transit sections) connected each other by means of fifteen
non-transposed electrical lines. The coexistence of both sin-
gle and double (the line between sections 7 and 8) circuits is
considered. All the loads are three-phase symmetrical ones.
In section 9, it is possible to insert a synchronous compen-
sator. Moreover, three-phase power flow studies with load
sections or equivalent load sections can be assessed and the
simulations can be carried out for both cases. In particu-
lar, when the equivalent loads are considered, the subtrans-
mission/distribution network underlying their sections are
characterized by the presence of seven feeders and seven
transformers supplying seven loads. About that, Fig. 16
shows that the equivalent load in section 18 allows reducing
all the fifteen underlying sections (from 19 to 33) in a unique
lumped one. Therefore, by considering all the loads (transit
ones excluded) of the 18-section network as equivalent, one
hundred and five sections are globally reduced into seven
sections only.
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