
Received November 5, 2021, accepted November 26, 2021, date of publication November 30, 2021,
date of current version December 22, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3131868

Efficiency-Improved UWB Transparent Antennas
Using ITO/Ag/ITO Multilayer Electrode Films
JEONG-WOOK KIM 1, JU-IK OH 1, KWANG-SEOK KIM 2, JONG-WON YU1, (Member, IEEE),
KANG-JAE JUNG3, AND IL-NAM CHO3
1School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
2Affiliated Research Organization of the Electronics and Telecommunications Research Institute, Daejeon 34044, South Korea
3Advanced Standard Research and Development Laboratory, LG Electronics Inc., Seoul 150721, Republic of Korea

Corresponding author: Kwang-Seok Kim (kks21ckr@nsr.re.kr)

ABSTRACT In this paper, a transparent antenna made with a new structure of ITO/Ag/ITO is proposed.
Overcoming the physical limitations of transparency and conductivity is an important problemwith transpar-
ent materials. By studying and comparing previously reported transparent materials, a transparent electrode
with thin filmAg inserted between two layers of ITO instead of a single layer is selected for a highly efficient
transparent antenna. This electrode has low sheet resistance (3.1�/sq) relative to its high transparency (88 %
at 550 nm), which is a factor that can increase the efficiency of the antenna. In general, it is difficult to
measure sheet resistance (SR) using a 4-point DC probe for very thin films (thickness of transparent material
is less than the skin-depth). Therefore, a form of reverse engineering that can estimate DC sheet resistance
using RF SR was presented and verified. As a result, it was possible to predict and design the performance
of the transparent antenna with the new material structure. The selected transparent material is applied to
design the wideband transparent antenna and the design process for wideband performance is covered in the
paper. The proposed antenna with ITO/Ag/ITO was implemented for verification. The peak efficiency of the
fabricated antenna was 66 %, and the measured bandwidth was 123 % (from 2.5 GHz to 10.6 GHz), which
is the best performance than previously reported transparent antennas.

INDEX TERMS Transparent antenna, efficiency improvement, ultra-wideband, ITO/Ag/ITO films.

I. INTRODUCTION
Recently, transparent antennas for use in various applications
such as electronics products, mobile phones, and vehicle
communication are being studied [1]. In these applications,
a wideband high efficiency antenna is essential for improved
communication. Moreover, to use a transparent antenna, high
transparency over 85 % is required [2]. The issue is the trade-
off between the conductivity and transparency in transparent
electrodes. In other words, the better the optical transparency
is, the lower the electrical conductivity becomes. Therefore,
many studies have been conducted to overcome this.

Transparent antennas have been studied using a variety of
transparent materials [3]–[31]. There are two approaches to
design a transparent antenna. One is to use oxide-based trans-
parent material. Of these, indium tin oxide (ITO) is the most
commonmaterial for transparent electrodes [3]–[7]. This ITO
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has transparency (81 - 85 %) and high sheet resistance (SR,
7 - 10 �/sq), resulting in low antenna efficiency.

To overcome the high sheet resistance, indium tin oxide
with Ag or Au thin films are applied to the transparent
antenna [8]–[10]. In [8], the transparent coplanar waveguide
(CPW)-fed monopole antenna has high transparency (85 %),
and the peak antenna efficiency is 70 %. In addition, the
fractional bandwidth is 155.6 %, which is suitable for a
wideband transparent antenna. However, the shape of the
antenna is visible because it uses gold nanolayer deposition.
In [9], [10], AgITO is used for a transparent slot antenna.
This material has low sheet resistance (0.9�/sq). Because of
the low sheet resistance, the antenna has high peak efficiency
(71 - 80 %), but the transparency is too low (52.5 %). Moreo-
ever, the slot antenna has limited fractional bandwidth, and
the double layer for the feeding network makes the trans-
parency lower.

Fluorine tin oxide (FTO) transparent electrodes and
fluorine-doped tin oxide/indium tin oxide (FTO/ITO)
have been studied for improved transparency and sheet

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 165385

https://orcid.org/0000-0001-7401-2977
https://orcid.org/0000-0003-3732-3025
https://orcid.org/0000-0002-3808-7629
https://orcid.org/0000-0003-2367-5863


J.-W. Kim et al.: Efficiency-Improved UWB Transparent Antennas Using ITO/Ag/ITO Multilayer Electrode Films

resistance [11], [12]. In [11], FTO has sheet resistance
(9 �/sq) and transparency (80 %) similar to that of ITO.
FTO/ITO has low sheet resistance (4 �/sq), which leads to
the high peak efficiency (60%).Moreover, themonopole type
antennas have wide fractional bandwidth (128 %). However,
their transparency is too low (72 %), and as with the antenna
in [9], [10], the double layer makes the feeding network
visible.

Another approach is to employ metal for the transparent
antenna. AgHT is a thin Ag films that has transparency
(80 - 85 %) and high sheet resistance (8 �/sq)
[13]–[19]. Moreover, the dual-band antennas in [14]–[17]
are not suitable for a wideband application. In [18], a trans-
parent CPW-fed slot antenna with high peak efficiency
(80 %) is researched. However, the transparency is too low
(80 %), and the fractional bandwidth is too narrow (40 %).
Mesh metal and nanohole structures have also been studied
for use in transparent antennas [20]–[24]. These materi-
als have low sheet resistance and high transparency. How-
ever, the high optical haze resulting from scattering of the
nanowires and mesh patterns is undesired in high-resolution
displays [25]. Moreover, they are usually fabricated through
precise patterning or complicated chemical synthesis pro-
cesses which makes fabrication procedures expensive and
complex [26], [27].

To overcome the problems with conventional transparent
materials, multilayer electrode films are used for transpar-
ent antennas [28]–[32]. Structures like this are sealed with
bottom and top oxide films, which act as suitable barri-
ers against chemical corrosion of the metals [33]. In [28],
IZTO (40 nm)/Ag (10 nm) /IZTO (40 nm) is used for a
transparent antenna. It has high transparency (86 %), but
the sheet resistance (7 �/sq) is too high. The transparent
antenna has a narrow fractional bandwidth (40 %) and is
not suitable for a wideband application. In [29]–[31] IZTO
(45 nm)/Ag (10 nm) /IZTO (45 nm) is employed. It has low
sheet resistance of 2.52�/sq [30], [31]. In [32], a monopole-
type antenna operates over a wide fractional bandwidth
(109 %), but the antenna efficiency (42.1 %), and trans-
parency (80 %) are both low. Moreover, ITO (85 nm)/Ag
(13 nm)/ITO (85 nm) has low transparency (74 %) and high
sheet resistance (5 %). To design a transparent antenna that
has over 85 % transparency, high antenna efficiency, and
a broad operating bandwidth, a new material, and proper
antenna structure had to be researched.

In this paper, a new multilayered transparent antenna using
the best transparent material is proposed to improve electrical
performance while maintaining a high transparency state.
We selected the best transparent material for a highly efficient
transparent, wideband antenna. To implement it, we applied
this material to create a CPW-fed diamond-shaped monopole
antenna. Moreover, to design the transparent antenna using
the new transparent material, reverse engineering was used to
estimate the electrical property of the selectedmaterial, which
result is presented. To design a transparent antenna with the
new material, it is necessary to know the RF sheet resistance

FIGURE 1. The transparent materials reviewed for selecting the best
transparent material.

FIGURE 2. The designed transparent material layer information of
(a) Single layer (SL), (b) Multilayer A (MA), and (C) Multilayer B (MB).

of the transparent material. Traditionally, the DC sheet resis-
tance is employed in place of the RF sheet resistance because,
for thin films (thickness of transparent material less than skin-
depth), RF andDCSR are the same [34]. However, measuring
the sheet resistance requires a 4-point DC probe that costs
more and takes more time. Moreover, damage occurs to the
thin film sample due to the pressure from physical contact
[35], [36]. Therefore, in Section II, we introduce for the first
time, a method for predicting DC SR using RF SR by reverse
engineering. In Section III, the design of the proposed trans-
parent antenna made using the selected transparent material
is covered. In Section IV, the implementation of the proposed
antenna structure is verified. Section V presents conclusions
about the proposed antenna.

II. TRANSPARENT MATERIAL DESIGN
A. TRANSPARENCY PROPERTY
To design a transparent antenna, first, an appropriate trans-
parent material is needed. To select the transparent material,
we investigated a transparent material with transparency >
85 % [37]–[44]. As shown in Fig. 1, an ITO (48 nm)/Ag
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FIGURE 3. (a) The optical characteristic measurement environment, (b) the measured transparency results of transparent materials according to
wavelength, and (c) the measured transparency of transparent materials in the average visible range and at 550 nm.

FIGURE 4. (a) The fabricated CPW transmission line using transparent
material to predict RF characteristics of the sheet resistance (SR). The
measured results of insertion loss for (b) SL, (c) MA, and (d) MB.

(17 nm)/ITO (42 nm) material has the lowest sheet resistance
(3 �/sq) and its transparency is 88 %. This material satisfies
the need for > 85% transparency and low sheet resistance can
make the antenna efficiency high.

TABLE 1. Comparisons of the measured delta insertion loss.

To compare with other materials, three transparent elec-
trodes were designed, as shown in Fig. 3. The electrodes were
implemented using RF magnetron sputtering [44]. There
were three configurations: Single-layer ITO (150 nm), ‘‘Mul-
tilayer A’’ ITO/Ag/ITO (48/12.5/42 nm), and ‘‘Multilayer B’’
ITO/Ag/ITO (48/17.5/42 nm). Corning glass with a relative
permittivity of 5.27, loss tangent of 0.001, and thickness of
0.7 mm was used for the substrate. From an optical point
of view, the wavelengths 400-750 nm encompass the visible
range. In particular, light at 550 nm is that to which the
human eye is most sensitive [45]. As shown in Fig. 3(a), the
transparency was measured using a PerkinElmer’ Lambda
950. The transparency to visible light of the new transparent
electrode is shown in Fig. 3(b). In Fig. 3(c), the ITO single-
layer (SL) and multilayer A (MA) were higher in terms
of the 400-750 nm average transparency. At 550 nm, the
single-layer, MA, and multilayer B (MB) showed similar
transparency (1 % difference). The optical characteristics
at 400-750 nm were analyzed. The SR characteristics were
analyzed based on the RF property as an electrical analysis
method.

B. REVERSE ENGINEERING TO DETERMINE THE
ELECTRICAL PROPERTY
In general, the conductivity of a transparent electrodes cannot
be known given the new structure of the material. A 4-point
probe measurement analyzes the DC SR of the electrical
characteristics. However, for very thin films, it is difficult to
measure sheet resistance using a 4-point DC probe [35], [36].
Because the layer is so thin, the measurement error due to the
DC probe contact is very large. If an electrode with thickness
less than the skin-depth, is used in the operating frequency
range, RF SR verification is possible using the following
equation [34].

RDCS =
1

σFilms tFilms
(1)
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FIGURE 5. Estimation for delta insertion loss according to RF SR of (a) SL,
and (b) MA, and MB.

FIGURE 6. Equivalent circuit of (a) single layer and (b) multilayer.

RRFS =
1

σFilmsδFilms

(
where : δFilms =

√
2

ωµ0σFilms

)
∼=

1
σFilms tFilms

(
when : tFilms � δFilms

)
(2)

∴ RDCS,Films ∼= RRFS,Films (3)

Equation (1) is the formula of SR (RDC� ) with conductivity
(σFilms). The thickness (tFilms) here can be seen as the effective
thickness in terms of DC. However, in RF, skin-depth (δFilms)
occurs depending on the frequency (ω). Thus, equation (1)
should be represented, including skin-depth, as shown in (2).
In equations (1) and (2), the conductivity (σFilms) is lower
because the carrier concentration and hall mobility are low
due to the thin metal and not bulky [46]. In the case of the
thin film (1xx nm), the thickness of the transparent material
is less than the skin-depth; so the RF and DC SR are equal in

FIGURE 7. (a) Geometry of the proposed transparent antenna with
Ws = 36.6, Ls = 35, Al = 26, Aw = 22, Ah4 = 9.3, Ah3 = 8.8, Ah2 = 11,
Ah1 = 12.6, Gh = 15, Gv = 5.5, Gp = 1.4, Gt = 0.7, Fw = 4, Fl = 6 (in
millimeters), Ita = 48, Mt = 17.5, Itb = 42 (in nanometers), θf = 45◦.
(b) Implementation of the proposed transparent antennas.

the UWB band as seen in equation (3) [34]. Therefore, in a
thin-film material (1xx nm), the DC SR can be obtained by
reverse engineering.

First, for when the conductivity of a transparent material
cannot be known, the transmission lines of CPW using SL,
MA, and MB were fabricated to analyze the RF SR charac-
teristics for reverse engineering. The insertion loss per unit
length for each transparent material was measured. Fig. 4(a)
shows the fabricated CPW of the transmission line with the
transparent materials (i.e., 30, 40, and 50 mm). Fig. 4(b)-(d)
shows the insertion loss for the SL, MA, and MB. The loss
factor for each frequency improves in the order SL, MA, and
MB. As shown in Fig. 4(b)-(d), based on the insertion loss,
it can be expressed as a representative value of the average
insertion loss per unit length (3-6 GHz), as summarized in
Table 1.
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FIGURE 8. Variations in the reflection coefficient and radiation efficiency according to (a)-(b) Cutting area and (c)-(d) Gap between feeder and
ground.

FIGURE 9. Variations according to SR: (a) Reflection coefficient and (b) Total efficiency.

The average delta insertion loss (ADIL) per unit
length is 0.2 dB/mm for SL, 0.13 dB/mm for MA, and
0.09 dB/mm for MB. Based on the measured ADIL, a
3-D electromagnetic (EM) simulator was set up to estimate
RF SR as being in the same environment as the CPW trans-
mission line manufactured. Then, the same ADIL could be
extracted by the sweep of the SR parameter of the transparent
material. Fig. 5(a) shows that the RF SR estimated with the
measured ADIL is 8 �/sq as a result of variation of the SR
to 5.5-10 �/sq for the SL. Similarly, Fig. 5(b) shows that
the estimated SRs of MA and MB are 4 �/sq and 3 �/sq,

respectively. As such, a multilayer may have higher conduc-
tivity than a single layer, which is illustrated by equalizing
materials that may be configured in parallel, as shown in
Fig. 6, where RSLtotal = RITO and RMLtotal = RITO‖RAg‖RITO.
In this case, since RMLtotal is constructed in a parallel rela-
tionship, conductivity can be improved. The measured DC
SRs of SL, MA, and MB were 8.4, 4.3, and 3.1 �/sq,
respectively. Thus, the RF SR can be equal to DC SR and
the factor for predicting the efficiency in antenna design,
as described in Section III. By reverse engineering, DC SR
was estimated from the RF SR. Moreover, the selected MB
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FIGURE 10. Scanning electron microscope (SEM) image with
backscattered electrons for (a) SL, (b) MA, and (c) MB.

had the lowest sheet resistance among the three transparent
materials.

III. TRANSPARENT ANTENNA DESIGN
To design a wideband, highly efficient transparent antenna
using the selected transparent material, a diamond-shaped
monopole antenna was designed, as shown in Fig. 7. The
proposed transparent antenna was designed using SL, MA,
and MB. For high transparency, the transparent antenna had
to be designed as a single layer antenna. Moreover, for wide-
band application, the printed monopole antenna was suitable.
Therefore, a CPW-fed monopole antenna was designed.

Fig. 8 shows the reflection coefficient and efficiency
according to the CL and GP for the essential parameters in
terms of antenna designwhen the SR is 3�/sq (MB). Fig. 8(a)
shows the reflection coefficient for the process of becoming
antenna C by adding the cutting area (CA) in the rhombus
shape. When the CA length (CL) is increased from 0 to 8 mm,
it can be seen that the 10 dB IBW expands to the 9 GHz
band. The upper CL is 0.7 mm less than the CL on both sides,
which is a factor that can increase IBWby asymmetric current
induction. The IBW is largest when theCL is 6mm.As shown
in Fig. 8(b), the efficiency increases by 4 % in the 7.1 GHz
band when the CL is 6 mm rather than 0 mm, so the CL is
most optimal at 6 mm. Fig. 8(c) and (d) show the results
of the reflection coefficient and efficiency according to the
gap change between the feeder line and ground. As shown in
Fig. 8(c), the antenna is improved in terms of the IBW and
the impedance matching when GP is 0.5 mm, 1.0 mm, and
1.5 mm. However, in Fig. 8(d), the efficiency is optimal when
GP is 1.5 mm.
Fig. 9 illustrates variations in the reflection coefficient and

efficiency according to the SR of the antennas. The thickness
of the ITO and Ag layers could be changed in the process of

FIGURE 11. (a) The mobile chamber environment for efficiency
measurement. Simulated and measured radiation patterns of the
proposed antenna at (b) 3.0 GHz, (c) 4.5 GHz, and (d) 6.0 GHz in the XZ
and YZ planes.

implementation. In this case, the sheet resistance becomes
different. In Fig. 9 (a), the bandwidth in the lower frequency
band of the reflection coefficient becomes narrow as the sheet
resistance decreases. However, the high frequency perfor-
mance is maintained as the sheet resistance is varied. More-
over, as the sheet resistance decreases, the antenna efficiency
increases. The difference in the peak efficiency between SL
and MB is 19 %. Although the peak efficiency is different,
the proposed antenna has similar tendencies regarding the
reflection coefficient and efficiency according to change in
the SR. This is an advantage in terms of reducing a process
error when depositing a transparent electrode.
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FIGURE 12. The simulated and measured reflection coefficient of the implemented antenna with transparent materials and efficiency: (a) SL, (b) MA,
(c) MB, and (d) Caption.

TABLE 2. Comparison with the previously reported high performance transparent antennas.

IV. IMPLEMENTATION AND MEASUREMENT
Diamond-shaped antennas with SL, MA, and MB were
implemented, as shown in Fig.8(a). The transparent antennas
clearly show the logo on the back of the antenna, as shown in
Fig. 8(b). The shape of the antenna is difficult to distinguish
with the human eye. Fig. 10 shows a scanning electron micro-
scope image made with backscattered electrons to capture
the nanoscale tomography of the three transparent materi-
als. Fig. 10(a) shows the layer composition for the single-
layer ITO. Measurements show that the ITO was deposited
at a thickness of about 155 nm, showing a process error of
about 3 %. As shown in Fig. 10(b), MA was deposited using
RF sputtering as ITO/Ag/ITO films with 47.4/13.8/42 nm
from the top. It can be seen that the layers are distinguishable.
Moreover, Fig. 10(c) is a cross-sectional photograph of MB,
in which an increase can be seen compared to the Ag layer
of the MA (about 48.6/16.5/44). This could lead to improved
electrical properties. As a result, although there is a process
error, the multilayer has little optical deteriorations due to the
nanoscale layer in the middle, while the sheet resistance is
reduced compared to the single layer.

As shown in Fig. 11(a), the 3-D radiation patterns of the
proposed transparent antennas were measured in a mobile
chamber. A dual-polarized horn antenna was employed as a
reference antenna (LB-780-SF). As a result of measurement,
it was determined that the radiation patterns of the proposed
transparent antenna simulated and measured at the XZ and

YZ plane at each frequency (3.0, 4.5, and 6.0 GHz), each
show good agreement.

Fig. 12 shows the measured reflection coefficient and
efficiency for newly fabricated antennas: diamond shaped
monopole antennas with an SL, MA, and MB. The chamber
able to measure the antenna efficiency is for mobile use,
which means that the frequency band can be measured is only
available up to 6 GHz. Therefore, only 3 - 6 GHz was mea-
sured considering the sweep point. The measured impedance
(whole band) and efficiency (3-6 GHz) of all antennas are
in good agreement with simulated results. Therefore, in the
band where the efficiency was not measured, the efficiency
could be predicted to correspond to the simulated results. The
implemented antennas havewider impedance bandwidth than
the simulated results do. Themaximum efficiencies of the SL,
MA, and MB antenna are 47, 62, and 67 %, respectively.

Table 2 summarizes the performance of previously
reported transparent antennas. In [9], an AgITO based
slot antenna has wide impedance bandwidth (106 %) and
high peak efficiency (70 %) due to low sheet resistance
(0.9 �/sq). However, the transparency is too low (52.5 %).
In [12], the UWB antenna with wide bandwidth performance
(128 %) studied has peak efficiency that is high enough
(60 %). Unfortunately, the transparency is too low (72 %).
In [28], [29], and [31], IZTO/Ag/IZTO is employed for
transparent antennas. The transparent antenna in [28] was
designed using IZTO 40 nm/Ag 10 nm/IZTO 40nm. The
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branch-type antenna has a narrow bandwidth. Moreover,
in [29] and [31], a monopole antenna with IZTO 45 nm/Ag
10 nm/IZTO 45 nm was studied. This material has a low
sheet resistance of 2.5�/sq. However, the proposed transpar-
ent antenna efficiency is higher than conventional antennas
[29], [31]. Among the previously reported transparent anten-
nas and new transparent antennas in this paper, the proposed
transparent antenna using ITO48 nm /Ag 17.5 nm /ITO 42 nm
has high antenna efficiency, broad impedance bandwidth, and
proper transparency.

V. CONCLUSION
In this paper, a new diamond-shaped antenna with
ITO/Ag/ITO structure was proposed to overcome existing
optical and electrical limitations. In the middle, rather than
a single layer, Ag was thinly deposited at nanoscale to
maximize conductivity performance without deterioration of
the transparency. Moreover, for the new material, a reverse
engineering method was proposed to overcome the limits of
a method that made it difficult to measure thin films using
the sheet resistance analysis method. A transparent antenna
designed with DC SR estimated using reverse engineering
was verified. As a result, it was possible to predict the DC
SR of the thin film of the new material and design the
antenna. Therefore, it has been verified that the transparent
antenna using ITO/Ag/ITO is superior to other materials
in terms of efficiency. In addition, the improved efficiency
and widened IBW of the proposed antenna was verified by
adding a cutting area in the conventional rhombus shape. The
proposed antenna has high transparency, high efficiency, and
broad wideband performance.
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