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ABSTRACT In this paper, we propose an efficient attention module for visible and thermal infrared (TIR)
matching deep learning networks. This method judges the right or wrong of heterogeneous sensor matching
through the proposed deep learning model and increases the matching rate through the attention module
using the edge-utilizing structure. This paper contributes to three aspects: 1) The first aspect is Convolutional
Neural Network (CNN) structure comparisons for heterogeneous sensor registration. We consider the
matching network as a classification problem when stacked heterogeneous sensor data become input of
a single CNN network. Therefore, this paper shows result that is related with not only the network designed
for heterogeneous sensor matching, but also various deep learning networks used for classification. 2) the
second is a consideration for efficient attention module. The experiments show the module can replace lots
of convolution blocks and the results achieve more better performance. The attention module uses a 1 × k
filter and a k × 1 filter to extract horizontal and vertical edges and convolves two paths using them. 3) The
third is suitable deep learning model for aerial complex visible and TIR data registration. To compare the
various methods, we describe the calibration process of aerial visible and TIR data obtained directly from
a drone. By using the calibrated data, this paper presents an AVIR attention block-based architecture that
shows optimal matching results with minimal addition of parameters.

INDEX TERMS Visible, thermal infrared, heterogeneous sensor matching, aerial data matching, deep
learning, attention module, classification.

I. INTRODUCTION
With the recent development of technology, the use and inter-
est in Artificial Intelligence (AI) is increasing. Such AI is
used for Automatic Target Recognition (ATR), Autonomous
driving system, medicine, mechanics, and security. Detection
and recognition using a single sensor, a common and impor-
tant issue in these fields, are becoming a red ocean from a
blue ocean. The limitations in the recognition and detection
of a single sensor are clearly present due to the advantages
and disadvantages of the sensor characteristics. In the case
of the visible camera that uses the reflection band of the
light spectrum, it has a high-resolution field of view and
spatial resolution, but there is a limit that cannot be seen at
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night. In the case of Thermal Infrared (TIR), only the rough
outline of an object can be checked with a low resolution,
but because it uses the emitted radiance information, it has
the advantage of being able to distinguish objects both day
and night and obtaining thermal information of the object [1].
Our research team wanted to proceed with object detection
through a heterogeneous sensor fusion network using visible
and infrared (IR) data, which have different advantages. Dur-
ing the pre-processing of the implementation of this network,
it was confirmed that the frame per second (FPS) of the two
videos was different due to telecommunication and hardware
limitations despite the same settings. This is a problem that
occurs when two cameras are attached to the same location
but acquire data with different devices. In addition, each
video also had problems such as inter-frame interruption and
frame omission due to telecommunication. Since the frames
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of the visible image and the IR image do not match, we tried
to find the same frame between the two videos by finding
a correlation through the image matching network. In the
process, a study of matching networks was conducted, and
this paper deals with the contents.

Visible/IR Cameras are passive sensors. The sensors’ data
measure different characteristics depending on the wave-
length from the reflected spectrum of the natural or artistic
illumination of the target to the emitted spectrum. Images
acquired with various spectra have different characteris-
tics depending on the wavelength of light. Visible sensors
are using red, green, and blue (RGB). An Electro-Optical
(EO) includes a wider spectrum than visible. So, EO/IR
systems cover the range from ultraviolet (UV) through
visible and IR. Each band has the different wave length
(UV: 0.25∼0.38um, visible: 0.38∼0.75um, and infrared:
0.75∼14um). Visible, near IR(NIR), short wave IR(SWIR),
andmid-wave IR (MWIR)measures reflected radiance, while
long wave IR (LWIR) measures emitted radiation [1]. There-
fore, judging various types of matching with heterogeneous
sensorsmeasuring different spectral bands as the samematch-
ing network may make an error of ignoring physical charac-
teristics. We perform matching using visible and TIR data,
which are aerial drone data using LWIR.

Our contribution to the matching of Visible and TIR can be
summarized in three aspects.

–First, we compare both of matching network and classifi-
cation network in matching scene.

–Second, we propose useful attention module for hetero-
geneous sensor matching.

–Third, we suggest suitable network for visible and TIR
matching and execute the matching with directly acquired
complex aerial drone data.

This paper explains the utility of the proposed edge atten-
tion by applying the attention block in heterogeneous sensor
matching and proves that the stacked input can efficiently
determine the matching. In addition, by using stacked input,
we prove that the proposed network is robust through com-
parison with classification networks as well as matching
networks. To learn TIR data, we used complex aerial drone
data to prove the robustness of our network.

This paper shows the construction of a matching network
through analysis of various parameters and present an effi-
cient network to classify matching results of Visible and TIR.
There are various cases of using stacked input for matching
problems [2]–[4]. Since these stacked inputs can be reflected
as a single 2-channel input or 4-channel input, it is required to
compare between matching networks with classification net-
works. Additionally, Judging the matching of heterogeneous
sensors as a classification network is a task that has not been
done before.

From the point of view of heterogeneous matching,
we tried to find the comprehensible module for alignment
through the Attention Module, which is similar with human
thinking. Figure 1 shows an example of registration and mis-
registration at the same time. Through what characteristics

FIGURE 1. Examples of matching(up) and mismatching(down).

do you judge the right or wrong of matching in this figure?
Our research team directly made the matching ground truth
and judged that the primary focus of human visual judgment
of matching between Visible and TIR is the aligned edge of
Visible and TIR, and secondarily, it is texture. Yellow lines
indicate that a matching of visible and TIR worked well. And
Red lines show mismatch. Because bus parts of the under
image do not match. The line information is important to
distinguish image matching and the texture of the object is
also necessary. Through this, we propose a module that works
similarly to human thinking.

For the matching of Visible and TIR, we organized a
section as follows: 2. Related Work, 3. Proposed Method, 4.
Ablation study, and 5. Conclusion. In the 2. Related Work,
we explain various example of fusion network, and then focus
on image sensors based heterogeneousmatching. This section
is divided into A) Heterogeneous Data Matching, B) Deep
Learning for Classification, and C) Attention Module. In A)
Heterogeneous Data Matching, examples of applying deep
learning as well as conventional methods to matching het-
erogeneous data are described. We conducted a comparative
experiment with the classifier in the experimental section, and
contents related to the classifier were described in B) Deep
Learning for Classification. C) Attention Module introduces
the attention modules, a field that has recently been in the
spotlight for Convolutional Neural Network (CNN) research.
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3. Proposed Method explains the proposed network and its
feasibility. AVIL block using attention module, AVILNet
using the blocks, and loss function effective for binary clas-
sification are introduced in this section. 4. Ablation Study
proceeds with the acquisition procedure for experimental data
and various network comparison experiments. At 5. Conclu-
sion, we conclude by explaining the effectiveness, practicality
of this paper, and the future works.

II. RELATED WORK
This section consists of three parts. A. Heterogeneous Data
Matching introduces various cases of deep learning used
for image matching. B. Deep Learning for classification
describes the history of deep learning classifier and intro-
duces the convolution-based networks compared in this
paper. Also, we explain why the classifier algorithm is used
for matching heterogeneous sensors. C. Attention Module
briefly explains the attention module and its usage examples.
Before describing the sub-section, the fields of various sen-
sors will be described.

Many sensors are being used in various fields. Lidar can
acquire depth information of an object using point cloud and
has the advantage of high precision, but it cannot obtain
the color and surface characteristics of the object [5], [6].
X-rays used in medicine are produced when very fast-moving
electrons collide with heavy atoms. Although there is an
advantage of short-time examination, only rough informa-
tion of soft tissue (subcutaneous-tissue /muscle/ligament)
can be grasped using X-ray diffraction. Computed Tomog-
raphy (CT) has the advantage of being able to check the
cross-sectional view of an object, but it is also insufficient
to measure soft tissues in detail. Such various single sensors
have limitations, advantages, and disadvantages in the acqui-
sition process and image information.

Multi-sensor fusion is being studied to solve and supple-
ment the limitations of a single sensor. Fusion technologies
used in the autonomous driving field are mainly Visi-
ble and Lidar convergence [5], [6]. Gong et al. [5] imple-
mented fusion for 3D object detection using point cloud
and visible information, and Caltagirone et al. [6] used deep
learning-based fusion technology for path detection. In the
medical field, fusion of heterogeneous sensors such as CT
and X-ray was carried out. CT and Chest X-ray (CXR) fusion
was implemented based on deep learning for Diagnosis of
COVID-19 [7], and Panwar et al. [8] also suggested deep
learning framework for detection of COVID-19 and proved
the responsibility by using GradCAM [9]. These attempts are
efforts to go beyond the limits of a single sensor.

Efforts to fuse heterogeneous sensors are no exception to
fuse between heterogeneous images. There are many cases
based on EO and IR fusion [2], [10]–[13]. A dual-tree com-
plex wavelet transform (DTCWT) technique based on region
segmentation was proposed for fusion of airborne infrared
and visible images [10]. Fusion of low intensity visible and
thermal infrared was performed, and frequency band fusion
was performed after reinforcing low light information using

IHS conversion [11]. Sensor fusion was performed using a
CNN-based DeepFuse network and a learning loss based on
the structural similarity index measure (SSIM) [12]. Li and
Wu [13] proposed DenseFuse which is a dense block-based
network and used a learning loss applied with SSIM. Sensor
fusion results were acquired through deep learning.

For such fusion, matching between the two sensors must be
performed, and fusion must be performed through correctly
implemented matching. Using the reflection bands of 3 RGB
channels and 1 NIR channel as inputs, Dense Block type
network was designed and matching or mis-matching were
determined [2]. Matching was performed on EO aerial data at
different times using the Siamese network [14], and a 2ch net-
work was suggested, which is a similarity measurement net-
work between the visible band and near IR(NIR) [3]. Its input
is Visible converted to gray level and NIR. The network con-
sists of a total of three convolution layers. Zhang et al. [15]
proposed a Siamese Network-based sFcNet. For EO/Near
Infrared (NIR), EO/TIR, and EO/Synthetic Aperture Radar
(SAR), first feature was acquired through convolution layers
for high-resolution EO, respectively, and second feature was
obtained through heterogeneous sensors. Using second fea-
ture as a filter for first feature, the matching score was deter-
mined. Wang et al. [16] proposed an algorithm that learns by
vectorizing the patch of each image and finds the matching
point. Through the following three sections, we introduce the
related papers of the techniques used in this paper.

A. HETEROGENEOUS DATA MATCHING
For matching heterogeneous sensors, Scale Invariant Feature
Transform (SIFT) or feature-based extraction methods have
been mainly studied, but the similarity measurement using
deep learning is currently being developed. Ma et al. [17]
extracted matched pairs for aerial photographs using SIFT.
In the process, they used a gradient magnitude of the Gaus-
sian scale-space image by means of Sobel filters to cre-
ate robustness of the descriptor. Ye et al. [18] measured
the structural similarity between images and performed reg-
istration between EO, SAR and Lidar heterogeneous data
using a histogram of orientated phase congruency (HOPC)
descriptor. Li et al. [19] performedmulti-modal imagematch-
ing using Radiation Invariant Feature Transform (RIFT).
RIFT uses phase congruency instead of image brightness to
detect feature points, and extracts corner points and edge
points for optical-optical, infrared-optical, Synthetic aper-
ture radar (SAR)-optical, Map-optical, and day-night match-
ing. There are examples of a combination of feature-based
and area-based fusions [20], [21], and line feature-based
fusion [22], [23].

Recently, a matching algorithm using deep learning is also
being studied, and the framework of the study is shown in
Figure 2. Figure 2(a) is a Siamese network, where input A
and input B enter different inputs into the same network
sharing weights [14], [24]–[29], and figure 2(b) is a case
where the network structure is the same but does not share
weights. Figure 2(c) shows that the stacked input enters a
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FIGURE 2. Framework of the matching networks [2]. (a) the siamese
network, (b) the pseudo-siamese network, and (c) the channel-stacked
input network.

FIGURE 3. Framework of the n stream matching networks.

single network and measures the similarity [2], [4]. Zbontar
and LeCun [24] performed stereo matching of the two visible
data taken from the different angle, and He et al. [14] found
a matching point for the EO data of the different weather
and time zone. Han et al. [25] constructed a feature network
and a metric network using MatchNet which considers var-
ious sizes of a patch. He et al. [26] proposed multi-support
patches siamese networks (MSPSNs), and the registration
was studied using satellite multispectral data (e.g., Landsat-
5/8, ZY-3, and GF-1). Various sizes were reflected by adjust-
ing the patches to sizes of 24 × 24, 48 × 48, and 97 × 97.
There are also networks that have matches through various
paths. Figure 3 is for an n-stream network. Suárez et al. [4]
used the 2-stream network. En et al. [28] proposes three
streams (TS-Net) and constructs a layer with two paths for
a single input. It suggests two siamese networks to obtain
three stream outputs. Balntas et al. [29] proposed a PN-Net
(triplet network) and trained by receiving the same input pair
w and x and a different input pair y as input. They used
the 3-stream network. Aguilera et al. [27] also proposed a
quadruplet network called Q-net, which uses two pairs of EO
and NIR inputs and uses a total of four inputs.

Baruch and Keller [30] showed better performance on
VEDAI, CUHK, and VIS-NIR data sets compared to

Aguilera et al. [27], which is an example of a network that
does not share network parameters in figure 2(b). They
designed a block like figure 2(a) and 2(b) together and con-
ducted research. Networks corresponding to figure 2(a)-(c)
were made and tested [3], [4]. Aguilera et al. [3] proposed
a 2ch network, which uses stacked input. Zagoruyko and
Komodakis [31] further tested the 2 streams network and
finally proved the robustness of 2 channel - 2 stream.
Suarez et al. [4] designed a two-channel network similar with
Aguilera et al. [3], but using fewer parameters, higher perfor-
mance than Aguilera et al. [3] was derived in the match of
visible and NIR. Higher performance than Aguilera et al. [3]
was derived for visible and NIR aerial images using the
dense block [2]. Vectors from feature are also performed for
matching [16]. Chen et al. [32] presents FSNet which is kind
of a siamese network and suggests registration for hetero-
geneous images. These developments in deep learning have
made great strides in the performance of matching between
two heterogeneous images. With reference to the history of
this development, we conducted a study using deep learning.
As the channel stack network is developed, we thought that it
is necessary to consider the judgment of heterogeneous sen-
sors matching through the developed deep learning classifier.

B. DEEP LEARNING FOR CLASSIFICATION
Recent research on deep learning has been inspired by the
shape of the brain. Lenet5 [33] is a classic deep learning
network used for text classification. The classification was
performed on the 32×32 input using three convolution layers,
two subsampling layers, and one fully connected layer. Deep
learning networks have evolved in the direction of using a
deep convolution layer while solving the problem of vanish-
ing gradients through weight initialization [34], [35], batch
normalization [36], etc. VGG [37] uses a 3×3 convolution to
improve the classification performance for input data of dif-
ferent sizes through layers of various depths, and Resnet [38]
improves the classification performance by using a residual
block. ResNeXt [39] which use the grouping of filters using
cardinality and the combination of the residual block used
in Resnet [38] recorded high performance top-5 errors. Deep
learning network has also developed into a form of accu-
mulating channels, such as DenseNet [40]. In DenseNet, the
performance of classification was improved by concatenating
and using the previously used convolution block. Dual Path
Network (DPN) [41] was designed as a model that utilizes
both the advantages of ResNet and DenseNet using both
residual and dense network paths for the dual path structure.
MobileNet [42] simplifies networks by shortening them to
fit mobile devices. Therefore, depthwise convolution and
pointwise convolution were used to reduce the number of
parameters and the amount of computation. ShuffleNet [43]
uses point-wise group convolution and channel shuffle to
create a small model to reduce the number of parameters and
computational amount like MobileNet.

CSPNet [44] is an abbreviation of Cross Stage Partial Net-
work, and the network’s convolution layers were constructed
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FIGURE 4. Simple history diagram of deep learning image classification
network.

by dividing the base layer into parts and convolutional only
part of it, and then merging the rest. EfficientNet [45], which
is currently showing high performance in the public clas-
sification data Cifar10 and Cifar100 [46], improves perfor-
mance through compound scaling in the direction of changing
the size of various existing models such as width scaling,
depth scaling, and resolution scaling. By using Efficient-
Net, the current best performance was derived from cifar10
and 100 through learning using the teacher network and
the student network [47]. Recently, ViT [48], BiT [49], and
Swin [50], which applied the transformer used in natural
language processing to image classification, are also show-
ing high performance in ImageNet [51]. However, as can
be seen in figure 2(c), since the stacked data of heteroge-
neous images is used as an input, it is worth considering the
image classification networks in the registration. Figure 4 is a
schematic history diagram of the image classifiers which we
explained. Networks written in red are used for comparison
with proposal network in this paper. In this paper, we propose
a matching network using CNN-based attention module. So,
we compared the CNN-based networks highlighted in red at
figure 4. The classification networks showed optimal perfor-
mance in public data sets. Since the stacked 2 or 4 channels
as input for classification network are proper, we judge that it
could be sufficiently used for classification networks. Also,
the optimal input of the network presented in this paper is
128 × 128, which is sufficient to apply to the classification
network.

C. ATTENTION MODULE
We tried to improve the performance of the matching net-
work by applying the attention module that improved the
performance of the classifier. Therefore, in this section, the
progress of the attention module will be briefly described.
Attention modules improved classification performance
[52]–[55]. SE block [52] which is an example of improv-
ing the performance by performing channel-oriented atten-
tion was designed. Channel attention was performed through
global average pooling, and the channel was emphasized
through a fully connect layer. ABAMblock [53] used channel
attention through global average pooling and spatial atten-
tion through 1 × 1 convolution. Woo et al. [54] presented
a CBAM block, which uses features using max pooling
as well as global average pooling additionally, and unlike
the simultaneous usage of channel and spatial attention in

BAM, first proceeds channel attention and additionally pro-
ceeds spatial attention. After that, apply residual blocks for
reinforcing input features. A residual attention network was
designed and applied to the classifier [55]. Channel attention
was performed by designing RCAB [56], and the residual
in residual concept was applied to image super-resolution.
A channel-wise and spatial attention residual (CSAR) block
was designed and used for super-resolution [57]. The advan-
tage of channel attention is that it gives weights to important
channels. However, there is a limit to not seeing spatial char-
acteristics. To solve this spatial weakness, the attention block
studies have been conducted in the direction of designing the
spatial module, and the existing spatial attention block uses
a square filter. This square filter is interpreted to mean that
unnecessary spatial information is also emphasized in match-
ing where edge information judgment is important. In this
paper, we propose the validity of AVIR block emphasizing
edge components through comparison with SE, BAM, and
CBAM used in the classifier.

The next section is a description of the proposed network
and loss, and additional settings are augmented through the
experimental part.

III. PROPOSED NETWORK
The problemwith the existing matching network is that it was
not possible to acquire high matching rate for the TIR and
Visible pairs of the drone aerial data. The data we used for
research is drone data obtained directly, and there are various
complex objects like buildings, trees, grass, and vehicles. TIR
images are information containing the emitted radiance char-
acteristics of various objects. So, the TIR images are different
with visible images which are used reflection radiance. The
data also contains many more complex features than dis-
tinct edge information. A dataset used at [58], [59] contains
human radiance information and indoor-oriented data pairs,
so the dataset has distinct characteristics that distinguish
background and people information. It is necessary to discuss
networks for complex aerial data.

In this paper, the proposed network using AVIR block is
named AVIRNet. A 2-channel stacked input in which gray
scale visible and 1-channel LWIR are concatenated is used
as input. It was designed considering various single channel
inputs (i.e. panchromatic, LWIR, SWIR, and MWIR images)
used in aerial field. It has very concise layers, a total of
5 convolution blocks, 5 AVIR blocks, and 5 pooling to form a
layer, and the features after the last 2d convolution are input to
the fully connected layer through global average pooling. The
5 convolution blocks used for this include 3 × 3 filter, zero
padding of 1, stride of 1 interval, batch normalization [36],
and ReLU. Finally, only a scalar value is reduced to 0 and
1 through the sigmoid function, 0 means mismatching and
1 means matching. Figure 5 is a schematic structure of the
network, and Table 1 is a description of each block of AVIR-
Net. CB is convolution block which consists of convolution
of 3× 3 filter, batch normalization, and ReLU. AT stand for
attention module. MP stand for a max pooling. GP stand for a
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FIGURE 5. The architecture of the AVIRNet.

FIGURE 6. The AVIR block.

global average pooling. FC is a fully connected layer. Filters
of AT are composed of three types, which are horizontal,
vertical, and spatial filters in order. P stands for padding and
S stands for stride. Figure 6 is the AVIR block. Max pooling
and average poolingmake different feature from previous fea-
ture. After Horizontal and Vertical convolution, feature can
concentrate in an edge information. 1× 1 convolution makes
combination of the horizontal and vertical edge information.
Sigmoid function can compress the result.

The following is the description of the AVIR block. When
designing the attention map, the most focused information
was judged to be edge information through manual regis-
tration. To this end, we designed an edge module through
filters on the horizontal and vertical axes to include less spa-
tial information. Assuming F as a feature after convolution,
channel-wise max pooling and avg pooling for the feature
are equal to Favg ∈ R1×H×W and Fmax ∈ R1×H×W . Each
pooling is indicated by Favg = AvgPool (F) and Fmax =
MaxPool (F), and the edge module can be expressed as a
horizontal convolution module and a vertical convolution
module as in (1) and (2).

Ex (F) = f 1×sx [Favg;Fmax] (1)

Ey (F) = f sy×1[Favg;Fmax] (2)

Equation (1) is designed so that horizontal information can
be judged deeply by configuring a horizontally long filter,
and (2) is configured with a vertically long filter. So, each
feature makes it easy to utilize horizontal and vertical infor-

TABLE 1. Network parameters of avirnet.

FIGURE 7. Horizontal convolution filter(left), vertical convolution
filter(middle), a feature after the concatenate process(right).

mation. As for the padding used for each filter, the quotient of
filter size divided by 2 is applied to the horizontal and vertical
axes on both sides of the feature. [A; B] means concatenate
between A and B. Equation (1) is a 1 × sx filter designed
in the direction of the x-axis, and the left of Figure 7 is an
example of a convolution diagram using a 1 × 5 filter. Also,
(2) is a filter designed in the y-axis direction, as shown in
the middle of Figure 7. In addition, the combined feature
through (3) is extracted through spatial convolution of sa× sa
size of horizontal information and vertical information, and
the final value of each pixel is compressed to 0-1 through the
sigmoid function marked σ in (4). The feature of the final
attention model is the dimension of M (F) ∈ R1×H×W . The
strength of this Edge Module is to expand the judgment of
edge information to overall spatial information by judging
horizontal and vertical information as different paths. As we
change the values of sx , sy, and sa we deal with the filter size
most appropriate for the matching rate of aerial data through
an ablation study.

S (F) = f sa×sa [Ex (F) ;Ey (F)] (3)

M (F) = σ (S(F)) (4)

The learning loss used a binary cross entropy loss for
finding the correct answer and a smoothing term. Human can
judge matching as 1 and mismatching as 0, but in machine
learning, the concept of probability distribution, there cannot
be a perfect integer result. Therefore, the smoothing term was
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FIGURE 8. The DJI M200 drone and DJI XT2 camera.

additionally set to make it impossible to have perfect 0 and 1,
and the performance improvement is also presented through
an ablation study that is higher than the case of using a single
binary cross entropy for finding the correct answer.

L =−yi log (N (xi; θ))−(1−yi) log (1−N (xi; θ)) (5)

L ′ = (1− ε)L (yi,N (xi; θ))+ εL
(
1
2
,N (xi; θ)

)
(6)

L of (5) is an abbreviation for binary cross entropy loss. yi
is a ground truth and N (xi; θ) is the output of the input xi by
the model parameter θ . Equation (6) is a loss equation which
contains smoothing term used in the experiment. For the loss
ratio, the ratio of binary cross entropy loss and smoothing
term is determined by the ε value, and 0.05 was used in the
experiment of this paper. N (xi; θ) is the probability result
and is the value after the sigmoid function. yi is the desired
learning target, meaning 0 for mismatching and 1 for match-
ing. L (1/2, p) is the smoothing term from the center of [0, 1]
when p = N (xi; θ). This smoothing term helps the resulting
values converge slightly by 0.5.

IV. EXPERIMENT
A. DATASET
Drones with visible/TIR cameras are one of the newest
devices that can be organically used in civilian and defense
applications to monitor objects day and night. We acquired
drone data for surveillance and reconnaissance research and
confirmed that the two images have different fps due to
different devices. To solve this problem, a matching net-
work was implemented to check the correlation between two
images. For the visible/TIR data set, a matching set was con-
structed using the aerial data measured with DJI M200 model
drone and DJI XT2 camera. Through this, four locations
in Gyeongsan, Gyeongsangbuk-do, Republic of Korea were
filmed. The XT2 can shoot both a thermal camera and a visual
camera at the same time, and the spectral range for the thermal
imaging camera is 7.5 to 13.5µm. The possible shooting
temperature includes the range of −25 to 135◦C. The spatial
resolution is 640 × 512 and it has an operating cycle of
30 fps. The visual camera has a FOV of 57.12◦×42.44◦ and
a maximum resolution of 3840 × 2160. Figure 8 shows the
DJI M200 drone and DJI XT2 camera.

FIGURE 9. Thermal infrared image(left) and visible image(right).

FIGURE 10. Distortion calibration images of visible image(up) and
thermal infrared image(down).

Figure 9 is examples of an aerial image. The following is
a description of the overall process for the acquired drone
dataset. The drone data of the EO/IR pair we acquired was
taken from the same position and angle. Due to the charac-
teristics of the drone, when we check the acquired images,
the Barrel distortion effect in EO images and the pincushion
distortion effect in TIR images are occurred. To geometrically
correct it, wemeasured internal and external parameters using
Matlab and geometric correction was performed using the
camera calibration toolbox [60]. Also, registration between
two images was performed through homography registration.

Among Matlab toolbox, Camera Calibrator can check
internal and external parameters of the camera and identify
lens distortion. It includes a camera calibration function.
In addition, calibration should be performed using the chess
board image acquired using the Visible/IR camera. In the case
of aerial photography, since the focal point is at a far distance,
correcting the chess board image measured at a short distance
may cause a large error for long distance image registration.
Thus, a black-and-white image of a chess board shape as
shown in figure 10 was obtained using a 60cm x 60cm tile
sculpture measured from above, and the obtained internal
parameters are shown in figure 11.

The Figure 10 was obtained after correcting for lens distor-
tion. The transformation between two coordinates by homog-
raphy is shown as (7). Since the two sensors acquire images
using a single drone, by obtaining the imagematching param-
eters only once, all photos at similar height can use the single
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FIGURE 11. Cameras intrinsic parameter of visible camera (left) and TIR
camera (right).

homography matrix. In coordinate system transformation
using homography, when four matching pairs are obtained for
two matching points p and p’, coordinate transformation is
possible through the following matrix in (7). In the formula,
if the coordinates corresponding to x, y, and 1 on the right
are p, the coordinates corresponding to wx’, wy’, and w are
p’ [61]. wx ′wy′

w

 =
 h11 h12 h13
h21 h22 h23
h31 h32 h33

 xy
1

 (7)

Finally, Figure 12 was obtained through lens distortion
correction and homography correction to match visible and
TIR. The problem with data generated in this way is that data
generated by manual matching of heterogeneous sensors has
pixel errors. The first cause is an error caused by geometric
correction. The second cause is the error due to the distance
between the stereo cameras. The minimum pixel error of the
data we finally computed can yield an error of 0 to 5 pixels,
and since the error can prevent the network learning, we scale
the original data by 1/4 to reduce the error to 0 to 1.25 pixels.
In addition, due to the limitation of manual homography
stereo matching, the error widened toward the outside, so the
experiment was conducted using 1024×1024 in the center of
the image. In various papers, there have been cases in which
data sets are constructed with an input size of 64× 64 and a
smaller input size of 36×36. However, considering the nature
of the aerial data, the input size was selected as 128× 128 in
consideration of the data information. Too small image patch
does not have enough information for registration. Through
preprocessing, we obtain matching patches at Figure 13.
We filmed a variety of environments, including farmland,
settlements, rivers, college towns, roads, and forests. Scene 1
is the university interior and forest, scene 2 is the driveway
and building, scene 3 is the village, forest, parking lot and
driveway, and scene 4 is around the university’s main gate,
farmland, and stream. Since the data cannot be disclosed due
to internal security issues, a clear designation is omitted. The
data structure was divided into 4 data taken at different loca-
tions as shown in Table 2. Training data consist of scenes 1, 2,
and 3 and validation data consist of scenes 3which is different
of training data but has similar aerial property with training
data. In addition, test was conducted using the parameters of
the epoch with the lowest validation loss, and the test was
configured using scene 4. Due to the nature of the aerial drone
dataset, we often observe unlearned landscapes, so it was
judged that it was the right experimental result to obtain a
robust network even in scene 4 that is not related to the train
set.

FIGURE 12. Visible and thermal-IR matching result.

TABLE 2. Train, validation, and test set.

B. EXPERIMENT SETTING
For experiments, AdamW [62] was used, learning rate was
0.001, and the beta values were 0.9 and 0.999. The learning
rate was adjusted using the cosine annealing scheduler [63].
The training epoch used is 100 epochs. Batch size is 16 for
train. In addition, the data loader stage was configured as
shown in figure 14 to learn various mismatching for learning.
It is judged to be 1 in the case of a matching patch and
0 in the case of mismatching. In addition, if the r distance
is set in the data loader, the data loader is configured so
that learning can be robust even at various pixel distances
by using mismatching patches at random angles for data that
deviate by the corresponding distance from the center of the
reference image. The configuration of this data loader can
increase the diversity for mismatching pairs, and the range
from 0 to 360◦ is used, and r uses the range of [50, 70] to
increase the diversity through a random distribution in which
the input is not determined. A random flag was given with
a probability of 1/2 during training so that mismatching and
matching data automatically occurred. Figure 14 shows the
data loader.

C. ABLATION STUDY
In this paper, a total of 11 network experiments were con-
ducted, and the networks used were 5 matching networks
and 6 classification networks. We use overall accuracy (OA)
of (11) and mean accuracy (MA) of (12). Because A random
flag with a fixed seed is used in data loader. TP means that
a classification result is positive, and the result is correct.
FNmeans that a classification result is negative, and the result
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FIGURE 13. Data examples. (a) matching images, (b) mismatching images.

FIGURE 14. Matching data loader.

is incorrect. TN means that a classification result is negative,
and the result is correct. We use true positive rate (TPR) of (8)
and true negative rate (TNR) of (9) for calculating accuracy.

TPR =
TP

TP+ FN
(8)

TNR =
TN

TN + FP
(9)

MA =
TPR+ TNR

2
× 100(%) (10)

OA =

∑
(TP+ TN )
All

× 100(%) (11)

Table 3 is the result according to the operation of the AVIR
block. (∗) means a broadcast element-wise multiplication.
We think that broadcast element-wise multiplication had a
direct effect on features and (+) was done to avoid excessive
data loss. This is because, when the AVIR block is applied
directly to the broadcast element-wise multiplication to the
feature, most values except for the edge become close to 0. So,
(+) can prevent values from disappearing. In this experiment,
only broadcast element-wise multiplication applied gave the
best performance.

we used batch normalization, and through this, learning
was carried out through edge emphasis, which was appropri-
ate to keep the feature values from being completely zero.
Figure 15 shows features at each stage of AVIR block. The
vertical features are from (2) and the horizontal features are
from (1) at every attention block. We denote area which is
from (4). When looking at these features intuitively, it can be
confirmed that edge information is detected in the first AVIR
block. When the filter is designed long, the network learns
edge information by itself. As the network deepens, various
convolution layers are applied, and the shape of the feature
extracted from the AVIR block is transformed. We extract the
features from every attention block and each feature size is
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FIGURE 15. AVIR Block features. (a) is matching case and (b) is non-matching case.

128×128, 64×64, 32×32, 16×16, and 8×8 from the left.
After the first AVIR block the result show the edge emphasis
image of visible and TIR. The network can automatically
learn the shape of edge and we prove the edge through visu-
alization. Table 4 is the comparison of the result according
to the loss. The smoothing term of the proposed loss was
found to have a large effect. From amachine learning point of
view, the results of 1 and 0, which are complete integer labels,
do not exist probabilistically. Therefore, using the smoothing
term resulted in good performance.

Table 5 describes the results according to the filter size of
the AVIR block, and heuristically, the highest matching rate

TABLE 3. Comparison of operator at AVIR block.

was obtained for sy, sx at 5 and sa at 1. Using AVIR block
shows better performance than not using AVIR block. In the
test, when the AVIL block was not used and the AVIL block
of sy, sx at 5 and sa at 1 was compared, the OA increased by
about 8.401%.
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TABLE 4. Comparison of loss.

TABLE 5. Comparison of AVIR block’s filter size.

Table 6 is a comparison experiment between matching
networks. (×) mark in the table means that the network could
not learn the data. As a result of the experiment, AVIRNet
obtained the dominant result. In the experimental process,
Dense-based network [2], 2ch-2stream [31], and TS-Net [28]
all performed matching learning with visible and NIR, the
reflection band, and 2ch [3] and Domain Siamese [64] per-
formed visible and TIR. Although we conduct same setting
experiment with domain Siamese network [64], Learning
did not proceed. The boundary of the used data is clearer,
and the characteristics are clearer than our data, because
the experiment was conducted using [58], [59], which is
data with a clear temperature difference in an indoor space.
In addition, there is a difference in information between the
information around people of TIR used in the experimental
process and the aerial data used in this paper. An experi-
ment was conducted using the data of the size used in each
paper. On the other hand, none of the networks learned.
Furthermore, although the networks learned using the data
size 128× 128, they did not learn when the data was resized
to the size used in each paper.

Since the input was 128× 128, we could proceed with the
experiment using the classifier network. To experiment with
classifiers for different input sizes, we removed the flatten
function before the fully connected layer of all networks
and the multiple fully connected layers after convolutional
layers. We replaced fully connected layers with a single
fully connected layer using global average pooling. This was
changed because the input data size of different networks was
not constant, and it was not learned in the experiment using
the flatten function of the fully connected layer used in the
existing matching network [2], [3], [31]. In VGG 5, 6, and 7,

TABLE 6. Comparison of registration networks.

our research team confirmed the result of not learning in the
network study of a single fully connected layer using flatten,
so we obtained the results shown in Table 7 by using global
average pooling instead of vector flatten. In addition, it was
confirmed that learning of 2ch-2stream [31] was performed
by changing the fc layer using flatten to the fc layer using
global average pooling and changing the convolution filter
size from 5×5 to 3×3. Because vector flatten ignores channel
information and spatial information, it is not considered to
be suitable for learning complex data and large-size images.
VGG includes 3 fc layers in the network itself, but it is
removed and replaced with 1 fc layer using global average
pooling.

We also constructed the network in Table 7 to test how
the change in the number of convolutions in the existing
classification network affects. VGG 5, 6, and 7 do not exist
at official paper. These use 2, 3, and 4 of the first convolu-
tion blocks (convolution + batch normalization + ReLU) of
VGG9 and 2, 3, and 3 max pooling, respectively. ResNeXt
also, ResNeXt11, 20, 38, 47, 56 layers do not exist as official.
This was expressed as 11, 20, 29, 38, 47, and 56 for the case of
using 1 to 6 Residual Blocks of ResNeXt29, respectively. As a
result of the experiment, it was confirmed that many flops and
parameters does not obtain good results in matching unlike
classifiers, and the performances of VGG19, ResNeXt38, and
DenseNet121 are good in the existing network. However,
since it is necessary to find a matching point in a large
image, the number of network parameters and the number
of floating point operations (FLOPs) have a large effect on
the time to find a matching point. AVIRNet is 1.792% higher
in validation OA and 1.897% higher in test OA than VGG19
which is second highest. The multiplier-accumulate (Mac) is
4.89 GMac for VGG19 and 0.83 GMac for AVIRNet, which
is×5.89 difference. As the number of parameters, VGG19 is
20.04M and the proposed network is 3.91M, which is ×5.12
difference. These results show that AVIRNet using horizontal
and vertical filters effectively finds features compared to
existing networks using 3× 3 convolution as a basic filter.
The following explains the robustness of the edge mod-

ule in matching through comparison with the existing atten-
tion module. The attention blocks used for comparison
are SE [52], which is channel attention, BAM [53] and
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TABLE 7. Comparison of classification networks.

CBAM [54], which use channel attention and spatial attention
at the same time. These were tested by substituting the AVIR
block of AVIRNet, and as a result, it was confirmed that
the AVIR block obtained a high matching rate. This result
indicates that emphasizing edge information is more efficient
in matching than emphasizing spatial information.

Figure 16 shows thematching scoremap of slidingwindow
from a test dataset. We execute sliding window for visualiza-
tion of matching score map. The interval of sliding window is
2 pixel and the result show the highest value at center point.
We do not recommend to learning too short r distance at data
loader. A very small r is considered non-matching, and when

TABLE 8. Comparison of attention module.

FIGURE 16. Matching Graph. (a) a visible image and a center
128 × 128 image of the TIR, (b) matching score map.

the label is set to 0, it may actually be positive due to an image
pixel error. the resulting value can be larger than the threshold
value of 0.5. In conclusion, the highest value was obtained at
the center point (128, 128) in this example.

V. CONCLUSION
The use of large size input can handle registration information
through feature learning rather than edge information. There-
fore, the matching result, which was strong in the validation
set, can lead to a low result in the test set that was not used for
learning, and these results may cause unexpected problems
in the problem of automatic registration. We applied the
edge attention module to construct a network that can derive
robust matching results even for unlearned data, although
the input is larger than that of the existing matching net-
works. In addition, we proposed a matching network suit-
able for flight data matching and obtained 1.897% higher
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matching overall accuracy even when 11 convolution layers
were insufficient than VGG19, which performed the best
in the existing classification network. Efficient removal of
network parameters and judgment of matching results over
existing layers through the attention module are meaning-
ful because they are like human visual effects. As a result,
it showed 6.233% higher performance than the SE [52] block,
which showed the best performance among attention mod-
ules. we hope not only the effect of increasing the matching
rate due to the addition of convolution in various framework
configurations of the matching network, but also the effect
of increasing matching rate using the attention module. This
process is expected that it makes easy to design a fusion
model for detection through preprocessing of EO/IR data that
finds matching points. Recently, it has been found that the
performance of object classification and detection using a
transformer is excellent. This shows better performance than
CNN-based technology when learning through a lot of data.
With the advancement of these technologies, the matching of
heterogeneous images should also be studied in the direction
of deriving high accuracy by learning a lot of data. This is
because, in the case of night, it is difficult to detect an edge
compared to the daytime and scattering by light is sufficient
to prevent common edge detection between heterogeneous
images. So, deriving more precise results through learning a
lot of data will show excellent performance in day and night
surveillance and reconnaissance. Our research team plans to
conduct research using transformers in the future.
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