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ABSTRACT The development of low-energy, high-performance hardware for cryptocurrency mining is
gaining widespread attention. The mining process for proof-of-work (PoW) in conventional cryptocurren-
cies’ blockchains is increasingly being replaced by application-specific integrated circuits (ASICs). This
leads to many security threats for the blockchain network because it decreases security and increases
power consumption for mining. Therefore, Scrypt, the most representative ASIC-resistant algorithm, was
developed to solve this problem. However, there are still some problems and challenges with the current
Scrypt hardware. This article presents a new hardware architecture for the Scrypt algorithm intended for
a PoW-based cryptocurrency mining system. The proposed Multi ROMix Scrypt Accelerator (MRSA)
hardware architecture applies several optimization techniques: configuration, local-memory computing with
high-performance pipelined Multi ROMix and rescheduling resources to significantly increase processing
speed, flexibility, and energy efficiency. For evaluation, the MRSA is implemented on field-programmable
gate arrays (FPGAs) to examine its actual performance, consumption, and correctness. Evaluation results on
a Xilinx system-on-chip (SoC) with the ALVEO U280 Data Center Accelerator Card FPGA show that the
MRSA is much more power-efficient than some of the most powerful commercial CPUs, GPUs, and other
FPGA implementations. On the ALVEO U280, the MRS A achieves a maximum hash rate of 296.76 kHash/s,
a throughput of 304.9 Mbps when reaching a maximum frequency of 259.94 MHz, and a power consumption
of 18.12 W. The energy efficiency of the MRSA on the ALVEO U280 SoC is 52.83 and 867.88 times higher
than those on an RTX 3090 GPU and an i9-10940X CPU, respectively.

INDEX TERMS Blockchain, Scrypt, accelerator, FPGA, SoC, ASIC, cryptocurrency, ASIC-resistant,
cryptography hash function, proof-of-work, Litecoin.

I. INTRODUCTION

Recently, cryptocurrency has been a topic of interest. A cryp-
tocurrency is a monetary network that uses blockchain tech-
nology as a consensus mechanism among users [1], [2]. In a
blockchain network, transactions are grouped into lists con-
tained within blocks. The blocks are linked together through
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the hash of the previous block, thus forming a blockchain.
The blockchain is synchronized among the nodes in the
network, ensuring that no data in the blockchain can be
changed. To ensure authenticity, transactions require digi-
tal signatures from users [3], [4]. In addition, cryptocur-
rencies have mechanisms to solve other security problems,
such as the possible occurrence of double spending when
multiple transactions are performed simultaneously [5]-[8]
or a fork occurring when multiple longest blockchains
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exist [9], [10]. The consensus mechanism is one of the most
important tools that a cryptocurrency uses to ensure consis-
tency and integrity. There are many types of consensus mech-
anisms, such as proof-of-work (PoW), proof-of-stake (PoS),
proof-of-authority (PoA), and several other types presented
in [11], [12], and [13]. Among them, PoW is the most popu-
lar and is used by the largest cryptocurrency, Bitcoin [14].

In PoW, the miners obtain input data from the last block
combined with finding a valid random nonce number such
that the output hash value is less than the target value
specified by the system. The new block is accepted and
saved to the system permanently, and all transactions inside
it are executed when the nonce is valid. However, finding
a new block consumes a significant amount of computa-
tional resources, which is one of the biggest problems with
PoW-based blockchains. It has been reported that the total
energy consumption of the Bitcoin network in 2020 reached
109.07 TWh, which is approximately equal to the total
energy consumption associated with electricity use in the
Netherlands. Therefore, research and development on high-
performance and low-power hardware for cryptocurrency
mining systems have become a research trend in recent
years [15], [16].

Many studies have presented hardware architectures to
improve computational efficiency and reduce power con-
sumption for Bitcoin mining, which uses double SHA-256
encoding. The authors of [17] introduced a high-performance
multimem SHA-256 accelerator to greatly increase the
speed of the hardware and reported its realization and test-
ing on a ZCU102 field-programmable gate array (FPGA).
With the proposal of a compact message expander hard-
ware architecture for the double SHA-256 core in [18],
the authors reduced the demand for hardware computing
resources without affecting the processing speed. In addi-
tion, the authors of [19] proposed a two-level fully pipelined
SHA-256 core with a hash rate equal to the operating fre-
quency. By eliminating the finite state machine, shortening
the critical path, and balancing the pipeline stages, their
design achieves very high performance and low energy
consumption.

PoW systems using double SHA-256, with immutability,
simple computational components, and low memory require-
ments, offer enormous advantages when implemented on an
application-specific integrated circuit (ASIC) hardware plat-
form. Double SHA-256 miners on ASIC platforms achieve
mining speeds far superior to those on other platforms such as
FPGAs, GPUs, and CPUs. However, ASIC miners consume
energy, and the market price is quite high, leading to the
hardware power in a network being concentrated only in
ASIC mining farms. Such centralization seriously threatens
the safety of the network, increases mining energy consump-
tion, and goes against the original purpose of PoW [15].
Hence, ASIC-resistant algorithms were created to solve these
problems. They have several characteristic properties: they
are highly serial, memory-intensive, and parameterizable.
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The highly serial and memory-intensive nature of these algo-
rithms means that they require a high number of loops,
complex dependencies among loops, and considerable mem-
ory, thereby decreasing performance and increasing man-
ufacturing costs for ASICs. Meanwhile, parameterizability
allows the parameters of such an algorithm to be modified
as needed to make current ASICs obsolete and unusable.
ASIC-resistant algorithms eliminate the advantages of ASICs
because they require hardware resources with high flexibil-
ity, significantly reducing computational performance and
leading to high risk when using ASIC miners [20], [21].
On the other hand, FPGA-based miners are flexible, energy-
efficient, and resource-rich computing tools with a reasonable
cost. Therefore, we believe that FPGAs are truly the most
suitable and efficient hardware platforms for ASIC-resistant
cryptocurrencies. Scrypt is one of the most representative
ASIC-resistant algorithms used in today’s PoW-based cryp-
tocurrencies, of which the most popular are Litecoin [22],
Dogecoin [23], Fastcoin [24], and Megacoin [25], among
many others [26]. Several real-world studies and hard-
ware improvements to the Scrypt mining system have been
reported. The authors of [27] built a hardware implementation
for an Scrypt miner with a double ROMix core pipeline tech-
nique and reused resources to increase computation speed
and reduce hardware cost. However, the reuse of hardware
has not been completely optimized, a detailed review of
its implications for power consumption is lacking, and this
approach has not been implemented and verified in practice
on a real FPGA system-on-chip (SoC).

In this paper, we propose a high-performance hardware
architecture for Scrypt by assessing computation time, hard-
ware cost, and power consumption. Furthermore, this is
the first hardware implementation for Scrypt miners on a
Xilinx SoC. This hardware architecture is called the Multi
ROMix Scrypt Accelerator (MRSA). With its proposed con-
figurability feature, the MRSA can also operate under many
parameters and modes to adapt when the mining system
parameters change or be applied in many other Scrypt
applications. The MRSA uses multiple ROMix processing
elements (ROMix PEs) in a cyclic pipeline to increase pro-
cessing efficiency and minimize the hardware idle time. With
near-memory computing, these pipelined ROMix PEs can
access the memory separately and in parallel. This signif-
icantly reduces the time needed for data transfer between
the accelerator and the external memory. Finally, we analyze
the algorithm and apply rescheduling and rearranging tech-
niques to reduce the total hardware computation power and
resources.

The remainder of this paper is presented as follows.
Section II provides the background for this study. Section III
presents the details of the proposed research contributions.
A comparative evaluation of the proposed design imple-
mented on a Xilinx FPGA SoC with other hardware platforms
and studies is presented in Section IV. Finally, Section V
concludes the paper.
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FIGURE 1. Scrypt proof-of-work (PoW) mining system architecture.

Il. BACKGROUND

A. PROOF-OF-WORK

PoW is the most popular and secure consensus mechanism
used in the oldest and most stable cryptocurrencies, such
as Bitcoin, Ethereum, and Litecoin. It trades off hardware
power to ensure the security of the blockchain network. Fig. 1
shows a diagram of a PoW mining system. In this system,
miners choose pending transactions and gather them into a
candidate block. Then, the miners use their computational
power to find the proof necessary to add the candidate block
to the blockchain network. This proof is arandom nonce value
such that the mining result is lower than the required target.
In PoW-based cryptocurrencies, a block consists of two main
fields: the block header and transactions. The transactions
field is the list of executed transactions saved in the block.
The remaining field is the block header, which comprises six
fields, as described in Table 1, serving as the input for the
mining process.

The main processing component in the mining system is
the mining algorithm. The mining algorithm considered in
this study is Scrypt. It returns a 256-bit hash string calculated
from the block header input. Increasing the block header’s
nonce value allows miners to change the hash output to find
a valid nonce. The comparator module compares the Scrypt
hash against the target value. The new block and nonce are
considered valid only if the Scrypt hash is lower than the tar-
get value. Then, they will be broadcast through the blockchain
network for the other miners to verify. Subsequently, the
new block is permanently added to the blockchain network.
Additionally, the miner who mined that block will automati-
cally receive a reward from the system and all fees from the
transactions in the new block. However, if a valid result is
not found, the miner must change the nonce and recalculate
until the Scrypt result is accepted. Essentially, the current
ASIC-resistant mining process is not fully effective because
it is performed by general hardware platforms such as CPUs
and GPUs, which generally have low performance and high
energy consumption.

B. SCRYPT
Introduced by Percival and Josefsson in [28], the Scrypt
algorithm is a password-based key derivation and a sequential
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TABLE 1. Fields of the block header.

Length

Field in Bit Description
Version 32 Block version number
Previous 256 256-bit hash of the

Block Hash previous block header

256-bit hash based on all of the

Merkle Root 236 transactions in the block

Current block timestamp in seconds

Time Stamp 32 since 1970-01-01T00:00 UTC
nBits 32 Current target in compact format
Nonce 32 32-bit number (starts at 0)

Algorithm 1 Out = Scrypt (Blockheader)
Scrypt variables and parameters
for cryptocurrency mining:
Block header (B_header) (1024 bits)
Block size factor (r) = 1
Parallelization parameter (p) = 1
CPU/memory cost parameter (N) = 1024
Length of DerivedKey in bits (dklen) = 256
Steps of the algorithm:

P1 = PBKDF2(B_header, B_header, 1024 x r x p)
P1 = LittleEndian32(P1)

RM_out = ROMix(P1, N, r)

RM_out = LittleEndian32(RM_out)

Scrypt_out = PBKDF2(B_header, RM_out, dklen)
Scrypt_out = LittleEndian32(Scrypt_out)

return Scrypt_out

A A o

memory-hard function created to defend against attacks
from custom hardware such as ASICs. Algorithm 1 explains
the details of the Scrypt algorithm. Accordingly, several
parameters are used to modify the algorithm depending on
its intended use. They are the block size factor (r), the
CPU/memory cost parameter (N), the parallelization param-
eter (p), and the derived key length in bits (dklen). These
parameters determine how much memory and computational
power are used and how many iterations are performed
in the subfunctions. In most current cryptocurrency min-
ing systems, the parameter set (r, N, p, dklen) used in the
Scrypt algorithm is (1, 1024, 1, 256) [29]. Overall, this algo-
rithm includes two main functions, PBKDF2 and ROMix,
and is divided into three steps. The first step is to process
the PBKDF2 function with input parameters (message, salt,
dklen) of (B_header, B_header, (1024 x r x p)). The second
step is to run the ROMix function with the input parameters
(Block, N, r) set to (P1, N, r). The final step is to execute the
PBKDEF2 function again with the input parameters (message,
salt, dklen) set to (B_header, RM_out, dklen). The LittleEn-
dian32 function converts each 32-bit segment, separately and
in parallel, into the little-endian format [30]. The remainder of
this subsection explains the PBKDF2 and ROMix functions
in detail.

1) PBKDF2
The Password-Based Key Derivation Function 2
(PBKDF2) is one of the key derivation functions used to
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Algorithm 2 DK = PBKDF2(Message, Salt, Dklen)

Algorithm 3 RM_Out = ROMix(Block, N, r)

1: DK ="

2: fori < 1 to (dklen/256) do
DK; = HMAC(message, {salt, i})
HMAC:

3: IPAD = 36363636 ... 3616 (256 bits)

4: OPAD = 5C5C5C5C ... 5Ci6 (256 bits)
5: KHASH = SHA256(message)

6: IXOR = {(KHASH @ IPAD), IPAD}

7: OXOR = {(KHASH @& OPAD), OPAD}
8: IHASH = SHA256({IXOR, salt, i})

9: OHASH = SHA256({OXOR, IHASH})
10 DK; = OHASH
11: DK = {DK, DK;}

12: end for

13: return DK

reduce vulnerabilities to brute force attacks with a sliding
computational cost. In the Scrypt algorithm, PBKDF2 uses
the Hash-based Message Authentication Code (HMAC) to
input the message along with a salt value to produce a derived
key [31]. HMAC is a message authentication code (MAC)
that uses a cryptographic hash function and a secret cryp-
tographic key [32], [33]. It is used to verify data integrity,
to authenticate messages, and in many other cryptographic
applications [34], [35]. Algorithm 2 presents more details of
the PBKDF?2 function, where {a, b} denotes the concatena-
tion of a and b and @ is the exclusive OR (Xor) operator.
Accordingly, PBKDF?2 includes dklen/256 loops of HMAC
functions. In Scrypt with the current mining parameters (r, N,
p, dklen) = (1, 1024, 1, 256), there are four HMAC loops in
PBKDF?2 in the first step because the input parameter dklen
is 1024 x r x p. In the third step of the Scrypt algorithm,
the PBKDF2 function performs HMAC only once because
dklen is 256 (refer to Algorithm 1 to see the second PBKDF2
call). Finally, the output of PBKDF?2 is the concatenation of
the results of all HMAC loops.

HMAC uses SHA-256 as its cryptographic hash func-
tion, combined with some Xor and concatenation operations.
SHA-256 is a cryptographic hash function in the Secure Hash
Algorithm 2 family (SHA-2) created by the United States
National Security Agency [36]. It is one of the most popu-
lar hashing algorithms and is widely used in cryptography
and cybersecurity applications. Accordingly, the SHA-256
hash values create the linkages in the blockchain. This hash
algorithm is used in most current cryptocurrencies and is the
primitive PoW algorithm applied in Bitcoin.

SHA-256 includes three steps: padding, message expan-
sion, and message compression. In the padding step, the
message is divided into multiple 512-bit data blocks. The
last block of the message is padded with a string of zeros as
necessary, and the message length is expressed in bits. For
each data block and the previous hash (or initial constants),
message expansion and message compression are performed
to compute an intermediate 256-bit hash. The hash result
of the final block (final digest) is the hash value of the
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1: fori < 0to (N-1)do
Writing to memory:
2 Mem; = Block
3 Block = BlockMix(Block, r)
4: end for
5: for j < 0to (N-1) do
Reading from memory:
j = Block[489:480]
Block = BlockMix(Block & Mem;, r)
end for
return RM_out = Block

R

Algorithm 4 BM_Out = BlockMix(Block, r)

1: X = Block[1023:512] (block’s 512 high bits)
2: fori <~ 0to((2 xr)—1)do

3 X =X & Block[511:0] (block’s 512 low bits)
4: X =X + Salsa20/8(X)

5:  if i == 0) then

6: OutH =X

7:  else

8: OutL =X

9: end if

10: end for

11: return BM_out = OutH, OutL

entire message. The reader is referred to [17]-[19] for a
better understanding of SHA-256. In PBKDF2, SHA-256
is the most complex process that must be considered when
optimizing the hardware.

2) ROMix

ROMix is a sequential memory-hard function that Scrypt
uses to interact with the (N x 128 x r)-byte memory. The
details of the ROMix algorithm are presented in Algorithm 3.
It consists of two main phases: the writing-to-memory phase
and the reading-from-memory phase. Each phase includes
N-1 loops of writing data to or reading data from memory.
In current Scrypt mining systems, the number of loops in
each writing and reading phase is 1024 (N = 1024, r = 1).
In the writing phase, the writing values are handled by the
BlockMix function and saved to memory in ascending order
of address. Then, the Xor operation is performed on the stored
value and the previous BlockMix calculation to decide the
random order for the reading phase. More specifically, the
random address to be read is determined from the 489th to
480th bits of the block data (Block[489:480]), as described
in step 6 of Algorithm 3. If the parameter N is 1024 and
the parameter r is 1, then the required memory for each
ROMix execution is 128 kB. This is why Scrypt is a memory-
intensive algorithm that is suitable for GPUs, CPUs, and
FPGAs but not ASICs. Overall, the ROMix function, the
second step of the Scrypt algorithm, is the most complex
and hardware-demanding process. It occupies 98 percent of
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the total Scrypt execution time because of the many memory
writing and reading loops. Therefore, we propose the Multi
ROMix architecture with the main purpose of accelerating the
ROMix process.

3) BlockMix

ROMix uses the BlockMix function to mix data for the writ-
ing and reading phases. Algorithm 4 shows the pseudocode
for the BlockMix function. It consists of 2 x r — 1 process-
ing loops. In current mining systems, the number of loops
is two because the block size factor parameter (r) is one.
Accordingly, each loop includes one Xor operation, one sum
operation, and one Salsa20/8 process.

Salsa20/8 is the main process that the BlockMix function
uses to mix the input data. It is an original cipher developed
by Daniel J. Bernstein in 2005 [37]. Salsa20/8 is a hash
function whose input consists of a set of sixteen 32-bit strings
in little-endian format [30]. Specifically, it consists of four
column rounds (CRs) and four row rounds (RRs) performed
alternately. The final BlockMix result is a set of sixteen 32-bit
strings, the same width as its input. Both the CRs and RRs
refer to a smaller loop called a quarter round (QR). The
reader is referred to [27] for more details about the Salsa20/8
algorithm.

Overall, Salsa20/8 is the most complex process in the
ROMix function. It has the longest critical path when imple-
mented in hardware, similar to the SHA-256 process in the
PBKDF2 function. Hence, it is also necessary to improve the
Salsa20/8 process to accelerate the entire Scrypt hardware
implementation.

C. PRELIMINARY IDEA AND MOTIVATION FOR THE
HIGH-PERFORMANCE MULTI ROMix SCRYPT
ACCELERATOR

In general, Scrypt has several characteristics that make it
suitable for implementation on FPGAs. First, Scrypt uses
only low-computational-cost operators such as And, Xor,
right shifting/rotation, and addition. There are no complex
operators such as multiplication, division, or exponentiation.
Second, the number of loops and the number of operands
in each loop are both very high, mainly concentrated in the
SHA-256 and Salsa20/8 calculations. Third, the dependency
between loops in the Scrypt algorithm is very high. To be
more specific, in the ROMix function, the reading order
in the reading-from-memory phase is entirely dependent on
the value previously written to the memory in the writing
phase. On the other hand, the PBKDF2 processes in Scrypt
include multiple SHA-256 calculations. These calculations
also have a high dependency between loops, as analyzed
in [17]. Fourth, the ROMix process has enormous memory
requirements because of the many writing and reading loops it
comprises. After the writing phase, the memory must be kept
intact for the reading phase. Fifth, Scrypt has several param-
eters that the system can modify to change the number of
loops and the amount of memory required for computational
functions. This helps the blockchain-based PoW mechanism
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be more flexible to reduce the high risks posed by ASIC
miners.

Scrypt is an ASIC-resistant memory-intensive algorithm
with high loop dependency, as seen from its second, third, and
fourth characteristics described above. This greatly reduces
the advantage of ASICs over flexible hardware platforms
such as CPUs, GPUs, and FPGAs. However, the performance
of ASIC miners is still extremely outstanding than other
hardware platforms. For example, the ASIC-based Bitmain
Antminer L7 scheduled for November 2021 offers a hash rate
of 9.5 GHash/s at 3425 W [38]. Despite the great advantage
in performance, ASIC miners have several limitations as
follows. First, ASIC miners will be at high risk of being
useless and obsolete if the blockchain network changes the
parameters for the mining process. This is because current
commercial ASIC miners are all designed to work with fixed
parameters for the best mining performance. Second, com-
mercial ASIC miners are designed solely for blockchain min-
ing in ultra-high performance, which throws off the balance
of mining power between ASIC miners and individual user
miners (e.g. CPU, GPU, and FPGA miners). Accordingly,
mining farms with a concentration of many ASIC miners can
easily control the entire blockchain network based on their
computing power [39], [40]. Third, Scrypt was created not
only for blockchain mining but also for data security applica-
tions. Meanwhile, the current commercial Scrypt ASICs are
designed with fixed parameters for only blockchain mining
and are unable to use for other security applications. As a
result, the ASICs are low flexible and unsuitable for individ-
ual users who ensure the decentralization of the blockchain
network and still have their data security demands.

Hardware platforms intended for general purposes, such as
CPUs and GPUs, have considerable memory resources and
numerous computation instructions. They are suitable and
currently popular for implementing Scrypt in many applica-
tions. However, they tend to exhibit very poor performance
because of the high loop dependency and high simple oper-
ator loop requirements, as mentioned in the first, second,
and third Scrypt characteristics. Applications run on CPUs
and GPUs, called software, can execute only one instruction
at a time, separately and sequentially, as stipulated by their
architectures and compiler mechanisms. The greater the
number of loops to be executed is, the lower the perfor-
mance on CPUs and GPUs. Furthermore, CPUs and GPUs
have extremely high energy consumption because they need
to operate their extremely complex computing architectures.
This drawback is more evident when they need to run in mul-
ticore and multithread modes to achieve the best performance.

We believe that with their high computational and mem-
ory resources, reprogrammable hardware design, low power
consumption, and high optimization for parallel pipeline pro-
cesses, FPGAs are well suited for Scrypt implementation.
There are several high-performance architectures that can
be applied on FPGAs to reduce the memory access time,
such as the systolic-array-based accelerator called EMAXVR
[41], [42] used in near-memory computing. However, despite
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FIGURE 2. The MRSA hardware architecture.

exhibiting high performance in machine learning and image
processing applications, they can achieve only poor per-
formance when performing low-cost operator hash func-
tions [43]. Therefore, it is necessary to develop a specific
hardware architecture to optimize the performance of Scrypt
on FPGAs.

Based on our understanding of Scrypt’s characteristics
along with the current difficulties of other hardware plat-
forms, we propose the MRS A hardware architecture. Because
Scrypt can make existing hardware useless and obsolete for
performing the mining task or other security applications
if the Scrypt parameters are changed, in accordance with
the fifth Scrypt characteristic, we propose a configurabil-
ity function for the MRSA to solve this problem. By this
means, the MRSA allows its parameters to be configured
to be compatible with many applications or parameterizable
mining systems. In addition, Scrypt has high loop dependency
and requires an enormous amount of memory for the ROMix
process, in accordance with the third and fourth Scrypt char-
acteristics. This significantly decreases the Scrypt hashing
performance. Therefore, the proposed Multi ROMix archi-
tecture is applied in the MRSA to overcome this challenge.
In this architecture, ROMix processes are performed in par-
allel by multiple ROMix PEs. With the local memory placed
near the arithmetic and logic unit (ALU) in each ROMix PE,
the MRSA can execute multiple Scrypt processes in parallel
without conflict when using a shared ALU and without fac-
ing a bandwidth bottleneck when accessing shared memory.
Scrypt also has many loops that process the same input, lead-
ing to a considerable waste of hardware computing power.
Therefore, we deeply analyze the algorithm and propose a
rescheduling technique for the MRSA to remove these unnec-
essary loops. Furthermore, large processing modules such as
SHA-256 and Salsa20/8 are optimized to maximize the hard-
ware efficiency and the hashing performance for the MRSA.

ill. THE PROPOSED MULTI ROMix SCRYPT
ACCELERATOR (MRSA)

A. CONFIGURABLE ARCHITECTURE

Scrypt is a parameterizable ASIC-resistant algorithm. There-
fore, each Scrypt application in cryptocurrency mining or

168388

TABLE 2. Memory organization (addresses are expressed in bytes; each
location holds 32 bits).

Address [ Name [ Description [ Region
0x00 Status The status register HOM
0x04 Control The config and control CFM
0x08 Valid Nonce The valid nonce value HOM

0x0C ... 0x28 Target The target threshold value CFM
0x2C ... 0x78 Scrypt In The input header data IDM
0x7C Start Nonce The starting nonce CFM
0x80 Maximum Nonce The stop nonce CFM
0x84 ... 0xA4 Scrypt Out The Scrypt hash output HOM
Ready ———
Busy —
Error
131 16]15 m4| 312111 (o)
Version Reserved | E | S | F | B|R |

Found Nonce
Not found Nonce

a) Status Register (0x00)

131 19)18 | 171 16 |15 1211 87 43 0|
Reserved lM|ST|RS|dklen| N | p | r |
Mode ]
Start
Reset

b) Control Register (0x04)

FIGURE 3. Diagrams of the status and control registers.

security requires specification of the input parameter set.
This parameter set determines the number of loops and the
width of the data passed in the subfunctions. Consequently,
a configurability proposal is applied to help the MRSA adapt
itself to many working modes, from cryptocurrency mining to
security applications, by providing a parameter modification
mechanism.

Fig. 2 shows the hardware architecture of the MRSA.
It uses three memory regions managed by an Advanced
eXtensible Interface (AXI). The first region is the Config-
uration Memory (CFM), which contains configuration data
to control the MRSA. These configuration data help the
CFM control the Multi ROMix Scrypt Core (MRSC) and the
Scrypt Input Generator (SIG). Accordingly, the configuration
data transmitted to the Execution Controller tell the MRSC
when to start and which working mode and parameters are
configured. The second region is the Input Data Memory
(IDM), which stores the input data for the MRSA. Finally, the
third region is the Hashing Output Memory (HOM). It stores
the returned Scrypt hash results that the MRSA returns to the
host PC.

Table 2 shows the organization of the MRSA memory
in terms of byte-numbered addresses. Each register in the
memory is 32 bits wide, and their addresses are separated
by 4 units. The structures of the Status and Control registers
are detailed in Fig. 3. These are two important registers used
for the proposed configurability function. The Status register,
with address 0 x 00, contains flags representing the status
of the MRSA. The possible flags are the ready, busy, not
found, and data error signals. The Control register stores the
control and configuration data from the host PC. The control
data include the start and reset signals. The configuration
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FIGURE 4. The MRSC hardware architecture.

data consist of 4-bit segments that define the configuration
parameters r, p, N, and dklen, as defined in Algorithm 1
in Section II. In addition, the Control register stores some
control flags for managing the MRSA and specifying its
working mode. Moreover, other registers in the CFM are used
to store the target threshold and the starting and stop nonces
for specifying the mining task. Finally, the output registers
store the returned valid nonce and the Scrypt hash output from
the MRSA.

The MRSA has two working modes based on the con-
figuration information stored in the CFM: the mining mode
and the general mode. In the mining mode, the MRSA first
receives the block header input from the CFM at the addresses
0 x 2C ... 0 x 78. Then, the SIG initiates the nonce
value from the Start Nonce register (0 x 7C) and automat-
ically increases the nonce if the result is invalid. A result
is returned only when the value in the Scrypt Out register
(0 x 84 ... 0 x A4) is lower than that in the Target regis-
ter (0 x OC ... 0 x 28) or the nonce is increased above the
configured Maximum Nonce (0 x 80). The transmission and
data processing times in the mining mode are significantly
reduced because the MRSA can generate the increased nonce
itself without obtaining new input from the host PC. In the
general mode, the MRSA continuously takes inputs from the
host PC and stores them in the IDM region. In this mode,
the SIG is disabled, and the input is obtained directly from
the IDM region. Accordingly, Scrypt results are returned one
by one to the host PC for each set of input data. The general
mode is suitable for high-performance applications such as
edge computing nodes [44], which need to generate security
keys with large arbitrary and random inputs.

B. MULTI ROMix SCRYPT CORE (MRSC)

In the Scrypt algorithm, ROMix is the most time-consuming
process. It accounts for approximately 98% of the total execu-
tion time in the conventional Scrypt core (CVSC), which does
not applying the pipeline technique. Therefore, we propose
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the MRSC hardware architecture to speed up the ROMix
process, thereby drastically increasing the overall hashing
performance of the MRSA.

Fig. 4 presents an overview of the hardware architec-
ture of the MRSC. It consists of a first PBKDF2 core (P1
Core), a cyclic ROMix PE array, a second PBKDF2 core
(P2 Core), and the Execution Controller. The Execution Con-
troller includes module counters, decoders, and multiplexers.
It receives external configuration signals from the CFM;
manages the P1 Core, cyclic ROMix PE array, and P2 Core;
and returns the status signals. It also controls the arbiters to
manage the data flow for the ROMix PEs in the cyclic ROMix
PE array.

With the pipeline technique, the P1 Core processes its
inputs and distributes them sequentially to the ROMix PEs
because the ROMix PE execution time is sixty-four times
longer than that of the P1 Core. Fig. 5 shows the tim-
ing chart of the MRSC, which illustrates this more clearly.
Accordingly, the numbers of execution cycles of the P1 Core,
a ROMix PE, and the P2 Core are 873, 55872, and 267,
respectively. Whenever a result is available, the P1 Core
passes it to an idle ROMix PE. After successfully passing
the output data to a ROMix PE, the P1 Core can continue
receiving and processing the next input, and the next output
will be transmitted to the next ROMix PE. The transmitted
input proceeds in order from ROMix PE 0 to ROMix PE
63. Once the P1 Core finishes the computation for the 65th
input, ROMix PE 0 has produced the result for the 1st input
and is ready to process the 65th input from the P1 Core.
Before processing the next input, however, ROMix PE 0 must
transmit the previous output to the P2 Core to compute the
final Scrypt result. Because its computation time is much
shorter than that of the P1 Core, the P2 Core always completes
its work in time to receive input from the next ROMix PE.

The distribution of data by the P1 Core and the recep-
tion of input by the P2 Core act as a circle. This circle is
established when the P1 Core finishes processing the first
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FIGURE 5. The timing chart of the MRSC.

sixty-four inputs. The MRSC also reaches the highest hash
rate, called the saturated hash rate, at this time. In the CVSC,
the execution cycles of P1 Core, ROMix Core, and P2 Core
are 873, 55872, and 256 cycles, respectively, for 1.53%, 98%,
and 0.47% of the total execution time. When applying the
pipeline technique to Multi ROMix Scrypt Core, P1 Core
is not executed in parallel. The parallel pipeline execution
includes ROMix Core (ROMix PE) and P2 Core occupied
98.47% of the total execution time. Basically, ROMix and
P2 processes can be combined as a parallel process, although
MRSC has only one P2 Core. According to Amdahl’s law, the
theoretical speedup of MRSC can be approximately sixty-six
times faster than CVSC [45]. Regarding hardware resources,
the MRSC saves sixty-three P1 and P2 Core pairs compared
to sixty-four separate CVSCs. Hence, the MRSC is larger
than the CVSC only by a factor of approximately thirty.
This significantly reduces the hardware cost and increases
the energy efficiency of the MRSC, as will be discussed and
presented in more detail in Section IV.

If all ROMix PEs were to use one shared external memory,
congestion problems would occur due to the limited memory
bandwidth. When the MRSC is running, the ROMix PEs
operate independently, so the memory they use for computa-
tion should preferably be separated. Therefore, in the MRSC,
each ROMix PE uses its own 128 kB local memory (LMM),
as shown in Fig. 6. Accordingly, the ROMix PEs can access
their LMMs simultaneously. This is one of the most impor-
tant features that helps the MRSA implemented on FPGAs
be faster than CPU and GPU Scrypt miners. Each 128 kB
LMM contains one thousand twenty-four 1024-bit memory
cells. This local memory is implemented on the FPGA using
block random access memory (BRAM) resources. It stores
all writing-phase results and provides random addresses for
the reading phase in the ROMix process. Current UltraScale
FPGA lines, such as ALVEO Data Center Accelerator Cards,
provide sufficient BRAM resources for implementing the
MRSC, and their architecture is optimized for pipeline pro-
cessing.

Overall, this proposed configurable architecture not only
increases flexibility but also avoids a long reconfiguration
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time for programming new designs from scratch again on the
FPGA because of parameter changes.

C. RESCHEDULING TECHNIQUE

In the PBKDF2 function, there are several loops of the
HMAC function that produce identical results. If these results
can be reused, the number of SHA-256 computations will be
reduced, and the processing speed will significantly increase.
Therefore, we apply a rescheduling technique in the MRSA
to take advantage of this potential for optimizing both hash
performance and hardware resources.

The first PBKDF2 execution includes (N x r x p)/256
HMAC loops, and the last PBKDF2 execution performs
dklen/256 HMAC loops. Through analysis, we have found
that the SHA-256 hash results for the first 512-bit block of
data in step 8 (IXOR) and step 9 (OXOR) in Algorithm 2 are
identical for all remaining HMAC loops in both the P1 and
P2 Cores. As shown in the diagram of the MRSC hardware
architecture presented in Fig. 4, we denote the first 512-bit
block SHA-256 hashes of IXOR and OXOR by IXH and
OXH, respectively. When the first HMAC loop in the P1
Core finishes, the IXH and OXH results can be stored and
reused for the remaining HMAC loops. Accordingly, IXH
and OXH are passed through the ROMix PEs via the pipeline
flow and transmitted to the P2 Core along with the ROMix
PE results. In this way, a significant number of SHA-256 cal-
culations can be eliminated, and the processing speed for the
entire MRSA is also significantly increased. This is because
SHA-256 is one of the most time-consuming processes in
Scrypt. Accordingly, the number of SHA-256 cores in both
the P1 Core and the P2 Core is reduced to one, not three as
in [27], which helps reduce the size of the entire MRSC. This
is achieved by means of the Execution Controller and some
intermediate temporary registers, which have the following
functions: (1) controlling the multiplexers to correctly select
the input for the SHA-256 core, (2) enabling the registers
and function blocks for the storage of the SHA-256 core’s
result, and (3) generating the status signals for the entire core.
The notable modules include the IOXH and Out Memory
modules. The IOXH module is responsible for calculating
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IXOR and OXOR and storing IXH and OXH. The Out
Memory module stores and concatenates the output of the
256-bit HMAC loops to create the final 1024-bit output of
the P1 Core.

As presented in Algorithm 4, BlockMix consists of 2 x r
loops, and each loop performs one Xor, one addition, and one
Salsa20/8 calculation. The Salsa20/8 function consists of four
CRs and four RRs that are performed alternately. Each CR or
RR consists of four QRs that are performed in parallel.

The red dashed arrows in Fig. 7 and 8 show the critical
paths of a ROMix PE and the P1 and P2 Cores, respectively.
These critical paths lie within the QR and SHA-256 pro-
cesses. Although it is possible to split a QR into many stages
to reduce the critical path, the total number of execution
cycles will also increase by a factor of many. Consequently,
the total number of execution cycles of the entire ROMix PE
will similarly increase by a factor of many. This also occurs
with the P1 and P2 Cores when shortening the SHA-256 crit-
ical path. After the estimation and implementation processes,
we find that shortening the critical path cannot increase the
MRSC processing speed because the number of execution
cycles also increases.

Fig. 9(a) shows the conventional BlockMix core hardware
architecture presented in [27]. It uses the CR and RR mod-
ules to perform eight alternating column rounds and row
rounds. This paper presents a proposal to reduce the hardware
resources consumed for the BlockMix core. The proposed
BlockMix core hardware architecture is illustrated in Fig. 9.
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The RR module is removed and replaced by the Mix Round
module, while the proposed core still performs the same
function as the conventional BlockMix core. In the first loop,
the CR module performs a column round. Its result, referred
to as the signal S(1), passes through the Mix Round module
and provides feedback for the CR module, referred to as
the signal S(2). In the next loop, the CR module performs a
row round, and the Mix Round module generates feedback
for the next column round. In this way, after eight loops,
the CR and Mix Round modules have calculated eight inter-
leaved column rounds and row rounds using fewer hardware
resources. Essentially, the Mix Round module is a small and
simple module for reordering the 512-bit signal S(1) into the
signal S(2) as shown in the following equations, where the
subscripts are the indexes of the 32-bit segments.

S0, SD1, .., S2)15)

= Mix(S(1)o, S(1)1, ..., S(1)15)
S$2) = S(Me;  S2)1 =S8(1)g; S2)2 =812
S$2)3 =8M)3;  S2)a=S8Mo; SQ2)s =83
S$12)6 = S(1)o;  S2)y7 =875 S2)g = S(1)4
§S2) =SM1; S0 =SM4; S =S
S22 = S()2; Sz =8)s;  S(2)14 = S(1)g
S$(2)15 = S(D)1s

Compared with that of the conventional BlockMix core,
the hardware resource consumption of the proposed core
is reduced by approximately half because the Mix Round
module is very simple. Moreover, reducing the hardware
resources necessary for the BlockMix core significantly helps
in reducing the hardware resources necessary for the entire
MRSA because a BlockMix core is located inside each
ROMix PE.

In general, because ROMix is the function that takes the
most computation time in Scrypt, acceleration for the P1
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and P2 Cores is not necessary. Therefore, the proposals for
the PBKDF2 cores presented in this research aim to mini-
mize the computational resources used while still achieving
the required number of execution cycles, as mentioned in
Section III-B.

IV. EVALUATION AND EXPERIMENTAL RESULTS

In this section, we present MRSA implementation and verifi-
cation on the ALVEO U280 FPGA. In addition, the proposed
MRSA is evaluated, analyzed, and compared with CPUs,
GPUs and FPGA-based designs. We do not compare our
proposed work with ASIC-based designs because of the fol-
lowing reasons. First, to the best our knowledge, no academic
research of ASIC-based designs was proposed for our com-
parison. Second, the current ASIC-based designs are mostly
commercial ASIC miners for blockchain mining, whose spec-
ifications (chip numbers, chip architecture, single-chip area,
etc.) are not published for our evaluations. Third, our pro-
posed accelerator is aimed at multi-applications and designed
towards standalone users to increase the decentralization of
the blockchain network, which is unable for currently com-
mercial ASIC miners.

A. MRSA IMPLEMENTATION AND VERIFICATION ON REAL
HARDWARE

Fig. 10 shows the embedded SoC design on a Xilinx ALVEO
U280 FPGA developed for the proposed MRSA to prove
its correctness and efficiency on real hardware. The system
consists of two main devices: a host PC and a Xilinx ALVEO
U280 Data Center Accelerator Card.

The host PC includes a testcase generator, an embedded C
program, and a Verilog hardware description. It exchanges
data with the FPGA through UART and PCle cables. The
host PC runs the testcase generator to obtain test data from
real blockchain networks through the Remote Procedure
Call (RPC) protocol. Specifically, the test generator obtains
a set of block header inputs as test data. This data set is used
for verifying the MRS A hardware. The host PC uses the Vitis
tool to embed a C code program to configure and prepare the
input for the MRSA on the ALVEO U280 FPGA. Moreover,
the host PC uses the Vivado tool to load the Verilog hardware
description code onto the ALVEO U280 card.
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The design on the ALVEO U280 FPGA includes three
main intellectual property cores (IPs): an embedded process-
ing system (EPS), the MRSA, and a ChipScope Integrated
Logic Analyzer (ChipScope ILA). The EPS consists of a
MicroBlaze embedded processor and storage resource com-
ponents. It receives embedded C code and input data from
the host PC via a Xilinx Virtual JTAG (or PCle) cable and a
UART cable, respectively. The EPS sends the configuration
and input data to the MRSA IP via an AXI bus. Essentially,
the EPS serves as a bridge to exchange intermediate data
between the host PC and the MRSA. Finally, the MRSA IP is
a version of our proposed design with 64 ROMix PEs on the
ALVEO U280 FPGA. It uses the AXI interface to control the
transmission and reception of data with the EPS and decides
where to store the received data in the MRSA memory.
Finally, the ChipScope ILA is a supported IP from Xilinx
used to check the output value returned from the MRSA.
We use the Xilinx Vivado Design Suite tool (version 2019.2)
to implement this experimental SoC. The system operating
frequency supplied for all three IPs is 100 MHz.

In the verification process, the input data set is a set of
1,000,000 block headers taken from the Litecoin, Fastcoin,
Dogecoin, and Megacoin blockchain networks. The design
is considered correct if all Scrypt hashes returned by the
MRSA are less than the target value. Our verification of the
MRSA includes two processes: functional verification and
real hardware verification. In the functional verification pro-
cess, the MRS A hardware design is tested with the functional
simulation system of the Vivado tool. The transmissions of
all test and configuration data are controlled by testbench
modules. In the real hardware verification process, the MRSA
hardware design is tested in practice on the Xilix ALVEO
U280 FPGA SoC. For this test, the host PC generates the
test data set and controls the ALVEO U280 FPGA to help
it execute the MRSA design correctly. The ChipScope ILA
captures all of the input and output signals for verification.
Our verification results show that in both functional and real
hardware verifications, our MRSA achieves a correct rate of
100%. This experiment demonstrates that our MRSA can be
applied as real mining hardware in cryptocurrency blockchain
networks.

B. EFFICIENCY EVALUATION: MRSA VS.
STATE-OF-THE-ART CPUs AND GPUs

To prove the high efficiency of the MRSA, we designed and
implemented C and CUDA Scrypt software to run the same
verification task for 1,000,000 block headers on two Nvidia
GPUs (Tesla V100 and RTX 3090) and two Intel CPUs
(19-10940X and 17-3970X). These devices were selected for
implementation because they are the fastest and most popular
devices for performing the blockchain mining task at present.
The numbers of processing threads for the best performance
on the Tesla V100 GPU, the RTX 3090 GPU, the i9-10940X
CPU, and the i7-3970X CPU were 16384, 16384, 28, and 12,
respectively. The experimental results of these devices and
our MRSA are shown in Table 3. Specifically, the energy
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TABLE 3. Comparison of the results of the MRSA SoC and Scrypt software
run on CPUs and GPUs.

Semi. Hash Power Energy
Device Tech. rate (({)\;’v;a efficiency
(nm) (kHash/s) (Hash/J)
Prop. MRSA
64-ROMix 16 114.6 8.8 13018.25
ALVEO U280
GPU: Tesla V100 12 66.7 125 533.6
GPU: RTX 3090 8 81.3 330 246.4
CPU: 19-10940X 14 1.8 120 15
CPU: i7-3970X 32 1.5 119 12.6

efficiency of the ALVEO SoC for our MRSA design with 64
ROMix PEs is 24.4 times (13018.25 vs. 533.6), 52.83 times
(13018.25 vs. 246.4), 867.88 times (13018.25 vs. 15), and
1033.2 times (13018.25 vs. 12.6) higher than those of the
Tesla V100 GPU, the RTX 3090 GPU, the i9-10940X CPU,
and the 17-3970X CPU, respectively. Moreover, the semicon-
ductor technology used in the Xilinx ALVEO U280 FPGA is
16 nm, while the Tesla V100 GPU, the RTX 3090 GPU, and
19-10940X CPU use 12 nm, 8 nm, and 14 nm semiconductor
technologies, respectively. Apparently, the MRSA SoC on
the ALVEO U280 offers superior power efficiency and hash
rate compared with the most powerful commercial CPUs and
GPUs. This gap is even more pronounced when compared to
current state-of-the-art CPUs.

C. EFFICIENCY EVALUATION: MRSA VS.
STATE-OF-THE-ART FPGA-BASED DESIGNS

In this section, we present an efficiency evaluation of MRSA
with related FPGA-based works. In addition, quantitative
evaluation of MRSA versions on different FPGAs is clearly
presented. As evaluation criteria, we considered the hard-
ware resources, hash rate, throughput, power, and energy
efficiency.

1) COMPARISON WITH RELATED FPGA-BASED WORKS

To prove efficiency and performance improvements, the
MRSA version with 1 ROMix PE and the version
with 32 ROMix PEs are compared with related works based
on the Xilinx Virtex 7 FPGA synthesis results. To the best of
our knowledge, there is only one related work on developing
FPGA-based Scrypt hardware architecture, particularly the
accelerator in [27].
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The authors in [27] applied a pipeline technique for their
Scrypt accelerator with dual ROMix cores. Because of uti-
lizing more ROMix cores (dual ROMix cores), their accel-
erator hash rate is higher than that of the MRSA version
with 1 ROMix PE by 1.95 times (5.33 vs. 2.74 kHash/s).
However, their levels of LUT, FF, and BRAM resource
consumption are 5.18 times (48626 vs. 9389), 7.49 times
(78884 vs. 10585), and 2 times (57 vs. 28.5) higher, respec-
tively. As a result, their energy efficiency is 6.08 times lower
than that of the MRSA version with 1 ROMix PE (900 vs.
4986 Hash/J).

On the other hand, the MRSA version with 32 ROMix
PEs used the number of FFs, LUTs, and BRAMs that are
3.28 times (159434 vs. 48626), 1.99 times (156934 vs.
78884), and 16 times (912 vs. 57) higher than the acceler-
ator in [27]. In return, its hash rate is higher 16.77 times
higher (89.38 vs. 5.33 kHash/s) and its power efficiency is
14.13 times higher (12721 vs. 900 Hash/J).

2) QUANTITATIVE EVALUATION ON DIFFERENT FPGAs AND
MRSA VERSIONS

To demonstrate that the proposed MRSA hardware architec-
ture is compatible and stable for high efficiency on FPGAs,
we synthesized our MRSA design on several Xilinx FPGA
devices (ALVEO U280, Virtex 7, and Kintex UltraScale).
Due to the diverse hardware resources of the different FPGA
devices, we built multiple MRSA versions with different
numbers of ROMix PEs. Based on this evaluation, we will
demonstrate that the performance and energy efficiency of
the hardware is proportional to the number of ROMix PEs in
each designed MRSA version.

On the Xilinx ALVEO U280 FPGA, we tested four MRSA
versions: with 1 ROMix PE, 16 ROMix PEs, 32 ROMix PEs,
and 64 ROMix PEs. Fig. 11 shows the quantitative evalua-
tion of these MRSA versions based on the FPGA synthesis
results for the ALVEO U280 in Table 4. Fig. 11(a) shows
that the hardware resources used increase from the MRSA
version with 1 ROMix PE to the version with 64 ROMix PEs.
Compared to the version with 1 ROMix PE, the version
with 64 ROMix PEs has 29.2 times as many flip-flops (FFs)
(272819 vs. 9337) and 29.9 times as many lookup tables
(LUTs) (305419 vs. 10214). Although the total power con-
sumption increases by 5.12 times (18.12 vs. 3.53 W), the
version with 64 ROMix PEs also has a 65.3 times higher hash
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TABLE 4. FPGA synthesis results for the proposed MRSA in various state-of-the-art FPGA-based designs.

. . Frequency | # Cycles | Hashrate | Throughput Power P EnEf ©
Device Design LUTs | FFs | BRAMS| " "\ty,)" | perhash | (kHash/s) | (Mbps)®> | TP/DP(W) | (Hash/J)

MRSA 1 PE 9337 10214 28.5 259.94 57012 4.56 4.67 3.53/0.39 1293

ALVEO MRSA 16 PEs | 71169 81593 456 259.94 3492 74.44 76.22 7.0673.84 10547
U280 MRSA 32 PEs | 139364 | 157098 912 259.94 1746 148.88 152.45 10.67/7.36 13923
MRSA 64 PEs | 272819 | 305419 1824 259.94 873 297.76 304.9 18.12/14.63 16434

[27] 48626 78884 57 339.10 63656 5.33 5.45 5.916/5.623 900

Virtex 7 MRSA 1 PE 9389 10535 28.5 156.05 57012 2.74 2.8 0.5570.3 4986
MRSA 32 PEs | 159434 | 156934 912 156.05 1746 89.38 91.5 7.03/6.66 12721

Kintex MRSA 1 PE 8947 10188 28.5 174.55 57012 3.06 3.14 0.98/0.35 3134
UltraScale | MRSA 32 PEs | 142515 | 157128 912 174.55 1746 99.97 102.37 8.31477.56 12025

2 The throughput is calculated as

(1024 x frequency) / (# cycles per hash)

b The power consumption (W) is shown as the total power (TP) and dynamic power (DP)
¢ The energy efficiency (Hash/J) is the ratio between the hash rate and the total power

rate (297.76 vs. 4.56 kHash/s), as shown in Fig. 11(b). Based
on the graph in Fig. 11(c), the energy efficiency of the MRSA
version with 64 ROMix PEs is higher than that of the version
with 1 ROMix PE by 12.71 times (16434 vs. 1293 Hash/J).
The hardware cost of the MRSA version with 64 ROMix PEs
is increased only by close to 30 times (29.2 x FFs and 29.9x
LUTSs) because the PBKDF2 modules are shared among the
ROMix PEs. However, the version with 64 ROMix PEs shows
improvements of 65.3 times in hashing performance and
12.71 times in energy efficiency compared to the MRSA
design with 1 ROMix PE. Obviously, the dynamic power of
the version with 1 ROMix PE is much smaller than the total
power (3.53 vs. 0.39 W), significantly lowering the energy
efficiency.

On the Xilinx Virtex 7 and Kintex UltraScale FPGAs,
the optimal compatible version of MRSA has only
32 ROMix PEs because the resources of these FPGAs, espe-
cially in terms of BRAMs, are not sufficient for the version
with 64 ROMix PEs. With the Multi ROMix architecture, the
number of BRAMs used for each ROMix PE is independent,
and these resources cannot be shared; therefore, this is the
main criterion that determines which version is best on
which FPGA.

On the Xilinx Virtex 7 FPGA, compared with the MRSA
design with 1 ROMix PE, the version with 32 ROMix PEs
requires 16.98 times as many FFs (195434 vs. 9389) and
14.9 times as many LUTs (156934 vs. 10214), respectively.
However, its hash rate is 32.62 times higher (89.34 vs.
2.47 kHash/s), and its energy efficiency is 2.6 times higher
(12721 vs. 4986 Hash/J).

On the Kintex UltraScale FPGA device, the MRSA ver-
sion with 32 ROMix PEs uses numbers of FFs and LUTs
that are 15.93 times (142515 vs. 8947) and 15.42 times
(157128 vs. 10188) higher than in the version with 1 ROMix
PE. In return, its hash rate increases by 32.67 times (99.97 vs.
3.06 kHash/s), and its energy efficiency is also 3.84 times
higher (12025 vs. 3134 Hash/J) compared to the version
with 1 ROMix PE.

Overall, as the number of ROMix PEs increases, the
increase in the hash rate is much greater than the increase
in the consumption of hardware resources. The energy
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efficiency also increases significantly compared to the con-
ventional design. Therefore, the proposed MRSA design can
achieve higher power efficiency when the most suitable ver-
sion is chosen for each FPGA device.

D. FLEXIBILITY ADVANTAGES OF MRSA
In this subsection, we discuss the flexibility advantages of
the proposed MRSA architecture in two aspects: dynamic
configuration and static reconfiguration.

1) DYNAMIC CONFIGURATION

The proposed configurable architecture, described in
section III-A, provides our accelerator (MRS A) the flexibility
for switching operation modes of the Scrypt algorithm on
runtime configuration. This architecture has an impact on
both ASIC and FPGA implementation. In ASIC, it enhances
the flexibility of the ASIC-based accelerator. In FPGA,
it helps to avoid static reconfiguration from scratch in case
of unnecessary.

2) STATIC RECONFIGURATION

This kind of flexibility is provided by the nature of FPGA
platforms, which allows the accelerator to be reconfigured
before runtime to meet the actual requirements by consid-
ering the tradeoff between the processing rate and power
consumption/hardware cost. Our proposed MRSA allowed
static reconfiguration of the number of ROMix Scrypt Cores
per accelerator. For example, the ALVEO U280 FPGA imple-
ments the MRSA version with 64 ROMix PEs to max-
imize performance for blockchain mining or the MRSA
version with 32/16/8 ROMix PEs to reduce energy costs
for data authentication applications. Furthermore, the cal-
culations inside P1, ROMix PEs, and P2 circuits may
be reconfigured in the future to adopt the change of the
Scrypt algorithm for accommodating security enhancement.
In this context, we are not able to do so with the exist-
ing ASIC-based accelerators. In short, the static reconfig-
uration feature of the FPGA allows our proposed MRSA
to tradeoff between accelerator processing rate and power
consumption/hardware cost to meet the actual requirements,
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as well as enhance the circuit flexibility to adopt the future
change.

V. CONCLUSION

Scrypt is an ASIC-resistant algorithm with many applications
in information security, especially in PoW-based blockchain
mining, because it helps avoid distributed destructive attacks
from ASIC miners. Scrypt requires many iterations along
with high computational memory usage. It is mostly imple-
mented on general-purpose hardware such as CPUs and
GPUs. However, CPUs and GPUs usually have very slow
computation speeds and extremely high power consump-
tion due to their sequential and complex hardware archi-
tectures. Moreover, Scrypt poses the risk that ASICs may
easily become obsolete and useless because of its parame-
terizable nature. In this paper, we propose the Multi ROMix
Scrypt Accelerator (MRSA) hardware architecture to be
implemented on an FPGA hardware platform. By means of
optimization techniques such as configurability parameters
and working modes, the use of multiple ROMix processing
elements with memory near the ALUs, and the rescheduling
and reuse of computational resources, the system’s energy
efficiency is significantly improved. Experimental results for
various versions of our MRSA design on FPGA devices have
shown its compatibility and high efficiency. In particular,
we have implemented the MRSA in hardware on a real
ALVEO U280 SoC to verify its accuracy and performance in
actual operation. The results show that the power efficiency
is improved by 24.4 to 52.8 times compared to GPUs and by
867.88 to 1033.2 times compared to CPUs.

Thus, the proposed MRSA design for implementation on
FPGAs has partially solved the problems of low perfor-
mance and high power consumption on CPUs and GPUs.
In particular, it helps FPGAs solve almost all of the typical
problems and risks posed by Scrypt on ASICs. However,
with its computational-memory-intensive nature, the pro-
posed MRSA still has high requirements in terms of BRAM
resources. This hinders the implementation of the optimal
MRSA version (with 64 ROMix PEs) on moderate-resource
FPGA devices such as the Xilinx Virtex 7 and Kintex Ultra-
Scale. Therefore, we believe that developing new hardware
designs with new techniques and architectures to optimize
memory usage for application on cheaper and smaller FPGAs
is a promising research trend for the near future.

APPENDIX

The Scrypt software code for implementation on CPUs and
GPUs and the synthesized results of the prototype, optimized,
and proposed architectures can be found at https://github.
com/archlab-naist/Multi-ROMix-Scrypt-Accelerator/.
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