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ABSTRACT Anovel Type-Reduction/Defuzzification circuit architecture for an analog interval type-2 fuzzy
inference system is proposed. Based on the Nie-Tan type-reduction method, the circuit operates with current-
mode inputs, representing the firing intervals of the rules created by the inference engine, and generating
a PWM output. It is demonstrated that by selecting an appropriate number of consequents it is possible
to create the PWM output directly, without the need for analog multiplier/divider circuits. This feature
makes the circuit very simple, aiding in the design process, while the PWM output makes it suitable for
controlling DC-DC converters, maximum power point trackers (MPPT) for energy generators, or other
switching applications. It is designed to achieve very low power consumption, allowing its use in power
restrained environments, such as energy harvesting systems. The circuit was designed using TSMC 0.18µm
technology, in CADENCE Virtuoso software, and simulated for different combinations of input values,
demonstrating its capabilities. It was also simulated as part of a type-2 fuzzy inference system with two
inputs, nine rules, and firing intervals represented by currents within 0 and 10µA. The circuit was prototyped,
and the experimental average power consumption was only 53.8µW, validating its low power consumption
characteristic.

INDEX TERMS Analog integrated circuits, fuzzy hardware, interval type-2 fuzzy logic, low-power.

I. INTRODUCTION
Many low-power applications require non-linear control sys-
tems with enough robustness to work in the presence of
uncertainties. Those applications can rely on fuzzy logic for a
compact and relatively simple representation of complex rela-
tions. Several fuzzy inference systems have been proposed
to control DC-AC inverters [1], DC-DC converters [2]–[5],
active power filters [6], maximum power point trackers
(MPPT) for wind energy conversion [7], solar photovoltaic
generators[8]–[10], and energy harvesting systems [11], for
example.

Depending on the application, however, a hardware imple-
mentation of such controllers must present a very low power
consumption, especially in the case of the MPPT for energy
harvesting, in which the efficiency of the whole system can
be directly affected by the power consumption of the control
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circuit. One type of implementation that can fulfill this role,
presenting great tolerance to uncertainties and the potential
for low power consumption, is an analog interval type-2 fuzzy
controller. An interval type-2 fuzzy inference system usually
consists of five blocks: The Fuzzifier, the Inference Engine,
the Rule Base, the Type-Reducer, and the Defuzzifier [12].

Previous studies demonstrated the potential of this kind of
controller, presenting greater robustness to uncertainty [13]
and being capable of representing systems with a smaller
number of membership functions and rules when compared
with an equivalent type-1 fuzzy inference system [12]. This is
especially important to reduce total power in an analog imple-
mentation, given that fewer membership functions and rules
mean fewer hardware components required to generate those
functions [14]. This could mean a significant advantage for
type-2 hardware implementations in terms of power. The use
of analog hardware also presents the benefit of not requiring
A/D and D/A converters, as would be the case in a digital
implementation, further assisting in the reduction of power
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consumption. There is, however, the difficulty of an increased
computational cost associated with the type-reduction/output
processing, that can spoil any obtained power gain, prevent-
ing practical implementations.

A method of type-reduction for interval type-2 inference
systems, proposed as a closed-form alternative to the iterative
algorithms (such as the Karnik-Mendel [15] and Wu-Mendel
methods [16]), is called the Nie-Tan method (NT) [17] and is
particularly well suited for analog hardware implementations.
The accuracy of the NT method has been demonstrated [18],
and while some analog controllers have already employed
it using current-mode multiplier/divider circuits [19]–[21],
the design process of multiplier/dividers must deal with sev-
eral non-linear effects, such as mismatch and channel-length
modulation, that can degrade the performance of the circuit.

Given the need for low-power controllers in switching
applications, such as energy harvesting systems, the circuit
proposed in this work aims to demonstrate that it is pos-
sible to conceive a simple analog architecture capable of
implementing the complete expression that represents the
NT type-reduction with current-mode inputs (representing
the firing levels from the inference engine), directly creating
a PWM output without multiplier/divider circuits or other
additional components.

The paper is organized as follows: Section II presents the
Type-Reducer analog hardware considerations and the pro-
posed architecture is discussed. Section III presents the simu-
lation results under different conditions, including the results
as part of a complete type-2 fuzzy inference system. The
experimental results whichwere obtainedwith the prototyped
IC are shown in Section IV, followed by the conclusion in
Section V.

II. TYPE-REDUCTION PWM ARCHITECTURE
The standard type-reduction method, known as the
Karnik-Mendel method (KM) is an iterative algorithm that
aims to obtain both the smallest and the largest centroids of
the embedded type-1 fuzzy sets and considers the average of
both values as the crisp, defuzzified output [15].

Other methods have been proposed to improve the algo-
rithm’s performance, such as the Wu-Mendel (Extended
Karnik-Mendel) method [16] and the Uncertainty bounds
method [22], but the main issue remains that real-time and
embedded systems may not have enough speed to depend on
an iterative or mathematically complex process to decide the
output value [23]. Also, very low-power applications need an
implementation that is accurate enough to operate properly,
but as simple as possible to minimize power consumption.
One possible approach to achieving this goal is through ana-
log hardware. The representation of fuzzy values by ana-
log variables is a natural choice, since they are continuous,
by definition. The inherent ambiguity of fuzzy logic offsets
the accuracy limitations of an analog implementation [24].

Analog computations, however, are only feasible if in a
closed form, i.e. not an iterative process. For that, the NT
method is especially well-suited, since it provides a simple,

closed-form expression, dependent only on the rules’ acti-
vation levels and the consequents’ centroids. The Nie-Tan
method consists of taking the average of the upper and lower
firing levels associated with each consequent before perform-
ing a center of sets or zero-order TSK defuzzification [17].
Mathematically, this corresponds to applying (1) to each
firing interval obtained by the inference engine and then
performing the operation in (2).

µ∗(x) =
µ̄(x)+ µ(x)

2
(1)

u(x) =

∑N
i=1 µ

∗
i (x) · yi∑N

i=1 µ
∗
i (x)

(2)

The variable u(x) represents the crisp output of the system,
while µ̄(x) and µ(x) represent the upper and lower firing
levels associated with each consequent, in a system with N
consequents with values yi. The variable µ∗(x) stands for the
average of upper and lower firing levels. Combining (1) and
(2), a single expression for type-reduction/defuzzification can
be obtained, as shown in (3).

u(x) =

∑N
i=1

(
µ̄i(x)+ µi(x)

)
· yi∑N

i=1 µ̄i(x)+ µi(x)
(3)

Analog type-2 fuzzy controllers found in the literature gen-
erally implement the expression in (3) with multiplier/divider
circuits operating in current-mode [19], [20]. Equation (3)
is very similar to a Center-of-Sets defuzzification, and
most type-1 analog defuzzifiers also operate with multi-
plier/divider circuits in current-mode [25], [26], voltage
mode [27], and some with current-input and voltage-output
circuits [28]–[30]. The current-mode implementation has the
advantages of a higher dynamic range and simpler implemen-
tation of the addition operation. Multiplier/divider circuits
operating in current-mode and with MOS transistors in the
saturation region depend on the geometric-mean/squarer cir-
cuits to generate the result, which can be very susceptible
to mismatch, channel length modulation, and other effects
that disturb/modify the quadratic model, thus complicating
the design process. Multiplier/divider circuits that operate in
weak-inversion have been proposed [31], and though they
have low-power consumption, they are even more prone
to suffer from mismatch and also tend to present lower
speeds [32]. A different approach could be useful to facili-
tate the use of fuzzy inference systems in practical power-
constrained systems.

Many applications, such as the MPPT and DC-DC con-
verter examples cited in the Introduction, use a PWM signal
to control the system. In order to use existing analog type-
reducer/defuzzifier architectures in fuzzy controllers for this
kind of system (in which the output of the fuzzy inference
system represents the duty cycle of the PWM signal), addi-
tional circuits would be necessary to convert a current/voltage
into a PWM equivalent. By making the output processing
stage of the fuzzy system generate a PWM signal directly,
without the need for additional components, both a power
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reduction and a circuit simplification can be achieved. The
idea of using PWMsignals directly during the fuzzy inference
process has been applied by Tombs et al. [33] in an archi-
tecture where the membership values of type-1 fuzzy sets,
represented by currents, are converted to PWM signals by
comparing the integrated voltage with a fixed reference ramp.
The inference engine in that architecture is significantly sim-
plified, being performed only by AND gates that effectively
implement the minimum operation. The main disadvantage
in doing this is that defuzzification becomes too complex.
A transconductance amplifier and an integrator are used for
multiplication, and a successive approximation logic circuit
and D/A converter are used for division, in a strategy that
is not suitable for low-power implementations. Also using
PWM signals, the work by Alarcon et al. [34] creates a
PWM output for a type-1 defuzzifier by implementing the
division between two currents, and it assumes the multipli-
cations between the currents that represent the firing levels
and the consequents are performed by a previous multiplier
circuit.

In this context, the architecture for the type-reducer/
defuzzifier stage of a type-2 fuzzy controller proposed in this
work receives the firing intervals coming from the inference
engine in current-mode and makes the conversion directly
into a PWM output signal. It is demonstrated that, for a given
number of consequents, a simple structure can implement
the complete equation in (3) without any multiplier/divider
circuits. This is a reasonable design choice, given that con-
trollers with a small rule-base are easier to design, entail
simpler hardware (low power), and also present good per-
formance, sometimes even better than systems with a larger
rule-base [12], [35], [36].

The operating principle of the proposed architecture is
based, as in [34], on the implicit division present in the PWM
conversion process. Section A explains this process while
Section B shows how, under certain conditions, it can be used
to yield the complete type-reduction/defuzzification expres-
sion. Section C details the circuit designed to implement the
proposed strategy.

A. PWM DIVISION
Usually, a PWM signal is generated by comparing the vari-
able with a fixed reference ramp. If this reference is also
dependent on a second variable, the PWM signal can rep-
resent the result of the division operation between these two
variables, coded in the fraction of the total cycle time spent on
the high level. The variables of interest in this implementation
are assumed to be currents representing the firing intervals
associated with each consequent of the type-2 fuzzy inference
system. Therefore, a division between two analog currents
is necessary and can be performed by integrating the two
currents in sequence and comparing the voltages as illustrated
in Fig. 1.

Assuming that the currents change little during each
period, i.e. they remain approximately constant, the expres-
sion for crossover voltage v can be written as a function of

FIGURE 1. PWM division of two currents by integration and comparison
of voltages.

two currents i1 and i2, as shown in (4) and (5).

v = i1 · T
/
C (4)

v = i2 ·1t
/
C (5)

The capacitance for both integrators is C , the period is T
and the time between the beginning of the second current
integration and the voltage crossover is 1t . Combining (4)
and (5) into (6), the division between i1 and i2 is encoded in
the time fraction 1t/T .

1t =
i1
i2
· T (6)

The fact that this result is available for half of the total
time required to obtain it is used in favor of the architecture,
as explained in Section B.

B. TYPE-REDUCER/DEFUZZIFIER
If one makes the assumption that three consequents are used
in the system (aiming at an inference process with a nine-rule
MacVicar-Wheelan rule-base[36]) and named N, Z, and P,
then the complete NT Type-reduction/defuzzification expres-
sion in (3) can be written as in (7).

u=

(
µ̄N + µN

)
· yN +

(
µ̄Z + µZ

)
· yZ +

(
µ̄P + µP

)
· yP

µ̄N + µN
+ µ̄Z + µZ

+ µ̄P + µP
(7)

Rewriting the term corresponding to the consequent Z and
grouping upper and lower consequents, as in (2), an equiva-
lent expression is obtained, as shown in (8).

u = yZ +
µ∗N · yN +

(
−µ∗N − µ

∗
P

)
· yZ + µ∗P · yP

µ∗N + µ
∗
Z + µ

∗
P

(8)

If the consequents’ values yN , yZ , and yP are chosen to be
0, 0.5, and 1, to reflect the full range of possible duty cycle
values, then the output becomes (9).

u = 0.5+

(
−0.5

(
µ̄N + µN

)
+ 0.5

(
µ̄P + µP

))
µ̄N + µN

+ µ̄Z + µZ
+ µ̄P + µP

(9)

Expression (9) can be implemented as a PWM signal by
combining two waveforms in sequence, as in Fig. 2. It corre-
sponds to the division associated with theN consequent, from
0 to T , and with the P consequent from T to 2T .
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FIGURE 2. PWM output signal, formed by two periods, each
corresponding to the N and P terms of the full NT
type-reduction/defuzzification expression.

The duty cycle associated with Fig. 2 is described in (10).

u =
T − tN + tP

2T
(10)

Time intervals tN and tP are obtained by PWM division,
as described in Section A, and therefore have the values
described by (11) and (12), respectively.

tN =
iN

iN + iZ + iP
· T (11)

tP =
iP

iN + iZ + iP
· T (12)

At each period T , individual currents iN and iP are com-
pared to the sum of all currents representing the firing inter-
vals, and the results are intercalated at the output, with an
inverted signal for the N portion of the signal. Combin-
ing (10)-(12) results in (13).

u = 0.5+
(−0.5 · iN + 0.5 · iP)

iN + iZ + iP
(13)

The expression obtained in (13) is equivalent to (9), given
that currents iN , iZ and iP represent the sum of upper and
lower firing levels of each consequent as determined by the
inference engine. To form the desired PWM output, with
the two periods associated with consequents N and P, the
division process detailed in Section A is performed as shown
in Fig. 3.

Voltages VN , VP, and VS are obtained respectively by the
integration of the currents iN , iP, and of the sum of all currents
(iN + iZ + iP). The control signals required to set the period
T (EN) and to reset each of the capacitors at the appropriate
time (RST, RN, and RP) are also shown in Fig. 3.

C. CIRCUIT ARCHITECTURE
The proposed architecture requires three independent capaci-
tors to integrate each current. Wide-swing current mirrors are
used to feed the integrators, and transmission gates control
which currents are injected during each part of the cycle. Sim-
ple voltage comparators are used to implement the division
corresponding to each half of the period, and transmission
gates switch between them to create the output signal. Fig. 4
illustrates the proposed circuit architecture. Signals EN and

FIGURE 3. The waveform of all signals involved in the generation of the
PWM output in the proposed method.

FIGURE 4. Proposed output processing circuit architecture.

RST are control inputs, and signals RN and RP are gener-
ated internally as /EN&&RST and EN&&RST, respectively.
While EN is in the HIGH state, the capacitors CN and CS are
charging, whereas the capacitor CP is not. Its voltage VP is
held constant and is comparedwith the voltageVS to generate
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FIGURE 5. Simulation results for different combinations of input currents, as defined in Table 2. (a) Output with 0% Duty cycle. (b) Output
with 25% duty cycle. (c) Output with 50% duty cycle. (d) Output with 75% duty cycle. (e) Output with 100% duty cycle. (f) Control signals
EN and RST.

the part of the output signal associated with consequent P.
When EN switches to the LOW state, capacitors CP and CS
reset and start charging again, while capacitor CN maintains
its voltage VN constant, to be compared with VS, generating
the other part of the output, associated with consequent N.
When EN switches back to HIGH, capacitors CN and CS
reset, and the cycle restarts. The voltage comparators are
high-gain differential amplifiers, designed to work with low
voltage and low bias current in order to achieve low power
consumption.

III. SIMULATION RESULTS
The proposed circuit architecture was designed with TSMC
0.18µm technology and simulated using Cadence Virtuoso
software. The parameters common to all tests are specified in
Table 1.

TABLE 1. Parameters defined for all simulations.

To verify the operation in the range of possible duty cycles,
from 0 to 100%, different combinations of input currents were
tested, as described in Table 2. The average power consump-
tion obtained for each case is also displayed in Table 2 and
the simulation results are as shown in Fig. 5. For each input
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TABLE 2. Input currents combinations and corresponding duty cycle and
power consumption.

FIGURE 6. Corner analysis. (a) Duty cycle equal to 25%. (b) Duty cycle
equal to 75% and detail identifying corner/temperature combinations
tested.

combination, the voltage integration signals VN, VP, and VS
are also shown. The waveforms are according to the designed
behavior explained in Section II and illustrated in Fig. 3.
Importantly, as shown by the simulation results, the charge
injection effect could be neglected in this implementation
due to the fact that the load capacitances are much larger
than the gate to drain capacitances of the devices used in the
switches.

To guarantee the robustness of the circuit against process
variations, a corner analysis was performed for different
corners under different temperature conditions. The output
results for the cases with duty-cycle equal to 25% and 75%
are shown in Fig. 6. These two cases present the largest
error, up to 3.5%, which is certainly small enough for prac-
tical fuzzy implementations, where this and other sources of
uncertainty can be treated by adjusting the input membership
functions accordingly.

Fig. 7 also shows the histogram of the Monte Carlo simu-
lation results, performed for each case in Table 2. The plot
groups the error to the nominal case in bins with a size

FIGURE 7. Histogram of the monte carlo analysis.

FIGURE 8. Power supply noise rejection at the output (10Hz to 10MHz).

equal to 0.1%. The average error is 0.22% and the standard
deviation is equal to 0.51%. Both Corner and Monte Carlo
results reflect the robustness of the circuit against process
variations.

In order to verify the circuit’s immunity to power sup-
ply noise, a simulation was performed to obtain the gain at
the output for different frequencies (ranging from 10Hz to
10MHz).

Fig. 8 shows that the power supply noise is attenuated by
about 10dBwith respect to the output terminal, demonstrating
that the circuit is capable of dealing with power supply noise.

Another simulation was conducted, this time taking into
consideration a complete type-2 fuzzy inference system.
It was implemented in order to test the proposed output stage
operating in a system with a MacVicar-Wheelan Rule Base.
Assuming a system with two inputs, each one associated with
the proposed type-2 membership functions shown in Fig. 9,
and with the rule-base described in Table 3 (with antecedents
N1, Z1, P1, N2, Z2, and P2, and consequents N, Z, and P),
it is possible to mathematically find the ideal output of an NT
type-reducer/defuzzifier.

The inference process uses MIN/MAX operators as t-norm
and t-conorm, respectively. Fig. 10 shows the ideal output in
terms of the duty cycle as a function of the two inputs.

Considering an inference engine that outputs the firing
intervals of the consequents in current-mode, in the range
[0,10µA], such as in [14], [19], [37], it is possible to simulate
the response of the proposed circuit and similarly plot its
output as a function of the two inputs of the system. The result

158778 VOLUME 9, 2021



G. A. F. de Souza et al.: PWM Nie-Tan Type-Reducer Circuit for Low-Power Interval Type-2 Fuzzy Controller

FIGURE 9. Input membership functions of a type-2 fuzzy inference
system with two inputs, labeled (a) Input 1 and (b) Input 2.

FIGURE 10. Duty cycle of the PWM output of an ideal type-2 fuzzy
inference system.

TABLE 3. Fuzzy rule base with two inputs, nine rules, and three output
consequents.

is shown in Fig.11, as well as the error when compared to the
ideal case.

The power consumption corresponding to the output sur-
face was simulated as well, and the result was plotted
in Fig.12. The average power consumption was equal to
51.4µW, the comparator circuits are responsible for about
10% of that value (5.5µW), while the current mirrors feeding
the capacitors during the charging process are responsible for

FIGURE 11. Simulation result of the example type-2 fuzzy inference
system using the proposed NT Type-reducer/defuzzifier circuit. (a) Duty
cycle of the PWM output. (b) Error in comparison to the ideal output.

FIGURE 12. Simulation results of the power consumption surface as a
function of the system’s inputs.

the remaining 90%. In the worst case, the maximum power
was equal to 81.6µW.

IV. EXPERIMENTAL RESULTS
The type-reduction/defuzzifier circuit with PWM output,
as described in Section II and simulated in Section III, was
manufactured using TSMC 0.18µm technology, in coopera-
tion with IMEC, in a multi-project wafer (MPW) run, which
is part of the mini@sic program of Europractice-IC. The
layout of the proposed circuit and the micrograph of the
testing chip are shown in Fig.13. Common analog layout
techniques (such as interdigitation in the current mirrors and
comparators) were employed to prevent mismatch and other
non-ideal effects [38]. Measurements were performed with
input current values as in Table 2. The output results have
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FIGURE 13. The layout of the proposed output processing circuit with an area of 64 µm × 82 µm and the micrograph of the testing chip.

FIGURE 14. Experimental results for different combinations of input currents, as defined in Table 2. (a) Output with 0% duty cycle.
(b) Output with 25% duty cycle. (c) Output with 50% duty cycle. (d) Output with 75% duty cycle. (e) Output with 100% duty cycle.

duty cycles as shown in Fig. 14, which are consistent with
the values expected from Table 2.

The duty cycle was also measured considering a complete
type-2 fuzzy inference system (i.e. the output duty cycle

for each combination of the input pair of the complete sys-
tem), by feeding the firing intervals of the inference engine
as described in Section IV to the output processing circuit.
Those results were plotted in Fig. 15. The experimental error
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TABLE 4. Comparison between possible type-reduction/defuzzification strategies in hardware.

FIGURE 15. Experimental result of the example type-2 fuzzy inference
system using the proposed NT Type-reducer/defuzzifier circuit. (a) Duty
cycle of the PWM output. (b) Error in comparison to the simulated output.

is also plotted in Fig. 15(b), showing that the corresponding
root mean square error is equal to 1.4%, and in the worst case
the error is smaller than 4%, which is within the expected
margin and certainly acceptable in a practical implementation
of a fuzzy system.

The power consumption corresponding to the output sur-
face was also measured, and the result was plotted in Fig.16.
The measured average power consumption was equal to
53.8µW, and the maximum power was equal to 86.5µW. The
experimental power was about 3µW larger than the simulated
values due to a larger output capacitance.

FIGURE 16. Experimental results of the power consumption surface as a
function of the system’s inputs.

The results demonstrate the proposed circuit’s capability to
operate as an NT Type-reducer/defuzzifier for PWM appli-
cations with a simpler architecture and with small power
consumption, even smaller than the individual power con-
sumption of analog multiplier/divider circuits, such as [39]
with 120µW and [40] with 60µW, as shown by the compari-
son in Table 4.

This comparison must also take into account the fact
that at least two current-mode multiplier/divider circuits
and a PWM generator circuit would be needed to create
an output equivalent to the one generated by the proposed
architecture. Table 4 also includes the analog type-2 fuzzy
controllers in the literature that implement the Nie-Tan type-
reduction method, as well as three type-1 analog fuzzy cir-
cuits, emphasizing the low power feature of the proposed
architecture.

V. CONCLUSION
A novel architecture for a type-reduction/defuzzifier cir-
cuit was proposed that generates a PWM output from
current-mode inputs and does not depend on analog multi-
plier/divider circuits, thus greatly simplifying the design pro-
cess and facilitating the use of analog type-2 fuzzy inference
systems in real applications.
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The type-reduction stage of a type-2 fuzzy inference
system is usually a computationally-intensive process, pre-
senting many challenges for an analog implementation. The
Nie-Tan method presents a simple, closed-formed expres-
sion, that facilitates its realization in analog hardware. It was
demonstrated that appropriately choosing the number of con-
sequents allows the creation of a circuit that produces the
output of the fuzzy system directly as a PWM signal. The
circuit was tested as part of a complete interval type-2 fuzzy
inference system, presenting an output error smaller than
4%. The fact that the proposed architecture does not require
multiplier/divider circuits also reduces power consumption,
as is demonstrated by the simulated and experimental results.
The circuit was prototyped, presenting a measured power
consumption of 53.8 µW with a power supply of 1.2V. The
consumption is even smaller than that of a single analog
multiplier/divider, of which at least two would be required,
alongwith a PWMgenerator, to produce an equivalent output.

The PWM output makes the integration with DC-DC con-
verters and other switching applications quite simple, and the
low power consumption presentedmakes it suitable for small,
embedded applications such as an energy harvester’s MPPT
system.
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