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ABSTRACT This paper proposes Maximal Associated Regression (MAR), a novel algorithm that performs
forward stage-wise regression by applying nonlinear transformations to fit predictor covariates. For each
predictor, MAR selects between a linear or additive fit as determined by the dataset. The proposed algorithm
is an adaptation of Least Angle Regression (LARS) and retains its efficiency in building sparse models.
Constrained penalized splines are used to generate smooth nonlinear transformations for the additive fits.
A monotonically constrained extension of MAR (MARm) is also introduced in this paper to fit isotonic
regression problems. The proposed algorithms are validated on both synthetic and real datasets. The
performances of MAR and MARm are compared against LARS, Generalized Linear Models (GLM), and
Generalized Additive Models (GAM) under the Gaussian assumption with a unity link function. Results
indicate that MAR-type algorithms achieve a superior subset selection accuracy, generating sparser models
that generalize well to new data. MAR is also able to generate models for sample deficient datasets. Thus,
MAR is proposed as a valuable tool for subset selection and data exploration, especially when a priori
knowledge of the dataset is unavailable.

INDEX TERMS Additive models, least angle regression, nonlinear transformations, subset selection.

I. INTRODUCTION
Linear regression forms the foundation of many modern sta-
tistical modelling and data analysis problems. It captures the
relationship between the response and predictor covariates of
the form y = β0 +

∑p
j=1 xjβj + ε for j = 1, . . . , p by esti-

mating the coefficients β = (β1, . . . , βp)T and intercept β0.
Here, a normally distributed noise component is represented
by ε. The predictor covariates xj = (x1j, . . . , xnj)T ∈ Rn are
assumed to be independent and the response vector is rep-
resented by y = (y1, . . . , yn)T . Compared to more complex
regression techniques, linearmodels (LM) are preferredwhen
model interpretability is of particular importance. However,
the application of LMs to real-world datasets sometimes
results in poor model performance; occasionally the model
fits are purely artefacts of an LM trying to fit a nonlinear
model. A more accurate fit is achieved by introducing nonlin-
ear smoothing terms φj(xj) to the linear regression formula-
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tion (1). These classes of models are known as additive mod-
els [1]. Additive models (AM) are less general than its more
popular cousin, Generalized Additive Models (GAM) [2] in
that it assumes a strictly normal distribution with a unity link
function g(y) = y.

y = β0 +
p∑
j=1

φj(xj)+ ε (1)

The smoothing terms in AMs are also called shape func-
tions. Smoothers used for GAMs can be directly translated
to AMs under the appropriate AM constraints. Shape func-
tions are commonly achieved by scatterplot smoothers [2],
splines [2]–[5], boosted decision stumps [6], decision tree
ensembles [7], and neural networks [8]. In [9], both L2
boosting and P-splines are combined to derive a computa-
tionally efficient smoother. Regression splines are the most
widely used form of shape functions. There is rich litera-
ture [8], [10]–[15] on regression spline-based methods that
incorporate various constraints to the spline function while
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achieving lower model complexity compared to other meth-
ods. Classical spine formulations, however, are sensitive to
knot placement and control point selection. They require
prior assumptions on the underlying distribution of data.
Meyer [12] proposes shape restricted regression splines that
are robust to knot choice. Constraint penalized splines [10]
further extend shape restrictions to incorporate additional
constraints on monotonicity and convexity.

Each individual shape function applied to xj can be consid-
erably more complex than a linear fit. The accuracy of AM
fits are frequently higher than LM fits. However, both model
accuracy and parsimony are equally important characteris-
tics to reduce overfitting. Therefore, fitting algorithms must
be capable of identifying covariates that can be sufficiently
explained by lower complexity shape functions. For instance,
in [4], [16]–[18] Wood et al. proposed several smoothness
estimation schemes to control the tradeoff between smooth-
ness and fit by minimizing a generalized cross-validation
(GCV) score by a regularized maximum likelihood (REML)
framework, or by a generalized Akaike’s Information Crite-
rion (AIC). For some covariates, nonlinear shape functions
can be avoided entirely when linearity can be reasonably
assumed. For such cases, methods such as GAMSEL [19] and
SPLAM [20] selects between linear or nonlinear fits for each
predictor covariate based on a REML framework.

Parsimony can be further improved by removing predictors
from the model that has little-to-no impact on the response.
Lasso regularization [21] and subset selection are two such
techniques to remove insignificant covariates from the regres-
sion model. Originally, lasso regularization was defined for
purely linear models. Several attempts have been made to
extend lasso to the additive model setting. COSSO [22],
SpAM [23], GAMSEL [19], and high-dimensional addi-
tive models [24] achieve this using a REML framework.
The key difference between these models lie in the type
of penalty function used. In [25], Marra and Wood intro-
duces a double penalty approach to the REML framework to
penalize both the range space and the null space to induce
sparsity.

Subset selection identifies the best subset of predictor
covariates that has the highest impact on the response.
It iteratively adds covariates to the regression model until
a predetermined stopping criterion is satisfied. Classical
methods of subset selection include the best subset selec-
tion [26], forward selection [27], and backward elimina-
tion. These methods however are overly aggressive and may
therefore disregard predictors with significant correlation
to the response after the first iteration. Forward stage-wise
selection [28] is a more prudent algorithm that gradually
approaches the final model in small steps. The time com-
plexity of the stage-wise procedure is an order of magnitude
higher than the classical methods as correlations are evaluated
after each step. The Least Angle Regression (LARS) algo-
rithm [28] offers a geometric interpretation of the stage-wise
problem that theoretically finds the optimal step size thus
eliminating the need for multiple small steps.

Even though LARS gained wide popularity since its intro-
duction and sits at the heart of rapid development, very few
attempts have been made to extend it any further. QuasiLAR
introduced by Wu [29] extends the application of LARS
to Generalized Linear Models. ConvexLAR introduced by
Xiao et al. [30] generalizes the square-loss function in clas-
sical LARS to an arbitrary convex function. Both QuasiLAR
and ConvexLAR require solving ordinary differential equa-
tions. Khan et al. [31] introduces a robust version of LARS
for model estimation in the presence of many candidate pre-
dictors with outliers. Group Lasso implemented in LARS by
Yuan and Lin [32] accounts for the dependence between vari-
ables to improve subset selection. Alfons et al. [33] extends
group selection to robust LARS. Adaptive lasso proposed by
Zou [34] improves the oracle properties of LARS. Finally,
the elastic net implementation of LARS proposed by Zou and
Hastie [35] stabilizes LARS for problems with p > n.
This paper attempts to develop LARS in a different direc-

tion. The main objectives achieved by the proposed modifi-
cations are,
• Replace correlation with association to perform for-
ward stepwise subset selection to obtain the ranked
importance of each individual predictor covariate on the
response.

• Introduce a nonlinear shape function to transform pre-
dictor covariates to improve regression performance.

• Control the complexity of the shape function to avoid
overfitting by selecting linear or nonlinear fits for each
covariate based on the data.

• Introduce a monotonic nonlinear extension to the algo-
rithm to solve isotonic regression problems.

The proposed algorithm is named Maximal Associated
Regression (MAR). MAR takes advantage of the geometrical
insights derived from LARS to achieve computational effi-
ciency while extending its applicability for nonlinear map-
pings. Like LARS, MAR assumes independence between
predictors. The linear correlation used to perform variable
sequencing in LARS is replaced by association in MAR.
At each regression stage, the subset selection procedure
updates the existing model with a new predictor covariate that
has the highest association to the current residual. A nonlin-
ear transformation is generated by a constrained penalized
spline [10] estimate. AIC is used to select between a linear
or spline fit. To preserve the LARS solution path paradigm,
the model equation decouples the nonlinear covariate trans-
formations φj(xj) from the regression coefficient vector β
compared to the original AM formulation. Thus, the MAR
algorithm calculates them independently (2).

y = β0 +
p∑
j=1

φj(xj)βj + ε (2)

MAR can be extended to solve isotonic regression prob-
lems by applying a monotonic constraint to the spline trans-
formations. Theoretical aspects of isotonic regression such
as the oracle property, asymptotic distribution of estimators,
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and the estimability of the nonlinear components have been
covered in [36], [37]. This paper only considers estimable
problems and focuses on the algorithmic aspect of regres-
sion. Existing work on additive isotonic regression focuses
on finding all components simultaneously, or by iterative
methods such as back-fitting. A recent development by
Bergersen et al. [14] achieves a sparse model by combining
spline basis functions with the L1 penalty. However, there
is no discussion of stepwise subset selection for additive
isotonic regression.

We begin Section II by presenting a geometrical interpreta-
tion of LARS and the necessary transformations to transition
from LARS to MAR. The monotonic extension is introduced
in Section III. Validation of the algorithm is done on both
synthetic and real datasets in Sections IV and V respectively.
The proposed MAR algorithm is compared against LARS,
GLM, and the mgcv implementation of GAM [4]. Conclud-
ing remarks are presented in Section VI.

II. FROM LARS TO MAR
Least Angle Regression iteratively converges towards a final
regression solution β = (β1, . . . , βp)T by adding a single
coefficient βj at each iteration. A parsimonious β is achieved
by terminating the solution path with a stopping criterion
that restrains the complexity of the regression model. Two
main assumptions drive the classical LARS algorithm: 1) the
predictors are independent and 2) their relationship to the
response can be captured by a linear correlation coefficient.
The resulting solution path is piece-wise linear. The group
Lasso proposed by Yuan and Lin [32] evaluates the effects
of predictor dependence on estimation accuracy. Linearity
of covariates on the other hand assumes φj(xj) in (2). The
proposed MAR algorithm relaxes the second assumption and
attempts to detect non-linearity in the solution path. However,
to avoid overfitting, MAR must be equipped to detect and
preserve linearity when nonlinear transformations are not
required. We start by describing the geometric interpretation
behind the formulation of LARS to provide a viable basis
to describe the motivation behind MAR. We then provide a
high-level overview of MAR followed by a component-wise
description of the modifications made to detect nonlinearity.

A. GEOMETRIC INTERPRETATION OF LARS REVISITED
The LARS algorithm is initialized by standardizing the input
dataset X ∈ Rn×p to have zero mean and unit length, elim-
inating the β0 component from the regression coefficients.
A candidate vector of regression coefficients β̂ is achieved
by minimizing the total squared error defined by (3) subject
to a bound λ. The bound on (3) determines the sparsity of β̂.

S(β̂) = min
β∈Rp
‖y− X β̂‖2 subject to

p∑
j=1

|β̂j| ≤ λ (3)

Algorithmically, LARS is a stepwise procedure that adds
predictor components to β̂ from a null vector until the full
solution is reached. If the quadratic loss function in (3) has

been satisfactorilyminimized before all components are fitted
to the final model, the algorithm will return a sparse solution.
At iteration t , the regression coefficient vector is denoted by
β̂ = βt which will have t non-zero active components that
is most correlated to the current residual. The active set At
keeps track of active predictors and its complement It holds
the inactive set. At any step t > 0, the predictor with the
highest correlation ct to the residual rt = y−Xβt is added to
the new coefficient vector. The index of the newly activated
predictor is moved from the inactive set to the active set. For
the current inactive predictor matrix XIt , LARS defines the
linear correlation as,

ct = XIt
T (y− Xβt ) (4)

Fig. 1 illustrates the vector space representation of LARS
transitioning from iteration t−1 to t . Note that the dimensions
of this abstract vector space is not p (number of predictors)
but n (sample size). A completed LARS solution path will
contain p vectors, each vector being of n dimensions. At t −
1, the estimated response is µt−1 = Xβt−1 with residual
rt−1. The projection of the response y onto t − 1 subspace
St−1 is indicated by yt−1. In classical forward selection, the
solution path will progress until yt−1 is reached. This will
lead to an intermediate ordinary least squares solution at
t−1, which essentially mask covariates with potentially high
covariance from subset selection. However, LARS terminates
path propagation when a new predictor covariate xj∈It−1 from
It−1 becomes equally correlated to the current residual rt−1.
Geometrically, the selected predictor xt makes the smallest
angle with rt−1. The new solution path, which now includes
xt , propagates along the unit vector ut , thus bisecting the
angle between µt−1 and xt . Propagation terminates at step
size γt when a new covariate from the current inactive set
and µt = µt−1 + γtut becomes as equally correlated to the
new residual rt . The ingenuity of LARS lies in the use of
this geometrical insight to find a theoretical estimation for
the optimal value of γt within a single step.

B. THE MAR ALGORITHM
LARS updates the solution vector by adding covariates based
on the highest un-normalized independent correlation (4).
Xiao et al. [30] interprets this as a least squares loss function.
Prediction scores are assigned to each active predictor and the
LARS solution path propagates in a direction that maintains
the absolute score of all active predictors at identical values.
The common absolute score of the solution decays with solu-
tion path propagation. Inactive predictors join the solution
when their absolute score becomes equal to the common
absolute score of active predictors. This perspective links
LARS to the steepest decent algorithm in optimization. Using
this interpretation, they generalize the LARS algorithm to
ConvexLAR that can handle any convex loss function.

MAR use this insight and relaxes the linearity assumption
that forms the basis of LARS solution path propagation.
Instead of correlation c, MAR adopts association to per-
form subset selection. This paper uses distance correlation
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FIGURE 1. Geometric interpretation of the LARS solution path. At iteration
t − 1, the current solution is µt−1. In the next iteration t , LARS selects the
next most correlated covariate and propagates γt along the unit vector ut
to achieve the new solution µt . If only one more covariate is available,
the algorithm terminates by achieving the OLS solutions at iteration t + 1.

R [38] to calculate association. For multivariate inference,
R is preferred over other likelihood ratio tests which are
inapplicable when the dimensionality of the dataset exceeds
the sample size or when assumptions on the distribution do
not hold. Furthermore,R is sensitive to all types of departures
from independence, including nonlinear and nonmonotonic
dependence. It does not require assumptions on normality for
valid inference.

Crucially, MAR does not depend on the type of associa-
tion used. Thus, R can be replaced by any other method of
association. The performance of the MAR using Kendall’s
Tau association on synthetic and real datasets are illustrated
in the supplementary material. Association is invariant to
arbitrary transformations of covariates. Geometrically, this
means that the search for the next covariate is not sensitive
to any deformation of coordinates in the vector space in
Fig. 1. In other words, distortion of predictors will not hide
the predictor-response association. This characteristic makes
association much more robust against unknown transforma-
tions that may be hidden in the data unbeknown to the user.
For example, numerical values assigned to categorical labels
are often arbitrary. At best, one can expect some association
instead of strictly linear correlation between the numerical
values and the response y. This deformation of the coordinate
system in the vector space will affect the accuracy of the
regression model and the reliability of the subset selection
operation. Section IV will show some examples where MAR
creates better models because it is able to discover hidden
nonlinearity in X .
Once a covariate with maximal association is selected,

a non-parametric transformation is imposed to linearize the
selected covariate with respect to the residual. The choice of

TABLE 1. Maximal associated regression (MAR) algorithm.

transformation will be elaborated in Section II-C. The com-
plexity of the transformation is controlled by the Akaike’s
Information Criterion (AIC). When the prediction error does
not improve with respect to complexity of the transformation,
a linear mapping will be used. The nonlinear transformation
will generate a vector space diagram of MAR that is almost
identical to Fig. 1. However, unlike LARS, the direction of
solution path propagation does not bisect the angle between
the residual and the new predictor vector. Section II-E pro-
poses a binary search algorithm to calculate an optimal γ .
Table 1 summarizes the MAR procedure in pseudocode.
Here, tmax is the maximum number of algorithm iterations.
The following subsections discusses the modifications in
detail.

C. NONLINEAR TRANSFORMATIONS AND MODEL
COMPLEXITY
To better illustrate the effects from each modification when
converting LARS to MAR, we accompany the remainder of
this paper with an example. A synthetic dataset is generated
by a normally distributed X ∈ Rn×p with mean zero and
unit length for n = 1000 and p = 10. The response
distribution, given by (5), is subject to a normally distributed
noise component ε ∼ Nn(0, 1n).

y = −
1
8
+

1
8
ex1 + I (x2 > 0)1/3 −

1
2
x3 +

1
5
tanh (3x4)+ ε

(5)

Here, I (·) is an indicator function. Covariate mappings for
the dominant predictors estimated by the LARS and theMAR
algorithms respectively are illustrated in Fig. 2. It shows
that the MAR algorithm creates a better representation of
the true nonlinear relationship between the response and the
predictors.

Transformation of predictor covariates with respect to r
represents the essence ofMAR.MARuses constrained penal-
ized splines [10] to perform nonlinear transformation because
the formulation guarantees invariance to knot placement and
adherence to global constraints on monotonicity and con-
vexity. Generation of the spline basis functions Bj and its
derivatives bj for the jth predictor covariate is only done once
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FIGURE 2. The nonlinear mappings of the dominant predictor covariates estimated by the MAR algorithm for the synthetic example (5). The
LARS estimate and the actual relationship between the predictors and the response is also given for comparison. MAR achieves a much
better fit for the nonlinear predictors in (a), (b), and (c). However, monotonicity constraints are introduced in Section III to reduce the
excessive wiggling associated with unconstrained regression.

during initialization of MAR. The degrees of freedom of the
spline functions are maintained at m = 2 (quadratic spline)
to minimize overfitting. The spline complexity is controlled
by the number of knots k placed equidistantly along the
dataset xj. Starting from a maximum of kmax , the number of
knots are reduced for datasets with lower degrees of freedom.
Redundant knots are detected by calculating the rank of the
Hessian matrixH of the spline basis function. As a minimum
of three internal and four external knots are required for a
quadratic polynomial, kmin = 7 is imposed.
MAR achieves monotonic nonlinear mappings for domi-

nant covariates by reducing the RSS between r and the fitted
model. To complete the spline function, control points Cj are
estimated using quadratic programming (8) to minimize the
RSS. It must be noted that this formulation only holds true
for quadratic spline basis functions.

H = BjTBj (6)

∇f = rTBj (7)

Cj = min
Cj∈Rq

1
2
CjTHCj +∇fCj (8)

Table 2 is the predictor covariate transformation procedure.
To reduce overfitting, a linear estimate replaces the spline
fits when it can sufficiently model variance in the dataset.
Once the spline control points are generated from (8), the
spline fit is compared against a linear approximation using the
Akaike’s Information Criterion (AIC). The AIC hyperparam-
eters a1 and a2 controls the amount of penalization on model
complexity. Lower values favor complexmodels while higher
values are more likely to select simpler models. A lower AIC
magnitude is given to models with higher prediction power
and a lower complexity.

D. REPLACING PEARSON’S CORRELATION WITH
DISTANCE CORRELATION
Solution path propagation in LARS depend on the linear
correlation between the predictor covariates and the residual
vector r . At each iteration, correlation between the active
set covariates and r decreases as the solution path pro-
gresses towards an OLS solution. In contrast, the inactive set
covariates have a negative correlation with r . The objective
of LARS is to estimate the intersection point γ where the
minimum correlation of the active set and the maximum
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TABLE 2. Predictor covariate transformation algorithm for MAR.

correlation of the inactive set covariates becomes equally cor-
related to r . Thus, LARS uses the un-normalized Pearson’s
Correlation cj to accurately estimate the linear correlation
between the current residual and the jth predictor covariate.

In MAR, distance correlation R replaces linear correlation
to measure association. Analogous to cj that estimates linear
dependence between random vectors, Rj is a generalized
estimate of correlation that extends to the unconstrained non-
monotonic space. Initially proposed by Székely et al. [39] and
later extended in [40], Rj provides a non-parametric estimate
of association. Unlike classical methods of association, Rj
leads to an accurate estimate even when the predictor dimen-
sions exceed sample size or when prior assumptions on the
underlying distribution of X do not hold. Distance correlation
satisfies 0 ≤ Rj ≤ 1, and Rj = 0 only if the covariate vectors
are independent.

The original formulation of R has a computational com-
plexity of order O(n2) restricting its widespread adaptation
for applications with large sample sizes. MAR uses the R

formulation proposed by Huo and Székely [38] that reduces
its complexity to O(n log n) making it comparable to other
computationally efficient algorithms. The optimal γ is found
by a binary search algorithm that converge to the optimum
solution over multiple iterations.

E. FINDING THE OPTIMAL STEP SIZE
In LARS, the optimal step size γ is estimated based on
correlation (4). The correlation is, in turn, related to the
angular separation in vector space. The LARS solution path
propagates in a direction that maintains the angular symmetry
between the active set covariates.MAR does not maintain this
symmetry. Association by R depends on a rank-order system
that is not affected by the magnitudes of individual elements.
For instance, two predictor covariates, x1 and x2 will have
the same association to r irrespective of the differences in

TABLE 3. Binary search algorithm to estimate solution path termination.

element-wise magnitude, provided that elements are arranged
in the same ascending order.

The non-linearity of R causes the estimation of γ to be
non-trivial. Table 3, proposes an iterative solution forMAR to
estimate γ based on a binary search algorithm. The algorithm
starts by evaluating the association at the two extremes of the
solution path u. The range of possible γ values are repre-
sented by γ1 and γ2. The minimum association of the active
set and themaximum association of the inactive set covariates
at γ1 is represented by R1(A) and R1(I). Association at γ2 is
represented by R2(A) and R2(I). The current estimate of γ is
updated with (9) at each iteration and replaces either γ1 or γ2.
The algorithm progresses until convergence to within ϕmax or
until the maximum number of iterations tmax is reached.

γ = γ1 +
γ2 − γ1

1− R2(A)−R2(I)
R1(A)−R1(I)

(9)

The unit vector ut for the t th MAR iteration can be obtained
using the original formulation proposed by LARS,

ut = XAtβt (ols)− µt (10)

where XAt , βt (ols), and µt represent the active set predictor
covariates, the t th step ordinary least squares estimate, and the
t th step estimated response respectively.

III. MONOTONIC EXTENSION OF MAR
Shape restricted regression plays an important role in model
estimation when a priori knowledge of predictor behavior is
available. Monotonically constrained shape restrictions are
widely imposed for many practical applications in fields such
as biology, medicine, and statistics [41], [42]. Monotonicity
is implicitly assumed in linear regression, but it is violated
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FIGURE 3. Monotonically constrained spline mappings for the synthetic example (5) for predictor covariates (a) x2 and (b) x3. The RMSE
performance for LARS, MAR, and monotonically constrained MAR (MARm) is given by (c). MARm is able to better minimize the uncontrolled
wiggling of the nonlinear fits resulting in better RMSE performance.

by the unconstrained nonlinear transformations introduced by
the MAR algorithm. For the synthetic example, Fig. 3 shows
that imposing the monotonicity assumption results in a much
better fit with lower RMSE.

This section introduces a monotonicity constraint to the
MAR algorithm (MARm). In Section II-C, MAR transforms
input covariates using unconstrained penalized spline func-
tions. Monotonicity for penalized splines can be achieved
by introducing the strictly positive constraint proposed by
Meyer [10] to the control point calculation in (8). In practice,
monotonicity will only be applied to a specific subset of
predictor covariates. This can be achieved by independently
applying (11) to the appropriate predictor covariates indexed
by j.

bjCj ≥ 0 (11)

Compared to alternative spline formulations, constrained
penalized splines offers two main advantages: 1) it allows
for a high degree of flexibility without the excessive wig-
gling typically associated with over-fitting in non-parametric
regression, and 2) it guarantees global conformity of the
spline to monotonicity constraints [10]. This makes con-

strained penalized splines especially viable for nonlinear
model fitting. Although the synthetic example shows a better
RMSE under MARm, it must be noted that the monotonic-
ity constraint does not always guarantee a better fit. Some
real-world datasets benefit from the added flexibility given
by unconstrained spline models. Thus, it is recommended
that the monotonicity constraints only be applied when prior
knowledge on the behavior of the predictor covariates is
available.

For the synthetic example, the growth of the regression
coefficients for each algorithm is illustrated in Fig. 4. Unlike
LARS, MAR estimates growth in a strictly positive direction
as the nonlinear transformations are capable of automatic
sign inversion when negative associations are detected. This
capability can be switched on and off without any loss of
information. In the case of MAR, the direction of association
will be encoded in the transformation instead of the regression
vectorβ. Thus, the authors find that it is advantageous towork
with |β| instead of β when nonlinear transformations are
involved. Furthermore, both MAR in Fig. 4 (a) and MARm
in Fig. 4 (b) show an identical order of subset selection
and similar shapes in |β| propagation. This is an expected
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FIGURE 4. The magnitude of the regression coefficients with increasing model complexity
∑
|β| for (a) MAR, (b) MARm, and (c) LARS

algorithms. All algorithms accurately select the dominant feature set. Both MAR and MARm have identical regression coefficients due to
monotonicity of the feature set.

phenomenon as both algorithms are based on R for small
datasets with predominantly monotonic covariates.

IV. SIMULATION STUDIES
Synthetic datasets provide a good testing ground to study the
behavior of the proposed algorithms. We compare the pre-
diction performance of MAR and monotonically constrained
MAR (MARm) against 3 existing regression algorithms:
LARS, Generalized Linear Models (GLM), and Generalized
Additive Models (GAM). LARS and GLM provide a base-
line reference as they are both widely used algorithms to
fit linear regression models. GLM is implemented using the
inbuilt R function ‘glm’ while LARS, MAR, and MARm are
implemented in MATLAB. GAM is implemented using the
R package ‘mgcv’ [4]. GAM more closely resembles MAR
as both algorithms introduce nonlinear transformations to
the predictor covariates. For a fair comparison with MAR,
both GAM and GLM are implemented under the Gaussian
assumption with the unity link function.

Eight synthetic models with five dominant predictors are
considered. They are illustrated in Table 4. Covariates on the

predictor matrix X ∈ Rn×p for n = 1000 and p = 10 are
generated according to a centered multivariate normal dis-
tribution Np(0, σ 2). A normally distributed noise component
ε ∼ Nn(0, 12) is added to all datasets. A non-zeros covariance
of q = 0.5|j−k| between predictor covariates xj and xk or a
signal to noise ratio of snr = 5 are introduced for selected
models. Categorical components are induced by trichotomiz-
ing covariates into tertiles such that xj ∈ [0, 1, 2]. Indicator
functions for the categorical components are defined by I (·).

Accuracy of the regression fits generated by each algorithm
is assessed by root mean squared error (RMSE). Ten-fold
cross-validation is used to ensure stability of the models.
Thus, both mean and standard deviations of the performance
parameters are obtained. Numerical results are tabulated in
the supplementary material (Table S1). For the LARS and
MAR type algorithms, parameters N5 and Nmax indicate the
number of dominant covariates on the active set at algorithm
iteration t = 5 and at solution path termination tmax . Note
that for LARS and MAR, tmax is not always 10 as subset
selection terminate prematurely if the solution path becomes
badly conditioned.
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TABLE 4. Synthetic models for MAR validation.

FIGURE 5. Algorithm performance (means from cross-validation) for synthetic models 6 and 7 illustrating (a) RMSE, (c) number of dominant
covariates at solution path termination to indicates subset selection accuracy, and (d) the number of covariates in the final model to indicates
sparsity. Overfitting of MAR splines due to increased SNR is illustrated in (b) for x8. The nosier spline fits for model 7 lead to a consistently
higher RMSE in (a).

GLMandGAMdoes not perform subset selection. Instead,
it performs a hypothesis test on each predictor covariate.
The null hypothesis assumes that the jth predictor covari-
ate is sparse βj = 0. Thus, predictors with p-values less
than 0.05 are approximated as dominant covariates. Hence,
parameters N and N10 indicate the total number of covariates
(dominant + noise) and the true dominant covariates in the
final model respectively.

A t-test is conducted to verify the statistical significance
between different quality measures. The performance of
MAR and MARm are compared against other algorithms at a
5% significance level. Each dataset is treated independently,
their cross-validation results are used to test statistical signifi-
cance. Both the t-test results and their corresponding p-values
are provided in the supplementary material (Tables S2
and S3).
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FIGURE 6. Algorithm performance (means from cross-validation) for synthetic models 1 to 5 illustrating the (a) subset selection accuracy and
(b) RMSE. Plot (a) shows that MAR selects a more consistent subset compared to GAM. Model fitting performance due to covariance between
predictor covariates are assessed by: (c) unconstrained spline fits by MAR for x8 for models 1 and 2 and (d) the feature selection frequency
for models 1 and 2.

FIGURE 7. Algorithm performance (means from cross-validation) for synthetic model 8 illustrating the (a) subset selection accuracy and
(b) RMSE performance.

A. MODEL ESTIMATION WITH LINEAR COVARIATES
For purely linear regression problems depicted by models
6 and 7, LARS and GLM maintain a significant advantage

over MAR as covariate transformations in MAR encourage
overfitting. For model 6, the RMSE performance in Fig. 5 (a)
indicate that despite the noise introduced by the spline fits,
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GAM maintains a comparable RMSE to GLM and LARS
under low noise conditions. However, the RMSE perfor-
mance for model 7 shows that MARm achieves an equivalent
RMSE when the SNR increases. The performance under
higher noise levels is an important factor in model validation
as real datasets can contain substantial noise levels. Illustrated
by Fig. 5 (b), the slightly poorer RMSE in MAR is due to
overfitting of the unconstrained spline model. Thus, MARm
is more suitable for high noise datasets.

Depicted by Fig. 5 (c), MAR however has a superior subset
selection accuracy compared to GAM with increasing SNR.
Formodel 7, GAMonly detects 4 of the 5 dominant covariates
while LARS, MAR, and MARm detect all 5. Although GAM
leads to a sparser model as seen in Fig. 5 (d), the subset
selected by GAM is incomplete. HenceMAR type algorithms
are superior when subset selection is of particular importance.

B. MODEL ESTIMATION WITH NONLINEAR COVARIATES
Synthetic models 1 to 5 are used to assess algorithm per-
formance on nonlinear datasets from which 1 and 2 con-
tains strictly monotonic covariates. Nonmonotonic predictors
are included in models 3 to 5. Performance of the linear
regression algorithms is considerably worse compared to
GAM, MAR, and MARm. Thus, in Fig. 6, we only compare
performance of additive regression. Numerical performance
parameters for all algorithms are available in Table S1 of the
supplementary material.

From Fig. 6 (a), it is apparent that the accuracy of subset
selection for models 1,3, and 5 byMAR is consistently higher
than for GAM. Accuracy of the selected subset in MAR type
algorithms becomemuch more evident for models containing
nonmonotonic covariates.

From Fig. 6 (b), the RMSE performance of GAM is higher
compared to MAR type algorithms. Except for model 1,
RMSE of GAM is closely followed by MARm. Models
containing high covariance between covariates (models 2, 4)
shows a better RMSE compared to models with independent
covariates (models 1, 3). This is a false indication of the
accuracy of the model fit. As exemplified in Fig. 6 (c), spline
fit for x8 show that MAR is capable of precisely identifying
the predictor response relationship for model 1 while being
unable to accurately estimate the spline fit for model 2.
At t = 5, Fig. 6 (d) indicates that the feature selection
frequency by cross-validation lead to unstable subsets for
model 2 compared to model 1. Thus, GAM and MAR type
algorithms are not suitable to fit data with high covariance
between covariates. They can be replaced by algorithms spe-
cially designed for grouped selection [32]. For real datasets,
the Jaccard coefficient can be used to detect instability in
subset selection (Section V).

C. MODEL ESTIMATION WITH CATEGORICAL COVARIATES
Model 8 evaluates algorithm performance on purely cat-
egorical covariates. Fig. 7 (a) illustrate that compared to
GAM, the superiority of subset selection accuracy of MAR
type algorithms is maintained for categorical features. In (b),

TABLE 5. Summary of validation datasets.

both GAM and MAR type algorithms are shown to achieve
comparable RMSE performance which is lower than what is
achieved by linear algorithms.

V. DATA ILLUSTRATIONS
In this section, we evaluate the performance of MAR on
13 public domain datasets obtained from online sources:
University of Toronto (Delve) repository [43], University
of California (UCI) repository [44], Carnegie Mellon Uni-
versity (CMU) repository [45], the King County house
price dataset [46], and from selected publications [47], [48].
A summary of each dataset is depicted in Table 5.

Cross-validated performance of MAR and MARm are
compared against LARS, GAM, and GLM algorithms. The
statistical significance of the difference for each performance
parameter is analyzed in Section V-A. Numerical results
of the performance parameters for the first 11 datasets are
available in the supplementary material (Tables S4 and S5).
Additional analysis of the Pyrimidine dataset and the gas
consumption dataset is given in Sections V-B and V-C.
The 2 remaining datasets are used for a qualitative analy-
sis of the regression algorithms in Sections V-D and V-E.
Accuracy of the model fits are assessed by the normalized
RMSE (nRMSE) defined as RMSE/|ȳ|. Model sparsity is
estimated based on the number of active covariates N in
the output model. For GAM and GLM, a hypothesis test
evaluates the importance of each predictor covariate. Dom-
inant predictors achieve p-values less than 0.05. For LARS,
MAR, and MARm, the full solution path β is generated.
Subsequently, AIC is used for model inference for all possible
sparse models. An adjusted version of AIC (AICc) [49] is
used for models with a limited sample size where the ratio
between the test set size and the number of free parameters
is > 40.
The cross-validated nRMSE accuracy only gives a partial

representation of model fitness. Subset selection accuracy is
as equally important in determining generalizability of the
model to new data. Excessive variation in the active covariates
included in the models during cross-validation should give
us pause. If consensus cannot be achieved on the dominant
features selected during cross-validation, the fitting technique
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FIGURE 8. The normalized RMSE (nRMSE) performance for each algorithm is illustrated in (a) with the grid stability and PW linear datasets
removed due to bad nRMSE by all algorithms. The pyrimidines dataset is shown as an outlier for GLM. The Jaccard coefficient is illustrated in
(c) to indicate algorithm stability. A t-test is applied to each dataset independently to benchmark algorithm performance against MAR and
MARm. The frequency of the null hypothesis rejection is illustrated as histograms for (b) nRMSE and (d) the subset size N.

must be changed to a more suitable algorithm. Stability of
subset selection can be assessed using the Jaccard coeffi-
cient (J) [50]. Given multiple models generated by cross-
validation, J is the ratio between the pairwise intersection of
features and their union. Bounded between 0 and 1, a value
of J = 1 indicates perfect similarity between feature sets.

A. EVALUATION OF REGRESSION ALGORITHMS
A t-test is performed on the cross-validation results for
each dataset independently to verify the statistical signif-
icance between different quality parameters. Performance
of the benchmark algorithms are compared against MAR
and MARm at a 5% significance level. Histograms in
Fig. 8 (b) and (d) illustrate the frequency of rejection of the
null hypothesis for each quality parameter. Numerical results
are available in the supplementarymaterial (Table S6 and S7).
Numerical results from cross validation for nRMSE and the
Jaccard coefficient (J) are illustrated by the violin plots [51]
in Fig. 8 (a) and (c).

Accuracy of each algorithm is analyzed in Fig. 8 (a).
It shows that GLM has a significantly poorer accuracy com-
pared to all other algorithms. This is more evident in the

Pyrimidines dataset, depicted as a outlier in (a). Comparing
nonlinear algorithms, GAM maintains the highest accuracy
for most datasets followed by MAR. The statistical signifi-
cance of the difference in nRMSE is analyzed in (b). Compar-
ing GAM and MAR shows that only 3 out of the 13 datasets
has a significantly higher nRMSE in GAM. Thus, in terms of
accuracy, MAR is a close followup to GAM. Both accuracy
and parsimony in MAR can be further improved by only
applying the monotonicity constraints to selected variables.
However this entails additional pre-processing for variable
selection that is beyond the scope of our paper. It must also
be noted that a further disadvantage of using GAM is that it is
unable to generate models for sample deficient datasets. For
instance, it did not return a result for the gas consumption
dataset.

Model sparsity by each algorithms is illustrated in
Fig. 8 (d). It shows that MARm generates models with higher
sparsity compared to all other algorithms (numerical results
in Tables S4 and S5). This is a clear indication that the mono-
tonicity constraint imposes a form of regularization on MAR
that prevents weaker predictors from entering the model. The
stability of the algorithm is analyzed in Fig. 8 (c) which
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TABLE 6. Algorithm performance on the pyrimidines dataset.

shows that GAM and MARm are the most stable. However,
stability of GAM is distributed across a larger spectrumwhile
MARm consistently lies closer to the upper quadrant of J for
all datasets.

B. INTERPRETABILITY OF REGRESSION MODELS:
PYRIMIDINES DATASET
The pyrimidines dataset originally analyzed by
Hirst et al. [52] models the quantitative structure-activity
relationship (QSAR) of the inhibition of dihydrofolate reduc-
tase (DHFR) by pyrimidines. QSAR is a process in which
physicochemical properties of a series of chemical com-
pounds are linked to biological or chemical activity by an
empirical equation. The dataset contains structural informa-
tion of 74 pyrimidines, with 27 predictor covariates produced
by 3 positions of chemical activity with 9 attributes per
position. The response is 1/ log(Ki), whereKi is the inhibition
constant that is experimentally measured.

QSAR based modelling has 2 main objectives, to identify
an empirical equation that links chemical properties of a
compound to its response, and to create a set of easily inter-
pretable decision rules that lead to understanding the domi-
nant attributes affecting the response. Hirst et al. [52] points
out that while stepwise linear regression meets both these
criterion, it is incapable of automatically detecting nonlinear
dependence which has been reported in QSAR literature.
As such, artificial neural networks (ANN), random forest,
support vector machines, k-nearest neighbors, and naïve bias
classifiers are used to replace simple linear regression [53].
However, interpretation of decision rules derived from these
methods require significantly more work. Furthermore, Hirst
et al. show that application of ANN to the dataset does not
show a statistically significant improvement in performance
compared to stepwise linear regression.

MAR provides an ideal solution to these problems as
it maintains the interpretability of the solution path while
detecting nonlinear dependence. Performance of the regres-
sion algorithms are validated in Table 6. The validation agrees
with [52] where GLM shows a significantly poor regres-
sion performance compared to other algorithms. Interestingly
however, LARS maintains nRMSE comparable to the non-
linear regression models. This is because LARS type algo-
rithms are more suitable to handle sample deficient datasets
(SectionV-C). However,MARmmaintains a clear superiority
in-terms of accuracy, stability, and sparsity compared to all
other algorithms.

TABLE 7. Algorithm performance on the bodyfat dataset.

C. MANAGING A LIMITED NUMBER OF OBSERVATIONS:
GAS CONSUMPTION DATASET
A limiting factor commonly encountered in most medical
and pharmaceutical research applications is where the pre-
dictor covariates greatly outnumber the available sample size.
In genetic research for instance, microarray datasets contain
thousands of gene interactions (predictors) and only a few
hundred samples. Thus, regression and subset selection algo-
rithms used to identify dominant genes must be conditioned
to manage deficiencies in sample size. The elastic net algo-
rithm introduced by Zou and Hastie [35] that extends LARS
for p > n datasets is one such example.
A more common scenario is when the number of observa-

tions slightly exceed the number of predictors. The gasoline
consumption dataset containing 27 observations and 4 predic-
tors is such a sample deficient dataset. GAM is not capable
of generating a regression model for this dataset. However,
models generated by MAR and MARm is able to account
for 86% and 87% of the variance in response achieving
good model fits. Thus, MAR is preferred over GAM when
the datasets are sample deficient. Quantitative validation of
this dataset can be found in the supplementary material
(Tables S4, S5).

D. LINEAR MODEL ESTIMATION: BODYFAT DATASET
This dataset contains 252 observations and 14 predictor
covariates of body circumference measurements to estimate
bodyfat percentage of individuals obtained from the CMU
repository. Many research articles from the health and biol-
ogy community advocates the need for an accurate model to
measure bodyfat percentage in individuals due to a strong cor-
relation between excess fatty tissue and chronic diseases [54],
[55]. A suitable formulation is given by Siri’s equation (12)
which predicts the amount of bodyfat using the body density
feature (x1).

BF =
495
x1
− 450 (12)

The main drawback of (12) however is that density mea-
surements require underwater weighing equipment which
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FIGURE 9. Solution path propagation for the 4 most dominant predictor covariates for the (a) MARm and (b) MAR algorithms.

are not readily accessible for rapid measurement. Instead,
Kanellakis et al. [55] argues that anthropometry-based mea-
surements are more suitable for real world applications.
A comprehensive list of 31 anthropometric equations is pre-
sented in [55], from which most assume a linear relationship
between predictors.

Initially, we fit regression models for the full dataset
including x1. The performance is depicted in Table 7. All
regression algorithms correctly identify x1 as a dominant
predictor. Both LARS and MAR type algorithms select x1 as
the start of the solution path. LARS and GLM achieves better
nRMSE compared to Siri as they include additional features
in the model. Although nRMSE of the GAM and MAR type
algorithms closely follow LARS, the nonlinearity encourage
overfitting.

A second set of regression models are generated for the
dataset without x1. They are validated against 2 pre-existing
models from [55] which are compatible with the predic-
tors on our dataset. However, these existing models show
very poor nRMSE performance. This may be caused by the
inter-observer variation in measurements between the train-
ing and validation datasets. Thus, the results underscore the
importance of setting adequate guidelines when acquiring
medical data. Except for MARm, all other algorithms achieve
similar nRMSE performance. However, compared to other
algorithms, LARS achieves good accuracy for a much lower
cost on model complexity (N). A lower J for GAM and MAR
also indicates overfitting due to the spline transformations.
During subset selection, bothMAR and LAR type algorithms
rank the same predictor: abdomen circumference (x7) as the
primary predictor covariate. Thus, the results indicate that
MAR can achieve subset selection and model fitting accu-
racies comparable to LARS for linear datasets.

E. EXPLORING HIDDEN NON-LINEARITY: KING COUNTY
DATASET
The King County dataset contains 21613 observations and
18 predictor covariates for modelling real-estate sales prices

TABLE 8. Description of predictor covariates in King County dataset.

in King County, Washington between May 2014, and May
2015. This dataset contains a mix of continuous and categor-
ical features akin tomost real-world regression problems. The
18 attributes associated with this dataset are listed in Table 8.
The regression algorithms are first applied to the orig-

inal King County dataset. Numerical results are depicted
in Table 9. LARS and GLM algorithms achieve the poor-
est nRMSE performance indicating a nonlinear relationship
between the predictor and the response for this dataset. GAM
achieves the best nRMSE. However, the GAM algorithm
does not compromise on model complexity N leading to no
meaningful subset selection. MAR type algorithms closely
follow the accuracy of the GAM models albeit with much
better parsimony. Thus, MAR is better suited for subset
selection. The solution paths for the MAR type algorithms
are illustrated in Fig. 9. Both the order and the identity of
the covariates are common for both algorithms. Together, the
4 top ranking covariates capture 76.96% and 75.55% of
the observed variance for the MAR and MARm algorithms,
respectively.
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TABLE 9. Algorithm performance on the King County dataset.

FIGURE 10. Nonlinear transformation of the 4 dominant predictor covariates (a) agent rating, (b) living area, (c) year built, and (d) latitude by
the LARS, MAR, and MARm algorithms. MARm and MAR show a similar nonlinear mapping for all 4 dominant predictor covariates indicating a
highly significant predictor-response relationship.

Nonlinear transformations of the dominant covariates are
illustrated in Fig. 10 with LARS mapping indicated as a ref-
erence. In Fig. 10 (a), the MAR and MARm transformations
perfectly overlap for the x9 covariate. The nonlinear transfor-
mation φ9(x9) is almost a straight-line on the semi-log plot.
This provides evidence that the house price increases expo-
nentially with respect to the rating. Thus, having a good rating
for the house can greatly increase its value. In Fig. 10 (b),
feature φ3(x3) show that houses with larger living areas are

more expensive. Unlike linear regression models however,
MAR shows that the price saturates at extremely large x3.
In Fig. 10 (c), all algorithms indicate that older houses
built in the early 1900s are more expensive, likely caused
by its high sentimental value. However, houses built post
2000 with modern amenities will also likely postulate high
selling prices. MARm is unable to adequately capture this
relationship due to the monotonicity constraint. Thus, MAR
can be used to better represent this relationship.
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FIGURE 11. A heatmap of house prices superimposed on the Seattle city map.

The latitude feature (x15) in Fig. 10 (d) initially included
in the dataset to support visualization turns out to hold the
second most significant predictive power, greater than other
commonsense predictors such as the living room area and
the year built. This surprising outcome highlights one very
important advantage of algorithmic regression over proce-
dures that heavily rely on human judgement: sometimes algo-
rithms will discover patterns hidden in the data that even
experts miss. Superimposing the spline function of latitude
on the Seattle city map lead us to suspect that x15 has
acted as the proxy for geographic location in the regression
model. Geographic location holds a high predictive power
as it encapsulates many hidden factors that are not explicitly
available in the dataset.

The meaning of x15 becomes clear when it is projected
onto the King County map. Seattle is the center of the cos-
mopolitan area where most of the transactions take place.
In Fig. 11, the metropolitan area developed predominantly
along a north-south axis due to the unique geographical con-
straints of the area. The initial asymptote of the constrained
spline transformation in Fig. 10 (d) corresponds to the small
city of Kent 20 miles south of Seattle. The price steadily
increases towards the north (higher altitude) and saturates
near downtown Seattle. Once again, the prices reduce further
north as x15 moves away from the local population center.
The unconstrained spline transformation almost perfectly
captures this effect and mirrors the relationship. Hence lati-
tude has acted as a proxy to represent urbanity of the area.

This observation agrees with the common belief about the
relationship between house price and the proximity to urban
centers.

We further investigate the impact of geographical location
on house price by merging the latitude and longitude features
by a tensor product [4]. Performance of the regression models
on the modified dataset are illustrated in Table. 9. The new
model shows that real-estate in the areas corresponding to
urban city center and the affluent northern suburbs of the city
holds the highest value. The first 4 dominant covariates in the
MAR and MARm effectively capture 82.68% and 81.60% of
the observable covariance indicating a significant increase in
predictor performance. Both MAR type algorithms achieves
the best nRMSE performance.

VI. CONCLUSION
This paper introduces an association-based regression and
subset selection algorithm. MAR demonstrates robustness
to unknown transformation of covariates which is often
encountered in practice. The nonlinear transformation of
covariates offer a data-driven insight into the relationship
between the predictors and the response. Compared to ad-hoc
pre-processing such as logarithmic transformations, these
data-driven relationships are easier to use and is more robust.
This aspect of MAR makes it a valuable tool for data
exploration as priori knowledge of the relationships between
covariates are replaced by high level constraints such as
monotonicity and smoothness. MAR behaves like LARS
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when the underlying problem can be solved satisfactorily
though a linear model. Compared to GAM, MAR performs
well even when the dataset is sample deficient compared to
the number of covariates. Analysis on real datasets show that
MAR is very flexible and capable of producing parsimonious
regression models by selecting the appropriate predictors.

A. RELATIONSHIP WITH OTHER REGRESSION
ALGORITHMS
The use of association in subset selection is rarely used
to develop regression algorithms. MAR differs from LARS
in the sense of subset selection criterion. Therefore, MAR
can be viewed as a version of LARS that is invariant with
respect to nonlinear transformation of predictor covariates.
Technically, MAR is a subset of Generalized Additive Mod-
els (GAM) introduced by Hastie and Tibshirani [2]. However,
it should be noted that MAR is not designed to tackle the
problems that are generally associated with GAM. It has
been designed to address the problem of unreliable subset
selection when one applies linear regression to nonlinear
problems. Therefore, it is more useful to view MAR as a
linear regression algorithm that is capable of subset selection
and for identification of suitable transformations to linearize
the problem. The boosting methodology proposed by Tutz
and Leitenstorfer [56] for subset selection is closely related
to the stage-wise selection strategy of MAR but differs sub-
stantially in the way variables are selected.

Finally, MAR is capable of generating lasso-like solu-
tion paths after imposing sign restrictions as described by
Efron et al. [28]. However, there is no known optimization
formulation that leads to LARS hence it is difficult to ascer-
tain the meaning of this lasso-like modification.

B. COMPUTATIONAL MATTERS
The computation of association is much slower than the
computation of correlation. Linear correlation has a com-
putational complexity of O(n) while the association mea-
sures have a complexity of O(n log (n)). Nevertheless,
an O(n log (n)) algorithm is generally considered fast and is
widely used in diverse real-world applications. Like LARS,
finding the association between the inactive set and the cur-
rent residual can be broken down into many independent
computational tasks. This makes MAR compatible with par-
allel computing technologies making it easily scalable to
tackle large problems.

The computation of spline approximations are small opti-
mization problems. It is not sensitive to the sample size
because the number of knots has been chosen a priori. More
refined approximation of the nonlinear transformation can be
achieved through tuning of spline parameters. However, this
will come at an expense of higher computational costs. The
fine-tuning of spline functions can be done during a follow-up
study after suitable subsets have been selected.
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