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ABSTRACT This article presents formulations for the voltage-in-current (VinC) latency insertion
method (LIM) for thin-film transistors (TFTs). LIM is a fast circuit simulation algorithm that solves circuits
in a leapfrog manner, without requiring intensive matrix operations present in SPICE-based simulators. This
allows LIM to have a far superior scaling with respect to the size of the circuit resulting in significant time
savings on large circuit networks. The VinC LIM formulation for the TFTs written in this article has the
benefit of a better stability compared to the original LIM formulation which allows the use of larger time
steps. The performance of the new algorithm is demonstrated through the simulation of numerical examples
of large flat-panel display (FPD) circuits. It is seen that VinC LIM greatly outperforms basic LIM and
commercial SPICE-based simulators, where the presented algorithm is able to simulate circuits with more
than 10 million nodes or devices in a reasonable time, which is not viable in many modern day SPICE-based
simulators.

INDEX TERMS Circuit analysis, latency insertion method, thin-film transistor.

I. INTRODUCTION
As the drive for higher functionality, capacity, and efficiency
continues to push the consumer industry in IC products for-
ward, the complexity and sheer size of the analog and digital
circuitry inside these devices continue to rise in tandem as
well. In order for a design to succeed, a mature product
with the latest process technology node requires support dur-
ing every step of the development process. From front-end
design steps, to back-end packaging and test procedures, all
sections of the design and verification process have to be
equipped with the latest technology with sufficient capabil-
ities to avoid potential failures. This presents a big challenge
in the semiconductor industry today as product designs need
to be signed-off, by passing through various modeling and
simulation verifications, before being sent to the foundry to
reduce the time and manufacturing cycles with the ultimate
goal of minimizing development costs.

The associate editor coordinating the review of this manuscript and

approving it for publication was Dus̆an Grujić .

In this regard, access to accurate and fast modeling and
simulation tools is paramount to the success of a prod-
uct. Most of the commercial tools on circuit simulations
today rely on the Simulation Program with Integrated Circuit
Emphasis (SPICE) [1] algorithm, which was originally devel-
oped in 1973, based on the modified nodal analysis (MNA)
framework, with a heavy reliance of sparse matrix solvers.
However, with the continued scaling of process technology
nodes, more and more devices are now crammed into a sin-
gle product, where a full circuit design can contain tens or
even hundreds of millions of device elements. This creates
a simulation bottleneck, where state-of-the-art simulators are
no longer able to copewith the sheer large size of the resulting
MNA matrices from these circuits, thus opening the door to
new methods which could potentially replace the presently
aging simulation algorithms.

The latency insertion method (LIM) was originally devel-
oped as an alternative to SPICE-based solvers for the
fast transient simulation of large networks [2]. Since
then, various improvements to the algorithm have been
presented, which includes the block-LIM [3], partitioned
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LIM (PLIM) [4], predictor-corrector LIM [5], locally
implicit LIM (LILIM) [6], alternating direction explicit-
LIM (ADE-LIM) [7], and the voltage-in-current LIM (VinC
LIM) [8]. These algorithms have been applied in a myriad
of applications, including power supply networks [9]–[12],
transmission lines [13], [14], electro-thermal analysis [15],
I/O buffers [16], [17], phase-locked loops [18], and power
electronic systems [19], [20].

Recently, thin-film transistors (TFTs) have grown in
prominence as the standard device in display technology
particularly in flat panel displays (FPDs) based on the organic
light-emitting diode (OLED) display technology [21]–[23].
In these active-matrix devices, individual active switching
elements are used to control each of the pixel in the panel.
As a result, the simulation of these circuits are incredibly
resource consuming from a runtime perspective as they con-
tain millions of transistors, which make up the array of pixels
for a given resolution. For example, a full HD (1080p) display
can contain more than 40 million TFTs, and this number goes
up even higher in 4K and 8K displays. These massive circuits
are far beyond the capacity of state-of-the-art commercial
simulators, which often struggle in both runtime and memory
requirements due to the poor scaling of their matrix based
operations.

In this article, formulations for the simulations of TFTs
in the LIM framework are presented. First, the background
and fundamentals of the original LIM and VinC LIM
are reviewed. Then, augmentations to the formulations are
presented for TFTs, which include the drain-source cur-
rent, and the gate-drain and gate-source intrinsic capac-
itance currents. Practical steps are discussed to control
the accuracy and improve the runtime. Finally, numerical
results are presented, including large FPD arrays of vary-
ing resolutions, to illustrate the viability of the method
for the simulations of very large circuits. Results show
that the proposed TFT VinC LIM simulation algorithm
is able to produce accurate simulation waveforms, while
having a capacity far exceeding the original LIM simula-
tion algorithm and state-of-the-art SPICE-based commercial
simulators.

The rest of the paper is organized as follows. In Section II,
the fundamentals of the original LIM and VinC LIM
algorithms are reviewed. Then, in Section III, new for-
mulations of the LIM algorithms for TFTs are derived
in both the original LIM and VinC LIM frameworks.
In Section IV, numerical results are presented for differ-
ent TFT circuits, and the performance of the developed
VinC LIM TFT algorithm is compared with the original
LIM algorithm and a current generation SPICE simulator
in terms of accuracy and speed. Finally, Section V con-
cludes the article and proffers some future work on the
subject.

II. LIM FORMULATION
The fundamentals of basic LIM and VinC LIM are reviewed
in this section.

FIGURE 1. Circuit topology required for LIM simulation. (a) Branch
topology. (b) Node topology.

A. BASIC LIM FORMULATION
The original LIM or basic LIM is a circuit simulation algo-
rithm that is devised for the solution of large and dense
networks. To analyze a circuit with LIM, the circuit must be
composed of nodes and branches with topologies as shown in
Fig. 1, where Vi and Vj are node voltages at node i and node
j respectively, Iij is the branch current flowing from node i
to j, Lij, Rij, and Eij are the branch inductance, resistance,
and voltage source respectively, Ci, Gi, and Hi are the node
capacitance, conductance, and current source respectively,
and the currents labeled from Ii1 to Iik are the branch currents
that are connected to node i.
From the circuit topology in Fig. 1, the LIM algorithm is

formed by applying Kirchhoff’s laws, where the inductance
and capacitance in each topology results in a derivative term
in their equations, which are linearized through the applica-
tion of Euler’s method. By solving the equations, the basic
LIM formulations can be obtained as

In+1ij = Inij +
1t
Lij

(
V
n+ 1

2
i − V

n+ 1
2

j − RijInij + E
n+ 1

2
ij

)
(1)

V
n+ 1

2
i = V

n− 1
2

i +
1t
Ci

(
Hn
i − GiV

n− 1
2

i −

Mi∑
k=1

Inik

)
(2)

whereMi indicates the total number of branches connected to
node i,1t is the time step of the simulation, and n is the time
index which marks the time point in the transient analysis.
In a LIM simulation, the leapfrog concept is applied where (1)
and (2) are performed in an alternating manner throughout
the transient flow. The leapfrog updating pattern is indicated
by the half time step difference in the indices of the voltage
and current equations where the voltage values are solved
for a half time step before the current values are solved for.
Small values of latencies (capacitances and inductances) are
required in order to perform this time stepping solution, and
fictitious values are inserted into the circuit if they are not
present.

Compared to SPICE based methods, which make use of
MNA stamps and implicit simultaneous solutions of equa-
tions, the LIM simulation is performed in an explicit manner.
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This gets rid of heavy matrix computations and hence, allows
the LIM analysis to scale better with the size of the circuit
and be carried at a relatively faster speed, especially for
very large networks. However, since Euler’s approximation is
used, the selection of the time step becomes a limiting factor
for the stability of the simulation. Through the application of
Lyapunov’s method [24], the maximum allowable time step
value for stability can be calculated by

1tmax =
√
2

nN
min
i=1


√√√√Ci
niB

niB
min
m=1

Lim

 (3)

where nN is the number of nodes in the circuit, niB is the
number of branches connected to node i, Ci is the value of the
shunt capacitor at node i, and Lim is the value of the inductor
in the mth branch connected to node i. Based on (3), it can be
observed that the maximum stable time step value of a LIM
simulation depends on the minimum value of the latencies
in the circuit. Therefore, there is always a trade-off between
simulation time and accuracy in a LIM simulation if fictitious
components are required to be inserted into the circuit. Bigger
fictitious components lead to a drop in accuracy while smaller
values lead to a significant increase in total simulation time as
the maximum stable time step is reduced to very small values.

B. VOLTAGE-IN-CURRENT LIM FORMULATION
The main limitation of LIM is its conditional stability which
results in the use of very small time steps. To solve this,
various improved versions of LIM have been introduced.
VinC LIM [8] is an improved formulation of LIM for better
stability and it is formulated by rewriting equations (1) and (2)
in their respective implicit versions at the same time step of
n+ 1. These equations are given by

V n+1
i =

Ci
1tV

n
i −

∑Mi
k=1 I

n+1
ik + Hn+1

i
Ci
1t + Gi

(4)

In+1ij =

Lij
1t I

n
ij + V

n+1
i − V n+1

j + En+1ij
Lij
1t + Rij

. (5)

Then, VinC LIM is formed by substituting the voltage
equation in (4) into (5) and solving the substituted equation
for the In+1ij terms. The resulting current equation in VinC
LIM is given by

In+1ij =

Lij
1t I

n
ij +

Ci
1t V

n
i +H

n+1
i −

∑Mi
k=1,k 6=j I

n+p
ik

Ci
1t+Gi

−

Cj
1t V

n
j +H

n+1
j −

∑Mj
k=1,k 6=i I

n+p
jk

Cj
1t+Gj

+ En+1ij

Rij +
Lij
1t +

(
Gi +

Ci
1t

)−1
+

(
Gj +

Cj
1t

)−1 (6)

where
∑Mi

k=1,k 6=j I
n+p
ik is the sum of currents flowing out of

node i, and
∑Mj

k=1,k 6=i I
n+p
jk is the sum of currents flowing

out of node j, without considering the Iij current in both
summations. In order to circumvent the added complexity of

the implicit formulation, a forward branch-marching scheme
is applied in VinC LIM, where the sequence of the currents
in the updating process is taken into consideration, and the
latest available current value is always used. This is indicated
by the indices p that are shown in the equation, where p is
either 1 or 0, depending on whether the associated current
has been solved for or not, before the present computation
at this time step. Compared to the explicit derivation of the
basic LIM formulation, the implicit derivation of the VinC
LIM formulation leads to improvements in the stability of
the algorithm. Previous results on VinC LIM have shown
the method to be unconditionally stable, thus allowing the
use of timesteps far greater than that which is permitted in
basic LIM.

III. LIM FORMULATION FOR RPI THIN-FILM
TRANSISTORS
Both the basic LIM and VinC LIM formulations discussed in
the previous section are limited to the simulation of linear
circuits only. Hence, more work is required to extend the
coverage of the LIM formulations to other devices especially
transistors in order to support the simulations of various prod-
ucts. In this work, the formulations for basic LIM and VinC
LIM for thin-film transistors (TFTs) are presented. TFTs are
the main active devices which are commonly used in display
panels such as those based on the organic light-emitting
diode (OLED) display technology. This section covers the
formulation for the drain-source current and the gate-drain
and gate-source intrinsic capacitance currents based on the
Rensselaer Polytechnic Institute (RPI) TFT model using
LIM’s formulation.

A. BASIC LIM FORMULATION FOR RPI TFT
DRAIN-SOURCE CURRENT
For circuit simulations, the operation of a TFT device is
mainly classified into two parts, which are the calculation of
the drain-source current, Ids, also known as the main current,
and the intrinsic capacitance currents made up by the gate-
drain current, Igd and the gate-source current, Igs. Fig. 2
shows a simplified equivalent circuit of a RPI TFT model
where Vd , Vg, and Vs represent the node voltages at the drain,
gate, and source nodes of the TFT respectively, the three
arrows represent the default directions of Ids, Igd , and Igs
current flows, and Cgd and Cgs are the intrinsic capacitances
that exist between the gate-drain and gate-source terminals
respectively. In this part, the formulation of the Ids current in
the basic LIM formulation is discussed.

In basic LIM, the voltage equations at the three different
terminals of the RPI TFT model are given by

V
n+ 1

2
d =

Cd
1t V

n− 1
2

d −
∑Md

k=1 I
n
dk + H

n
d

Cd
1t + Gd

(7)

V
n+ 1

2
s =

Cs
1tV

n− 1
2

s −
∑Ms

k=1 I
n
sk + H

n
s

Cs
1t + Gs

(8)
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FIGURE 2. Equivalent circuit of a RPI thin-film transistor.

V
n+ 1

2
g =

Cg
1tV

n− 1
2

g −
∑Mg

k=1 I
n
gk + H

n
g

Cg
1t + Gg

(9)

where Vd , Vs, and Vg represent the voltages at the drain,
source, and gate nodes of the TFT at their respective indices
of n + 1

2 and n − 1
2 . C is the shunt capacitance, G is the

conductance, and H is the current source at the nodes labeled
according to their respective nodes d , s, and g, and Md , Ms,
andMg represent the number of branches connected to nodes
d , s, and g respectively.
In the basic LIM formulation, the drain-source current

formula of the TFT model can be applied directly in the
equations. Taking an example using version 1.0 of the RPI
poly-Si TFTmodel, the drain-source current equation is given
by

Ids =
Ia · Isub
Ia + Isub

(1+1kink)+ Ileak (10)

where Isub is the subthreshold current, Ia is the above thresh-
old current, 1kink takes into account the kink effect, and
Ileak is the leakage current. By adding suitable indices to the
current terms in the equation, the basic LIM current equation
for the version 1.0 RPI poly-Si TFT drain-source current is
given by

In+1ds =
In+1a · In+1sub

In+1a + In+1sub

(
1+1n+1

kink

)
+ In+1leak . (11)

Although not indicated here, the terms in (11), namely
In+1sub , In+1a , 1n+1

kink , and In+1leak depend on the voltage terms,

V
n+ 1

2
d , V

n+ 1
2

s , and V
n+ 1

2
g . A detailed explanation of these

terms will be shown in the next part of this section together
with the explanation of the VinC LIM formulation for
the drain-source current. For illustration, Fig. 3 shows the
chain relationship between the terms in the version 1.0 RPI
poly-Si TFT model from the terminal voltages, to the final
drain-source current formula.

This method can also be extended to other RPI TFT mod-
els. For example, in the version 2.0 RPI poly-Si TFT model,

the basic LIM current equation can be written as

In+1ds = In+1ds1 ·

(
1+1n+1

kink

)
+ In+1leak (12)

where In+1ds1 is the channel current, and 1n+1
kink and In+1leak are

again the variables accounting for the kink effect and the
leakage current respectively, and both of them are func-

tions of V
n+ 1

2
d , V

n+ 1
2

s , and V
n+ 1

2
g . Compared to version 1.0,

this version includes more effects and is more accurate for
short-channel RPI TFT devices. The detailed formula for
these terms will be shown in the next part of this section.
Similar to Fig. 3, Fig. 4 shows the relationship between
the voltage dependent variables in this version where more
variables and more complex relationships can be observed.

B. VinC LIM FORMULATION FOR RPI TFT DRAIN-SOURCE
CURRENT
To derive the VinC LIM formulation, the voltage equations at
the drain, source and gate terminals of the TFT can first be
written as

V n+1
d =

Cd
1t V

n
d −

∑Md
k=1,k 6=s I

n+1
dk − I

n+1
ds + H

n+1
d

Cd
1t + Gd

(13)

V n+1
s =

Cs
1tV

n
s −

∑Ms
k=1,k 6=d I

n+1
sk + I

n+1
ds + H

n+1
s

Cs
1t + Gs

(14)

V n+1
g =

Cg
1tV

n
g −

∑Mg
k=1 I

n+1
gk + H

n+1
g

Cg
1t + Gg

(15)

where the same time index of n + 1 is used in the voltages
and the currents, and the Ids terms have been extracted out
from the total current summations for emphasis. The signs of
the Ids currents are different in the two equations to signify a
current direction flowing in or out of a node. The Ids current
is not shown in the gate voltage equation as in most cases, the
gate node is independent of the Ids current, unless the gate and
drain, or gate and source nodes of a TFT is shorted, where
either Vg = Vd , or Vg = Vs. In such cases, equation (13)
or (14) will be used to represent the gate voltage equation
depending on the respective situation.

Then, a general equation of Ids can be written as

Ids = I
(
Vd ,Vg,Vs

)
(16)

for a RPI TFT model where its drain-source current depends
on the voltages at all the terminals of the TFT. Since the
terminal voltages of the TFT can also be functions of Ids, this
equation can be further written as

Ids = I
(
Vd (Ids) ,Vg (Ids) ,Vs (Ids)

)
(17)

where the time indices have been omitted to avoid convolut-
ing the expressions.

To apply the concept of VinC LIM into the Ids current
formulation, (17) needs to be solved for the Ids term. This can
normally be done bymoving all the Ids terms in the right-hand
side of the equation to the left-hand side of the equation,
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FIGURE 3. The chain relationship of the variables in version 1.0 RPI poly-Si TFT for a drain-source current simulation. All the variables will be
discussed in Subsection III-B.

FIGURE 4. The chain relationship of the variables in version 2.0 RPI poly-Si TFT for a drain-source current simulation. All the variables will be
discussed in Subsection III-B.

and solving for Ids. However, since the TFT is a non-linear
device, this is not a straightforward process, and linearizing it
would cause accuracy drops especially when larger time step
values are applied. To overcome this, a Newton-Raphson iter-
ation is introduced to the process of solving the drain-source

current. Such an idea has also been applied in the formulation
of VinC LIM for diodes [25]. The general formula of the
Newton-Raphson method is given by

xnew = xold −
F (xold )
F ′ (xold )

(18)
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and by substituting the x terms into Ids, the equation can be
written as

Ids,new = Ids,old −
F
(
Ids,old

)
F ′
(
Ids,old

) (19)

where Ids,new and Ids,old are the present and previous Ids
values in the Newton-Raphson loop, F

(
Ids,old

)
is the value

of the differentiable function F (Ids) when substituted with
the Ids,old value, and F ′

(
Ids,old

)
is the derivative of F

(
Ids,old

)
with respect to Ids,old . The differentiable equation F (Ids) and
its derivative F ′ (Ids) can be obtained from (17), where they
are described by

F (Ids) = Ids − I
(
Vd (Ids) ,Vg (Ids) ,Vs (Ids)

)
= 0 (20)

and

F ′ (Ids) = 1− I ′
(
V ′d (Ids) ,V

′
g (Ids) ,V

′
s (Ids)

)
= 0 (21)

respectively, where V ′d (Ids) = −

(
Cd
1t + Gd

)−1
and

V ′s (Ids) =
(
Cs
1t + Gs

)−1
are the resulting derivatives with

respect to Ids of the drain voltage, Vd , and the source voltage,
Vs, from the LIMnode equations in (13) and (14) respectively.
Note that V ′d (Ids) and V ′s (Ids) can be zero if the node is
independent of the Ids current. The exact equations use in
F (Ids) and F ′ (Ids) are dependent on the types and properties
of the TFT models. In this formulation, the version 1.0 and
version 2.0 RPI poly-Si TFT models are considered.

For the version 1.0 RPI poly-Si TFT with the Ids equation
shown in (10), the differentiable equation for this TFT model
is given by

F (Ids) = Ids −
(
Ia · Isub
Ia + Isub

(1+1kink)+ Ileak

)
(22)

and the derivative of the equation is given by

F ′ (Ids) = 1−

(
I ′a · I

2
sub + I

2
a · I

′
sub

(Ia + Isub)2
· (1+1kink)

+
Ia · Isub
Ia + Isub

·1′kink

)
− I ′leak (23)

where I ′a, I
′
sub, 1

′
kink , and I

′
leak are the derivatives of Ia, Isub,

1kink , and Ileak respectively with respect to Ids. Then from the
RPI TFT modeling equations [26], the subthreshold current,
Isub is given by

Isub = us · fcox ·
weff
leff
· v2sth · e

Vgt
vsth ·

(
1− e−

Vds
vsth

)
(24)

where us is the subthreshold mobility, fcox is the ratio of
the gate insulator permittivity to the thin-oxide thickness,
weff is the effective width, leff is the effective length, and
vsth = η·vth, where η is the subthreshold ideality factor and vth
is the thermal voltage at the device temperature. These four
parameters are model parameters that are independent of Ids.

Conversely, the terms Vgt and Vds are variables that depend
on Ids. Vgt can be expressed as

Vgt = Vgs − Vteff (25)

with

Vteff = vto −
at · V 2

ds + bt

leff ·
(
1+ e

Vgs−vst−vto
vsi

) (26)

where at is the first drain induced barrier lowering (DIBL)
parameter, bt is the second DIBL parameter, vsi is the first
parameter for Vgs dependence, vst is the second parameter for
Vgs dependence, vto is the threshold voltage, and

Vgs = Vg − Vs. (27)

The formula for Vds is simply

Vds = Vd − Vs. (28)

Then, the derivatives of (24) to (28) with respect to Ids are
given by

I ′sub = us · fcox ·
weff
leff
· vsth · e

Vgt
vsth

·

(
V ′gt − e

−
Vds
vsth ·

(
V ′gt − V

′
ds

))
(29)

V ′gt = V ′gs − V
′
teff (30)

V ′teff =
A′ · B− B′ · A

leff · B2
(31)

whereA = at ·V 2
ds+bt ,A

′
= 2·at ·Vds·V ′ds,B = 1+e

Vgs−vst−vto
vsi ,

and B′ =
V ′gs
vsi
· e

Vgs−vst−vto
vsi are temporary variables used to

simplify the equation,

V ′gs = V ′g − V
′
s = −

(
Cs
1t
+ Gs

)−1
(32)

by assuming that the gate terminal is independent of Ids, and

V ′ds = V ′d − V
′
s = −

(
Cd
1t
+ Gd

)−1
−

(
Cs
1t
+ Gs

)−1
.

(33)

For the above threshold current, Ia, the equation is given
by

Ia = µfet · fcox ·
weff
leff
· Vds ·

(
Vgte −

Vds
2 · asat

)
,

Vds ≤ Vdsat (linear region)

Ia = µfet · fcox ·
weff
leff
·
1
2
· V 2

gte · asat ,

Vds > Vdsat (saturation region) (34)

where asat is the proportionality constant of Vdsat , and Vdsat ,
µfet , and Vgte are Ids dependent variables with equations

Vdsat = asat · Vgte (35)
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µfet =
u0 · u1 ·

(
2·Vgte
vsth

)mu
u0 + u1 ·

(
2·Vgte
vsth

)mu (36)

where u0 and u1 are the high and low field mobility param-
eters respectively, mu is the low field mobility exponent
applied in (36), and

Vgte = vsth ·

1+
Vgt

2 · vsth
+

√
δ2 +

(
Vgt

2 · vsth
− 1

)2
 (37)

where δ is the transition width parameter. The differentiation
of (34) to (37) then yields

I ′a = fcox ·
weff
leff
·

(
µ′fet · Vds ·

(
Vgte −

Vds
2 · asat

)
+ µfet

·V ′ds ·
(
Vgte −

Vds
2 · asat

)
+µfet · Vds ·

(
V ′gte −

V ′ds
2 · asat

))
,

Vds ≤ Vdsat (linear region)

I ′a= fcox ·
weff
leff
·
1
2
· asat ·Vgte

(
µ′fet ·Vgte + 2 · V ′gte · µfet

)
,

Vds > Vdsat (saturation region) (38)

V ′dsat = asat · V ′gte (39)

µ′fet =
u20 · u1 · mu ·

(
2·Vgte
vsth

)mu−1
·
2·V ′gte
vsth(

u0 + u1 ·
(
2·Vgte
vsth

)mu)2 (40)

V ′gte =
V ′gt
2
·

1+

(
Vgt

2·vsth−1

)
√
δ2 +

(
Vgt
2·vsth
− 1

)2
 . (41)

The kink effect is observed during large drain biasing in
the TFT model and the equation is written as

1kink = akinkt ·
(
Vds − Vdsep

)
· e

−vkink
Vds−Vdsep (42)

where akinkt = 1
vkink

(
lkink
leff

)mk
, vkink is the kink effect voltage,

lkink is the kink effect constant,mk is the kink effect exponent,
andVdsep is the inner variable which depends on Ids. It is given
by

Vdsep =
Vds(

1+
(
Vds
Vdsat

)3) 1
3

− vth (43)

where Vdsat is given in (35). The differentiation of (42)
and (43) with respect to Ids through the chain rule, yields

1′kink = akinkt ·
(
V ′ds − V

′
dsep

)
· e

−vkink
Vds−Vdsep ·

(
1+

vkink
Vds − Vdsep

)
(44)

and

V ′dsep =
V ′ds · D− D

′
· Vds

D2 (45)

where D =
(
1+

(
Vds
Vdsat

)3) 1
3

and D′ =
V 2
ds

V 4
dsat

(V ′ds · Vdsat−

V ′dsat · Vds)
(
1+

(
Vds
Vdsat

)3)− 2
3

are temporary variables used

to simplify the equation.
Finally, for the leakage current, Ileak , its effect to the overall

drain-source current is minimal and its equation is described
by

Ileak = i0 · weff ·
(
e
blk ·Vds
vth − 1

) (
Xtfe − xte

)
+ Idiode (46)

where i0 is the leakage scaling constant, blk is the leakage
barrier lowering constant, xte is a temperature-dependent vari-
able, and Xtfe and Idiode are functions of Ids, where Xtfe also
depends on Xtfe,lo, Xtfe,hi, Pf , and Ff . Their detailed formula-
tions can be referred from [26] and the relationship between
the variables can be referred from Fig. 3. The derivative
of (46) is given by

I ′leak = i0 · weff ·
(
blk · V ′ds
vth

· e
blk ·Vds
vth ·

(
Xtfe − xte

)
+X ′tfe ·

(
e
blk ·Vds
vth − 1

))
+ I ′diode. (47)

This completes the formulation for the drain current of the
TFT in the version 1.0 RPI poly-Si TFT model. If intrinsic
capacitances are not considered in the TFTmodel, then at this
point, a complete VinC LIM simulation for the TFT circuit
can be performed by using (19), (22) and (23) to solve for
the Ids currents and (13), (14) and (15) for the node voltages.
To ease the convergence of the Newton-Raphson iterations,
the Ids value at the previous time step can be used as the initial
guess in Ids,old , and the converged value will be taken as the
solution.

Next, the formulation for the drain-source current of ver-
sion 2.0 of the RPI poly-Si TFTmodel will be discussed using
the VinC LIM approach. Its drain-source current equation
is given in (12) where the subthreshold current and above
threshold current terms have been replaced with the channel
current term. The differentiable equation and its derivative for
this TFT model are described by

F (Ids) = Ids − (Ids1 · (1+1kink)+ Ileak) (48)

and

F ′ (Ids) = 1−
(
I ′ds1 · (1+1kink)+ Ids1 ·1′kink

)
− I ′leak

(49)

where I ′ds1, 1
′
kink and I

′
leak are derivatives with respect to Ids

of Ids1, 1kink and Ileak . The equation for the channel current,
Ids1, is given by

Ids1 =
Gch · Vds · (1+ λ · Vds)(

1+
(
Vds
Vdsat

)me) 1
me

(50)

where λ is the channel length modulation parameter, me is
the long channel saturation transition parameter, and Gch,
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Vdsat , and Vds are functions of Ids. The derivative of (50) with
respect to Ids can be written as

I ′ds1 =
F ′ · J − J ′ · F

J2
(51)

where

F = Gch · Vds · (1+ λ · Vds) ,

F ′ = G′ch · Vds · (1+ λ · Vds)+ Gch · V
′
ds · (1+ λ · Vds)

+Gch · Vds ·
(
λ · V ′ds

)
,

J =
(
1+

(
Vds
Vdsat

)me) 1
me
, and

J ′ =
V ′ds · Vdsat − Vds · V

′
dsat

V 2
dsat

·

(
Vds
Vdsat

)me−1
·

(
1+

(
Vds
Vdsat

)me) 1
me
−1

are temporarily variables used to simplify the equation. Vds
and its derivative are given in (28) and (33) respectively, Vdsat
and its derivative are given by

Vdsat =
Isat
Gch

(52)

and

V ′dsat =
I ′sat · Gch − G

′
ch · Isat

G2
ch

(53)

where Gch and G′ch are described as

Gch =
Gchi

1+ Gchi · (rs + rd )
(54)

G′ch =
G′chi

(1+ Gchi · (rs + rd ))2
(55)

where rs and rd are the effective access resistances. Proceed-
ing further, Isat is given by

Isat =
Gchi · Vgte

Gchi · rs + 1+ α +
√
1+ 2 · Gchi · rs + (1+ α)2

(56)

with Gchi, Vgte, and α are variables changing according to
the terminal voltages and hence, depend on Ids. Differenti-
ating (56) with respect to Ids through the chain rule yields

I ′sat =
L ′ · P− P′ · L

P2
(57)

where L = Gchi · Vgte, L ′ = G′chi · Vgte + Gchi · V ′gte, P =
Gchi · rs + 1 + α +

√
1+ 2 · Gchi · rs + (1+ α)2, and P′ =

G′chi · rs + α
′
+

G′chi·rs+α
′
·(1+α)

√
1+2·Gchi·rs+(1+α)2

.

Gchi is given by

Gchi = q · Ns · µeff ·
weff
leff

(58)

where Ns and µeff are voltages dependent variables and q is
the electron charge. The derivative of Gchi with respect to Ids
gives

G′chi = q ·
weff
leff
·

(
N ′s · µeff + Ns · µ

′
eff

)
. (59)

For Ns and N ′s , the equations are given by

Ns =
fcox · vsth

q
· ln

(
1+

1
2
· eS

)
(60)

N ′s =
fcox · vsth

q
·

1
2 · S

′
· eS

1+ 1
2 · e

S
(61)

where S = Vgt
ηf ·vth

and S ′ =
V ′gt ·ηf−η

′
f ·Vgt

η2f ·vth
.

α is given by

α =
Vgte
Vl

(62)

where Vl = vmax ·
leff
µeff

and vmax is the saturation velocity, and
the derivative of α is given by

α′ =
V ′gte · Vl − V

′
l · Vgte

V 2
l

(63)

where V ′l = −vmax · µ
′
eff ·

leff
µ2
eff
. For µeff , its expression is

described as

µeff = us +
µfet

1+ θ
tox
· Vgte

(64)

where us is the subthreshold mobility, θ is the mobility degra-
dation parameter, tox is the thin-oxide thickness, and µfet is a
function of the voltages and hence the drain-source current.
The differentiation of (64) with respect to Ids results in

µ′eff =
µ′fet

(
1+ θ

tox
· Vgte

)
−

θ
tox
· V ′gte · µfet(

1+ θ
tox
· Vgte

)2 . (65)

Then, the equations for µfet and µ′fet are given by

µfet =
u0 · u1 ·

(
2·Vgte
ηf ·vth

)mu
u0 + u1 ·

(
2·Vgte
ηf ·vth

)mu (66)

and

µ′fet =

u20 · u1 · mu ·
2
vth

·
V ′gte·ηf−η

′
f ·Vgte

η2f
·

(
2·Vgte
ηf ·vth

)mu−1
(
u0 + u1 ·

(
2·Vgte
ηf ·vth

)mu)2
(67)

where all the model parameters and variables have been
introduced above. Next, the expression for ηf is given by

ηf =
η

1+ mη ·
η−1
η
·

1kink1
1+1kink1

(68)
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where mη is the η floating-body parameter, and 1kink1 is
similar to the equation described in (42) but by changingVdsep
toVdse andmultiplying by the ratio ofweff /leff . The derivative
of (68) is given by

η′f =
−mη · (η − 1) ·

1′kink1
(1+1kink1)

2(
1+ mη ·

η−1
η
·

1kink1
1+1kink1

)2 (69)

where1′kink1 is also similar to (44), but by changing the Vdsep
and V ′dsep terms to Vdse and V ′dse respectively and multiplying
by the ratio of weff /leff . Vdse is expressed as

Vdse =
Vds(

1+
(
Vds
Vsat

)mss) 1
mss

− vth (70)

and its derivative is given by

V ′dse =
V ′ds · T − T

′
· Vds

T 2 (71)

by assuming T =

(
1+

(
Vds
Vsat

)mss) 1
mss and T ′ =

(V ′ds·Vsat−V
′
sat ·Vds)

V 2
sat

·

(
Vds
Vsat

)mss−1
·

(
1+

(
Vds
Vsat

)mss) 1
mss
−1

where
mss is the Vdse transition parameter, Vsat = Vgte, and hence,
V ′sat = V ′gte. In conjunction with this,

Vgte = vsth ·
(
1+ β +

√
δ2 + (β − 1)2

)
(72)

and

V ′gte = vsth · β ′ ·

(
1+

β − 1√
δ2 + (β − 1)2

)
(73)

where β = asat ·
Vgt
2·vsth

and β ′ = asat ·
V ′gt
2·vsth

. The expressions
for Vgt and V ′gt can be referred from (25) to (28) and (30)
to (33) as they are the same in both version 1.0 and 2.0 RPI
poly-Si TFT.

The formula for the kink effect in the version 2.0 model is
written as

1kink = akinkt · (Vds − Vdsenew) · e
−vkink

Vds−Vdsenew (74)

where Vdsenew is a function of Ids and is similar to (70) by sub-
stituting Vds with Vds0 and Vsat with Vsatnew. Differentiating
1kink with respect to Ids yields

1′kink = akinkt ·
(
V ′ds − V

′
dsenew

)
· e

−vkink
Vds−Vdsenew

·

(
1+

vkink
Vds − Vdsenew

)
(75)

where V ′dsenew is similar to (71) by changing V ′ds to V
′

ds0 and
V ′sat to V

′
satnew. The equations for Vds0 and V

′

ds0 are given by

Vds0 = Vds − Ids1 · (rs + rd ) (76)

and

V ′ds0 = V ′ds − I
′

ds1 · (rs + rd ) (77)

while the equations for Vsatnew and V ′satnew are given by

Vsatnew =
2 · vmax · leff · Qs

Qs · µeff + 2 · vmax · leff ·
fcox
asat

(78)

and

V ′satnew = 2 · vmax · leff

·

(
Q′s ·

(
2 · vmax · leff ·

fcox
asat

)
−Q2

s · µ
′
eff

)
(
Qs · µeff + 2 · vmax · leff ·

fcox
asat

)2 . (79)

where the variable Qs and its derivative are defined as

Qs = q · Ns − Ids1 · fcox · rd (80)

and

Q′s = q · N ′s − I
′

ds1 · fcox · rd . (81)

Finally, the formula for the leakage current and its derivative
are similar to (46) and (47). The exact relationship between
the variables that make up the leakage current can be referred
from [26] and Fig. 4.

This completes the formulation for the drain current of
the TFT in the version 2.0 RPI poly-Si TFT model. A VinC
LIM simulation for the TFT circuit in the model can be done
similar to that in version 1.0, but by using the appropriate
equations in (48) to (81) for the version 2.0 model.

Do note that all the TFT equations presented thus far are for
the n-type TFT model. For a p-type TFT model, the polarity
of the voltage values should be inverted and the current value
calculated is flipped in its polarity as well at the end of
its calculation. As an illustration, the current equation for a
p-type TFT model in basic LIM is given as

Ids = −I
(
−Vd ,−Vg,−Vs

)
(82)

while in the VinC LIM formulation it is given as

F (Ids) = −Ids − I
(
−Vd (Ids) ,−Vg (Ids) ,−Vs (Ids)

)
= 0

(83)

F ′ (Ids) = −1− I ′
(
−V ′d (Ids) ,−V

′
g (Ids) ,−V

′
s (Ids)

)
= 0

(84)

which are then used in (19).
This completes the formulation for the drain-source current

for TFTs in both the basic LIM and VinC LIM formulations.
The effects of the intrinsic capacitance and its current formu-
lation will be discussed next.

C. BASIC LIM AND VinC LIM FORMULATIONS FOR RPI TFT
INTRINSIC CAPACITANCE CURRENTS
While the main current in a TFT is the drain-source current
discussed in the previous section, there are also minor cur-
rent flows associated with the gate-drain terminals and gate-
source terminals which can affect the accuracy of the simu-
lation. These currents are modeled by intrinsic capacitances
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FIGURE 5. The branch topology for branch capacitance simulation in
basic LIM.

which exist between the two terminals, as shown in Fig. 2,
and are contributed by the overlap capacitances which are
formed according to the physical properties such as the thin-
oxide thickness, permittivity of the gate insulator, fringing
factor, width of the model, etc., and the parasitic capacitances
which depend on the model used for the TFT. These non-zero
capacitances, labelled as Cgd and Cgs, connect the terminals
of the TFT and hence, currents, labelled as Igd and Igs, are
able to flow across the terminals when there are changes in
the terminal potentials. In this section, the basic LIM and
VinC LIM approach for these intrinsic capacitance currents
are discussed.

The intrinsic capacitances in a TFT can be represented as a
branch capacitor connection in the LIM topology. In the basic
LIM formulation, a fictitious inductor is inserted into the
branch with the capacitor. This is illustrated in Fig. 5, where
Lij is the inserted latency to the branch and Vo is the voltage
at the node between the branch capacitor and the fictitious
inductor. Based on this, it can be written that

V
n+ 1

2
c = V

n− 1
2

c +
1t
Cij

Inij (85)

where Vc = Vo − Vj is the voltage drop across the branch
capacitor and

In+1ij = Inij +
1t
Lij
V
n+ 1

2
L (86)

is the current flowing in the branch, where V
n+ 1

2
L can be

further expressed as

V
n+ 1

2
L = V

n+ 1
2

i − V
n+ 1

2
j − V

n+ 1
2

c . (87)

Substituting (87) into (86) yields

In+1ij = Inij +
1t
Lij

(
V
n+ 1

2
i − V

n+ 1
2

j − V
n+ 1

2
c

)
(88)

which is the branch capacitance current updating equation
for basic LIM. Thus, in a basic LIM simulation, (85) is
applied first followed by (88) to solve for the branch capacitor
current. In a TFT model, i and j can simply be replaced by
the respective terminal nodes (e.g. g, d or s), and the value
of Cij can be obtained from the model. The drawback of this
approach is the additional latency component that is inserted
to the respective branch, which may affect the simulation
accuracy and stability.

For the VinC LIM formulation, the current equation for the
branch capacitor can be derived by substituting the respective
voltage terms with their LIM voltage equations and solving
for the In+1ij current. Note that the insertion of fictitious

inductances are not required for this approach. The branch
current VinC LIM equation is given by

In+1ij =

Ki
(
CiV ni
1t + H

n+1
i −

∑Mi
k=1,k 6=j I

n+1
ik

)
− V n

i

−Kj

(
CjV nj
1t + H

n+1
j −

∑Mj
k=1,k 6=i I

n+1
jk

)
+ V n

j

1t
Cij
+ Ki + Kj

(89)

where Ki =
(
Gi +

Ci
1t

)−1
, Kj =

(
Gj +

Cj
1t

)−1
and the

other terms are as described in Section II. Equation (89) is an
implicit VinC LIM branch capacitance current formulation.
The original paper showing the complete derivation steps for
a semi-implicit VinC LIM branch capacitance formulation
can be referred to in [27].

Equation (89) can be used to solve for the intrinsic capac-
itance currents in a TFT by substituting i and j with the
respective terminal nodes (e.g. g, d or s) and the value of
Cij can be obtained from the model. It can be noted that the
equation can be simplified into

In+1gd/gs =

V n+1
g − V n

g + V
n
d/s

−Kd/s

(
Cd/sV nd/s
1t + Hn+1

d/s −
∑Md/s

k=1,k 6=g I
n+1
dk/sk

)
1t

Cgd/gs
+ Kd/s

(90)

in a situation where terminal g is connected to a voltage
source, or

In+1gd/gs =

Kg
(
CgV ng
1t + H

n+1
g −

∑Mg
k=1,k 6=d/s I

n+1
gk

)
−V n

g − V
n+1
d/s + V

n
d/s

1t
Cgd/gs

+ Kg
(91)

in a situation where terminal d or s is connected to a voltage
source.

Considering a RPI poly-Si TFT model (for both versions
1.0 and 2.0), the overlap capacitances are given by

cgsos = cgso · weff overlap (92)

cgdos = cgdo · weff overlap (93)

where cgsos is the gate-source overlap capacitance, cgdos is
the gate-drain overlap capacitance, weff overlap is the effective
overlap width which depends on the area calculation method
used in the TFT model, and cgso and cgdo are the source
overlap capacitance factor and the drain overlap capacitance
factor respectively, which can be calculated from the formula

cgso = cgdo = (lf + ld ) ·
εgate

tox
(94)

where lf , ld , tox , and εgate are the fringing factor, lateral diffu-
sion into channel from source and drain, thin-oxide thickness,
and permittivity of the gate insulator respectively.

Then, for the parasitic capacitance, it is evaluated depend-
ing on the selected capacitance model. For example, a con-
stant capacitance model which only depends on the device
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parameters can be calculated from the model equation as

Cgsp = Cgdp =
weff · leff · fcox

2
. (95)

The total intrinsic capacitance of the RPI poly-Si TFT model
is the summation of the overlap capacitance and the parasitic
capacitance and can be written as

Cgs = cgsos + Cgsp (96)

and

Cgd = cgdos + Cgdp (97)

where Cgs is the gate-source intrinsic capacitance and Cgd is
the gate-drain intrinsic capacitance.

D. PRACTICAL STEPS FOR ACCURACY IMPROVEMENT IN
VinC LIM
One of the main differences between the basic LIM and
VinC LIM algorithms is the utilization of a forward
branch-marching scheme when solving for the branch cur-
rents in VinC LIM. Unlike the basic LIM branch equation
that depends only on the voltages at the nodes and the current
through that branch at the previous time step, the VinC branch
equation depends also on the currents through the other
branches which are solved for at the same time step. The
forward branch-marching scheme alleviates this by using the
most recently available current based on the order in which
the currents are solved. However, this creates a situation
where the solution is dependent on the order in which the
branches are stepped through in the simulation. In a physical
simulation, this order can be selected to start from the voltage
and current sources, and propagating outwards to the rest of
the circuit. However, determining this order is not a trivial
task. To reduce the reliance on any particular order, in this
work, a random order is used, but the order is alternated each
time the branches are evaluated. In other words, if initially
the order is selected as Ia to Iz, then on the next time step,
the order will be flipped to be Iz to Ia. This idea is similar
to other alternating direction algorithms, most notably to the
one presented in [7] for transmission lines.

Besides that, both basic LIM and VinC LIM are still inher-
ently explicit methods, where the solution of the current time
point is based on the solution at the previous time point.
While this avoids the solution of large systems of simultane-
ous equations, such as those present in SPICE, the accuracy
of the solution depends on the size of the time step used.
In basic LIM, this is less of an issue, since the maximum
time step to ensure stability is normally much less than that
which is needed to obtain an accurate result, but since VinC
LIM relaxes the stability criteria, accuracy can degrade when
significantly larger time steps are used. In our experiments,
we found that the accuracy can be improved by repeating the
branch evaluations to obtain a better convergence during the
forward branch-marching scheme. This can provide a better
trade-off between speed and accuracy, compared to using a
smaller time step, since only part of the solution process

FIGURE 6. NAND circuit using TFT devices.

needs to be repeated. Numerical examples are presented in
Section IV which illustrate this trade-off.

IV. RESULTS AND DISCUSSION
In this section, numerical examples are presented which show
the application of the developed formulations in the simula-
tions of TFT circuits. Silvaco’s SmartSpiceTM will be used as
a benchmark. All simulations are performed on a Linux server
with an Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30 GHz
with 528 GB of RAM.

A. NAND CIRCUIT
In the first example, a NAND circuit is constructed using
TFTs modeled with the version 1.0 RPI poly-Si model. This
example is simulated as a verification of the basic LIM and
VinC LIM formulations presented in the previous section.
Fig. 6 shows the circuit schematic for this example, whereQ1
to Q4 are TFTs, Vss = 5V is the power supply voltage, Vg1
and Vg2 are the input signals, and V1 and V2 are the output
nodes of the circuit. In this example, the intrinsic capacitance
currents are ignored and only the drain-source current of each
TFT in the circuit is considered.

Fig. 7 shows the simulated waveforms obtained from
SmartSpice, basic LIM, and VinC LIM at the input and output
nodes for the circuit. Fictitious capacitances of 10−18 F are
inserted at the two LIM nodes of the circuit for the LIM
simulations. The simulation using basic LIM is performed
at a time step of 1 ps, which is its maximum stable time
step, while the simulation using VinC LIM can be performed
at a timestep of 50 ps which is 50× the maximum stable
time step in basic LIM, while still being both stable and
accurate. This clearly shows the advantage of the VinC LIM
formulation over the basic LIM formulation. All simulations
are comparable in terms of accuracy to SmartSpice.

B. 7T1C PIXEL CELL CIRCUIT
In the second example, a single 7T1C cell, which makes up
one of the color cells in an RGB pixel of an OLED display
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FIGURE 7. Version 1.0 RPI poly-Si TFT NAND circuit simulation results for
SmartSpice, basic LIM (1t = 1 ps), and VinC LIM (1t = 50 ps) at nodes V1
and V2.

is simulated. The circuit diagram of the 7T1C cell is shown
in Fig. 8 where it consists of 7 TFTs, 6 capacitors, 8 resistors
and a diode. Fictitious latency components are inserted at the
nodes and branches for the LIM simulations. Existing LIM
formulations for diodes and branch capacitors are used and
they can be referred from [25] and [27].

Two simulations are performed using this circuit. In the
first simulation, a version 2.0 RPI poly-Si model is used for
the drain-source current and the intrinsic capacitance currents
are ignored. Fig. 9 shows the results obtained from Smart-
Spice, basic LIM, and VinC LIM at three distinct nodes in the
circuit, V1, V2, and V3. In addition, Table 1 tabulates the num-
ber of time points, runtime, and RMS error in the simulations

TABLE 1. Total number of time points, runtime, and RMS error in basic
LIM and VinC LIM for different time step values for the 7T1C cell circuit
without intrinsic capacitance.

for different time step values for basic LIM and VinC LIM,
based on the maximum stable time step in basic LIM, which
is 0.224 ps. Note that some additional breakpoints are added
by the simulator in order to capture the changing edges of the
input waveforms accurately in all simulations.

From Fig. 9 and Table 1, the result from basic LIM is
only stable at its maximum stable time step value which
is 0.224 ps for this circuit. On the other hand, the VinC
LIM simulations remain stable even though the time step is
increased up to 200 times the initial value. Comparing the
runtime, for the same time step, basic LIM is faster than
VinC LIM, due to the simplicity of its formulation. However,
as VinC LIM is not limited by the stability criteria of basic
LIM, it greatly outperforms basic LIM on larger time steps.
For example, a VinC LIM simulation with a time step of

FIGURE 8. 7T1C pixel cell circuit.
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FIGURE 9. Version 2.0 RPI poly-Si TFT 7T1C cell circuit (without intrinsic
capacitance) simulation results for SmartSpice, basic LIM
(1t = 1tmax = 0.224 ps), and VinC LIM (1t = 50×1tmax ) at nodes V1,
V2, and V3.

TABLE 2. Total number of time points, runtime, and RMS error in basic
LIM and VinC LIM under different conditions for the 7T1C cell circuit with
intrinsic capacitance. Note that bl represents the number of branch loops
that are performed.

50× the maximum stable time step in basic LIM is 28.9
times faster, while retaining the accuracy. If simulation speed
is the sole consideration in a simulation, and slight devia-
tions in accuracy are acceptable, then larger time steps can
also be used, for example 100× or 200× as shown in the
table.

Next, the same simulation using this circuit is repeated,
but with the intrinsic capacitance currents taken into account.
Fig. 10 shows the simulation results from SmartSpice, basic
LIM and VinC LIM. Additional branch loops are performed
in VinC LIM as described in Section III-D to improve the
accuracy. Table 2 shows a comparison of the runtime and
accuracy of basic LIM and VinC LIM under different con-
ditions. It is observed that the VinC LIM simulations are able
to outperform basic LIM in terms of runtime at larger time
steps, but with some degradation in accuracy. By adjusting
the number of branch loops, the accuracy of VinC LIM can
be improved, while still retaining its runtime advantage over
basic LIM.

C. FULL TFT FLAT-PANEL DISPLAY CIRCUIT
In this third example, full TFT flat-panel display (FPD) cir-
cuits are simulated in VinC LIM and SmartSpice, to show

FIGURE 10. Version 2.0 RPI poly-Si TFT 7T1C cell circuit (with intrinsic
capacitance) simulation results for SmartSpice, basic LIM
(1t = 1tmax = 0.224 ps), and VinC LIM (1t = 100×1tmax , 10× bl ) at
nodes V1, V2, and V3.

TABLE 3. Time spent per iteration for SmartSpice and VinC LIM in full TFT
FPD circuits.

the advantage of VinC LIM on large circuits compared to
state-of-the-art commercial simulators. First, a full RGBpixel
cell is simulated, where it consists of three 7T1C cells,
each representing the red, green, and blue color in a pixel.
A version 2.0 RPI poly-Si model is used for the drain-source
current and the intrinsic capacitance currents are all taken into
account. Fig. 11 shows the results from SmartSpice and VinC
LIM where a similar level of accuracy can be observed. It is
to be noted that the simulation in VinC LIM was carried out
using a time step 5000 times the maximum stable time step of
basic LIM without any extra loop on the branch simulations.
If necessary, the simulation speed can be further boosted by
using a larger time step and a proper control on the number
of branch loops.

Then, large FPD circuits are constructed by using the RGB
pixel cell to form the appropriate resolutions as in Table 3.
Each circuit is simulated in VinC LIM and SmartSpice and
the time spent per iteration is compared. It can be seen that
VinC LIM greatly outperforms SPICE based simulators such
as SmartSpice, especially on larger circuits. The runtime of
VinC LIM scales almost linearly with the number of nodes
in the circuit, while SPICE and its reliance on matrix based
operations start to show very poor scaling on very large
circuits. For circuits with more than 10 million nodes or
devices, SmartSpice simulations were either unable to be
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FIGURE 11. Version 2.0 RPI poly-Si TFT RGB circuit (with intrinsic
capacitance) simulation results for SmartSpice and VinC LIM
(1t = 1.12n = 5000×1tmax ) at eight different nodes of a full RGB pixel
cell.

completed even after seven days of runtime, or exceeded the
total memory available on the systems. This is indicated by
an entry of ‘‘dnc.’’ in the table.

V. CONCLUSION
In this work, formulations for TFTs have been presented in
the basic LIM and VinC LIM algorithms. The equations for
the drain-source currents of different versions of the RPI
TFT are reconstructed to work with the LIM algorithms.
Besides that, the intrinsic capacitance currents flowing inter-
nally in a TFT device are also taken into consideration in
the LIM formulations presented. Results show the superi-
ority of the VinC LIM formulation in terms of stability
compared to the basic LIM formulation, where the time
steps in VinC LIM can be 50-5000 times larger than the
time steps in basic LIM depending on the circuit simu-
lated. In addition, on large circuits, VinC LIM greatly out-
performs conventional SPICE-based simulators in terms of
runtime.

Given the potential shown by VinC LIM in these results,
a number of future works are currently being pursued. This
includes the incorporation of secondary effects such as tem-
perature, scaling, and self-heating in the simulations, and
also on the parallelization of the VinC LIM algorithm for
further runtime improvements on multithreaded operations.
With these advancements in LIM, they can open up new
choices in selecting circuit simulators in heavy computing
scenarios.
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