
Received November 12, 2021, accepted November 26, 2021, date of publication November 30, 2021,
date of current version December 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3131643

Optimal Container Migration for Mobile
Edge Computing: Algorithm, System
Design and Implementation
TAEWOON KIM 1, (Member, IEEE), MOTASSEM AL-TARAZI 2, (Member, IEEE),
JENN-WEI LIN 3, AND WOOYEOL CHOI 4, (Member, IEEE)
1School of Software, Hallym University, Chuncheon-si, Gangwon-do 24252, Republic of Korea
2School of Computing, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
3Department of Computer Science and Information Engineering, Fu Jen Catholic University, New Taipei City 24205, Taiwan
4Department of Computer Engineering, Chosun University, Gwangju 61452, Republic of Korea

Corresponding author: Wooyeol Choi (wyc@chosun.ac.kr)

This work was supported by the Hallym University Research Fund, 2020 under Grant HRF-202009-014.

ABSTRACT Edge computing is a promising alternative to cloud computing for offloading computationally
heavy tasks from resource-constrained mobile user devices. Placed at the edge of the network, edge
computing is particularly advantageous to delay-limited applications for having a short distance to end-
users. However, when a mobile user moves away from the service coverage of the associated edge server,
the advantage gradually vanishes, increasing response time. Although service migration has been studied to
address this problem focusing on minimizing the service downtime, both zero-downtime and the amount
of traffic generated as a result of migration need further study. In this paper, an optimal live migration
for containerized edge computing service is studied. This paper presents three zero-downtime migration
techniques based on state duplication and state reproduction techniques, and then, proposes an optimal
migration technique selection algorithm that jointly minimizes the response time and network traffic during
migration. For validation and performance comparison, the proposed migration techniques are implemented
on off-the-shelf hardware with Linux operating system. The evaluation results showed that compared with
a naive migration, the optimal approach reduced the response time and network load by at least 74.75% and
94.79%, respectively, under considered scenarios.

INDEX TERMS Container, docker, edge computing, implementation, live migration, optimal decision,
service migration.

I. INTRODUCTION
We are living in an era where Internet of Things (IoT) devices
in the vicinity of users continuously produce massive data [1]
and process them [2] to enable user-centric applications to be
running on smart handheld devices. In particular, computa-
tionally heavy tasks, such as big data analytics, virtual reality
(VR)/augmented reality (AR), image processing, etc., are the
key ingredients for the further success of such applications.
However, neither IoT devices nor handheld devices suffice to
provide real-time interactions while running such computa-
tionally heavy applications due to their limited resources [3].
The need for enriching user experience has popularized cloud

The associate editor coordinating the review of this manuscript and

approving it for publication was Petros Nicopolitidis .

computing which allows low-power devices to offload com-
putationally heavy tasks [4]. Centralizing a massive amount
of IT resources, cloud computing can provision computing
resources on demand, and adapt to varying service demand
(e.g., auto scaling [5]). In addition, virtualization plays a key
role in cloud computing to achieve high resource utilization,
resource isolation and multi-tenancy [6].

To the resource-limited devices, the task offloading to
cloud computing significantly helps to reduce the job
processing time and the battery uses [1]. However, the
large distance to end devices may incur high delay,
making it unsuitable to delay-sensitive applications such
as healthcare, connected vehicles, AR, and surveillance/
monitoring [7]–[9]. To provide additional computing
resources to resource-limited end devices and minimize the

158074 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-7811-5022
https://orcid.org/0000-0002-2825-5430
https://orcid.org/0000-0003-0412-1021
https://orcid.org/0000-0002-7834-4044
https://orcid.org/0000-0002-5059-3145


T. Kim et al.: Optimal Container Migration for Mobile Edge Computing

FIGURE 1. Mobile edge computing system where a mobile user
communicates with its associated access point, and the offloading service
running on the co-located edge server allows a mobile user to offload its
tasks to edge server.

latency at the same time, edge computing [1], [7], [9]–[14]
has emerged as a promising alternative [15], [16]. In partic-
ular, edge computing places computing/storage resources at
the edge of the network. Thus, the reduced distance to end
devices effectively decreases the network delay.

Edge computing is a distributed and downsized form of
cloud computing, and thus, it can be an alternative to cloud
computing [15], [16] with additional benefits. Both cloud
computing and edge computing can provide an isolated com-
puting/storage resource to an individual user with virtualiza-
tion. Thus, a user can offload its computationally-heavy tasks
to its dedicated virtual machine or container running on either
cloud or edge computing. Although both cloud and edge
computing can be used interchangeably in some applications,
the short distance to a user in edge computing can bring many
advantages. Reduced security/privacy threat, bandwidth cost
and response time are some of such advantages due the
fact that network transmission occurs only in the vicinity of
users [10], [11].

In some literature, the definition of edge includes the end
devices such as smart phones. However, in this paper, edge is
assumed to be the end of the radio access network operated
and managed by the network operator. Thus, the scenarios
where the end devices participate in task offloading are not
considered in this work. Also, the partial offloading case
where a fraction of a task is offloaded to an edge server
whereas the remainder is processed locally at the user device
is beyond the scope of this paper.

The Fig.1 shows an example network diagram with edge
computing. An edge server (ES) is attached to an access point
(AP), and the users associated with an AP can offload their
tasks to the co-located ES. Each user has its own service
running on an ES, and due to virtualization andmulti-tenancy,
it does not violate the operation of other active services
on the same ES. When a user moves out of the wireless
coverage of the associated AP, the handoff procedure is trig-
gered to transfer the connection of the user to another AP.
To keep the service delay minimized while users move

around, transferring a service running on an ES to another has
been proposed, called servicemigration. In particular, stateful
and live service migration is challenging [11], [14] since it
migrates a running service as it is without interrupting the
ongoing service. In order to expedite the service migration
process, the use of light-weight containerized virtualization
has receivedmuch attention, such as Docker [17]. As reported
in [18] and [19], Docker can achieve close-to native perfor-
mance.

There have been a few studies proposing service migra-
tion techniques, but the major limitation is that they did
not jointly consider the characteristics of the to-be-migrated
service and migration technique to use. Since each service
has different properties, to efficiently migrate containerized
services, different migration technique should be chosen in
an autonomous manner. Also, as it can be seen in Fig.1,
the network traffic generated as a result of migration is
injected to the core network, and it may cause network
congestion if the traffic is voluminous. Thus, one should
carefully design a migration method in order not to generate
too much network traffic while keeping the migration time
minimized.

In this paper, three live, stateful container migrations and
an autonomous system that selects the optimal migration
are proposed. To the best of our knowledge, this is the first
comprehensive study of the containerized service migration
in the sense that 1) different migration techniques are consid-
ered together to choose the optimal migration technique, and
2) the migration techniques as well as the optimal selection
system has been validated by implementation. The major
contribution of this study is summarized below.
• This paper proposes enhanced container migration tech-
niques that migrate both the persistent files and volatile
states (e.g., CPU context and memory state). In par-
ticular, by introducing packet relay and replay buffer
during migration, the proposed techniques achieve
zero-downtime during migration.

• This paper identifies the key characteristics of both three
migration techniques and containerized services to be
migrated. Then, this paper analyzes which technique
outperforms the rest in which services in terms of migra-
tion time and network load.

• This paper proposes an optimal migration selection
method that minimizes both the expected migration time
and the expected amount of traffic to be generated.

• This paper also proposes a low-cost optimal migration
selection algorithm for for it to run in real-time.

• This paper proposes a system design to carry out the
optimal migration selection and the chosen migration
procedure in an autonomous manner.

• This paper introduces the practical and technical details
on how to implement the migration techniques on the
widely-used Docker platform.

• The proposed migration techniques and the automated
optimal migration selection system are implemented on
off-the-shelf computing devices.

VOLUME 9, 2021 158075



T. Kim et al.: Optimal Container Migration for Mobile Edge Computing

• This paper presents an empirical evaluation results, and
shows that the proposed algorithm can effectively and
efficiently migrate containerizes services.

The rest of the paper is organized as follows. In Section II a
summary of previous studies on containerized service migra-
tion is presented, followed by a brief introduction to the
backgrounds on the container migration on Docker. The pro-
posed three different live container migration techniques are
introduced in Section III, and then, the proposed optimal
migration selection algorithm along with the overall system
design is presented in Section IV. The following Section V
explains the overall methodology used in this work. The
empirical evaluation results are presented and discussed in
Section VI, and finally, the paper is concluded by Section VII.
The frequently used abbreviations and acronyms throughout
this paper are summarized in Table 1.

TABLE 1. Frequently used abbreviations and acronyms.

II. LITERATURE REVIEW AND BACKGROUNDS
In this section, previous studies on the containerized service
migration are discussed, followed by a brief introduction to
the backgrounds on the container migration on Docker.

A. RELATED WORK
Puliafito et al. [6] compares pre-copy, post-copy and hybrid
migration performance in terms of migration time, service
down time and the amount of transferred data. In short,
pre-copy iteratively transfers most of the states (i.e., dirty
pages) before stopping ES(src), while post-copy minimizes
the amount of pre-copy and transmits dirty pages when it is
requested at ES(tgt). The hybrid is the combination of both.
The tools used in their paper are CRIU [20] for checkpointing,
rsync for file transfer, and runC for container runtime. How-
ever, the authors assumed that writing to disk is not allowed
for some applications, and did not transfer the persistent files.
Karhula et al. [21] demonstrated the migration of IoT edge
functions using Docker and CRIU for checkpointing. How-
ever, their proposed method is limited in that persistent files
are not synchronized between ES(src) and ES(tgt), and there
is no consideration on the changed states after the checkpoint
has been made.

Nadgowda et al. [22] proposed a stateful migration on
Docker. The proposed Voyager transfers the memory state
to the ES(tgt). In addition, to minimize the service down-
time during the local file system migration, a dual-band data

transfer is proposed by using a network file system. However,
if the network-attached storage is not available, the migrated
service may suffer from frequent faults for the files that are
being copied in background, whichmay significantly degrade
the quality of service (QoS). Dupont et al. [23] proposed a
migration orchestration system, called Cloud4IoT. By using
Docker and Kubernetes [24], the proposed system can per-
form horizontal and vertical migration of IoT functions. The
limitation in their work is the underlying assumption that ser-
vices are stateless. Thus, Cloud4IoT does not transfer states,
and it cannot be used when stateful migration is necessary.

Al-Dhuraibi et al. [25] proposed an automatic vertical
scaling system for Docker containers, called ElasticDocker.
Although it is different from containerized service migration,
ElasticDocker does perform live migration when there is no
resource left on the host for scale-up. The live migration in
ElasticDocker first transfers the file system differences, and
then, transmits memory states. Their proposed live migration
is similar to FC that is proposed in this paper (see Section III
for detail). The limitation of ElasticDocker is that it freezes
the container at the final memory dump stage. If a user sends
requests before the container on ES(tgt) starts, they may get
lost, resulting in QoS decrease or state inconsistency.

Ma et al. [26], [27] proposed a container live migra-
tion leveraging the layered storage of Docker. Their pro-
posed method can be summarized in three steps. 1) Image
layer synchronization: the different image layers are trans-
mitted to ES(tgt). 2) Memory difference transmission: this
stage transmits the checkpoint for consistent memory state.
3) Container stop and container layer synchronization: this
step synchronizes the writable container layer, i.e., the user’s
modifications to files/directories are transmitted to ES(tgt).
The limitation of this work is twofold. In the pre-dump con-
tainer stage, memory snapshots are transmitted to all potential
target servers, and it may incur unnecessary network load.
Also, the later stage of migration terminates the ES(src)
before ES(tgt) becomes ready to provide service. This may
cause a short period of service interruption (i.e., downtime),
or in theworst case, permanent service downwhen the ES(tgt)
falls into faulty state.

Yu et al. [28] proposed a container migration with log-
ging and replay. The proposed 3-stage migration runs as
follows: 1) exporting and transferring the entire image includ-
ing the container layer, 2) logging the changes while the
image transmission is in progress and replaying the changes
on ES(tgt), 3) stopping ES(src) and resuming ES(tgt).
Although the migration scheme can migrate the persistent
files, some memory pages are not to be migrated. This can
be a limitation to stateful applications. A similar approach
has been proposed for virtual machine (VM) environment.
Liu et al. [29] proposed a VM migration scheme that first
transmits the checkpoint of a running VM. Until the VM
on the target host is in the consistent state with the source
host, the system events are recorded and replayed at the
target host. However, this approach does not consider trans-
ferring the persistent files on the local file system of the

158076 VOLUME 9, 2021



T. Kim et al.: Optimal Container Migration for Mobile Edge Computing

source host. In addition, in some applications logging-
and-replay by itself can be a better solution than the com-
bination of checkpointing and logging-and-replay.

As it can be seen in the previous literature, there are differ-
ent ways of stateful migration: state-transfer or state-rebuild
by logging and replay. Also, different services have different
properties which will be discussed in the following sections.
However, none of the aforementioned studies jointly consid-
ers both to choose the optimal migration technique in terms
of migration time and network load for minimizing service
disruption and network congestion, respectively. This paper
proposes three effective migration methods, and then, pro-
poses to jointly consider the properties of different migration
techniques and the service applications to be migrated in
order to migrate services in an time and network-efficient
manner. Furthermore, this paper presents an autonomous
migration selection system that selects the optimal migration
given the extracted properties of the container to be migrated.

B. BACKGROUNDS: STATEFUL CONTAINER MIGRATION
WITH DOCKER
Virtualization is a key component to enable cloud/edge com-
puting for high resource utilization, resource isolation and
multi-tenancy. Among different virtualization technologies,
containerization has become more popular in the edge com-
puting domain for their high performance and light-weight
nature [6], [30], [31]. Although Docker is not the only
containerized virtualization solution (e.g., LXC [32] and
OpenVZ [33]), it is studied in this paper for its widespread
use and large market share, i.e., approximately 25% [34].
Also, it is shown that Docker containers operate at the close-to
native performance even on single-board computers [35].
This section introduces some Docker features that play a
key role in the proposed live container migration and its
implementation.

A container is a complete runtime environment including
an application and its dependencies. In particular, Docker iso-
lates resources between different containers by using names-
pace, and cgroups to control/monitor resources such as CPU
and memory [37]. By sharing the kernel, containers can be
lightweight [25], which is a distinguishable feature from
virtual machine software such as VirtualBox and VMWare
(see [13], [37] for an in-depth comparison between containers
and virtual machines).

A Docker container is created from a downloaded or cus-
tom image which is a set of read-only layers constituting an
application or service. When a container is started from an
image, a writable layer, called container layer, is added as a
top layer. Docker supports different storage drivers to store
image layers (e.g., overlay2, btrfs and aufs), and overlay2
is used in this paper as officially recommended [38]. The
writable container layer is denoted by upperlayer in the over-
lay2 driver, and it contains the differences or changes in the
file system (i.e., modified, added or deleted files/directories).
In other words, the list or files and directories that are different
from those in the image can be found in the upperlayer

directory, which is also available by using the Docker diff
command.

Docker also records the container’s STDOUT and STDERR
as logs in a JSON format by default. The log file can be
found in the LogPath directory of which path is located in
the docker inspect result. Also, the log can be retrieved
by using the docker logs command. This is particularly
useful to trace the history of actions executed mostly by user
and applied to the container.

CRIU is a utility to checkpoint and restore the state of a
Linux process. CRIU captures memory state, process states,
open files, network sockets and so forth, and dumps as a
collection of files. The size of the checkpoint depends on the
pagemap size of the process [22]. The Dockers experimental
checkpoint function [39] relies on CRIU, and this play a key
role in migration to let the volatile state of ES(tgt) be the same
to that of ES(src).

III. PROPOSED STATEFUL LIVE MIGRATION
To achieve seamless, live migration that is transparent [8] to
users, this section introduces the three enhanced migration
techniques that are proposed in this paper.

A. ASSUMPTIONS
In the assumed system in this paper, an ES is co-located with
an AP since deploying an ES at the AP reduces the service
delay and avoids network congestion [7]. In this study, mobile
users access the network via an IEEE 802.11 AP, which
is wire-connected to the core network. A user entering the
coverage of anAP associates with theAP for wireless connec-
tion, and it triggers a handoff procedure [40] if the user is in
association with another AP at the moment. A user associated
with AP-n receives computation offloading service from its
dedicated container running on the ES-n which is co-located
with AP-n. When a user handoffs to another AP, container
migration is triggered and the user’s container is moved to
the new AP so as to keep the network delay minimized.

When migration is triggered from ES(src) to ES(tgt),
widely-available docker images, for example, those that are
accessible in either public/private repositories, are assumed to
be locally available (or pre-cached) on the ES(tgt) [36]. How-
ever, in the case of containers running customizes images,
this assumption does not hold, and it can be handled by
using the proposed FC to be explained shortly. ES hosts
have similar computing power, and the default resource-limit
configuration [41] is applied to all Docker containers.

B. PROPOSED LIVE CONTAINER MIGRATION
The proposed live migration techniques synchronizes ES(tgt)
with ES(src), and ES(tgt) will eventually have the same
persistent state (i.e., files and directories in the file system)
and volatile state (i.e., memory layout, network sockets, open
files, etc.) as ES(src) has. The proposed three migration tech-
niques can be roughly classified into two methods, namely
state duplication and state reproduction. State duplication
copies the state from ES(src) and then transfers to ES(tgt) so

VOLUME 9, 2021 158077



T. Kim et al.: Optimal Container Migration for Mobile Edge Computing

that ES(tgt) can start from the most recent state of ES(src).
On the other hand, state reproduction transfers an instruction
execution log/trace to ES(tgt) so that ES(tgt) can reproduce
a container with the consistent state to ES(src) by executing
the instructions in the received log. Throughout this paper,
the scenario in Fig. 2 is assumed as an illustrative example.
A user associated with AP-1 is receiving offloading service
from a container on ES-1. As a user moves away from AP-1,
it re-associates with AP-2, which initiates the containerized
service migration. To be specific, the container migration is
triggered by receiving the corresponding message from the
controller, which is explained in Section IV. The controller
sends different messages to ES(src) and ES(tgt), namely, the
identification (i.e., IP address) of the ES(tgt) to ES(src) and
the name of the base image to ES(tgt). The base image name
is not used in FC since it transfers the complete image, but in
both DC and LR it can be used to check if the image is locally
cached on ES(tgt).

FIGURE 2. An example scenario that a user handoffs to AP-2, which
triggers migration of the containerized service from ES-1 to ES-2.

The distinct features of the proposed migration techniques
compared to the previous works are as follows.

1) The proposed techniques migrate and synchronize both
persistent files and volatile states.

2) By using the packet relay during migration, the pro-
posedmigrations can effectively prevent service outage
and achieve zero-downtime.

3) By using the replay buffer during migration, the
migrated container can synchronize its state with the
migrating container without requiring any additional
state transfer.

1) FULL-COPY MIGRATION, FC
FC is a naive state duplication method to be used mainly as
a performance baseline in this study. When a container on
ES(src) at AP-1 is migrated to ES(tgt) at AP-2 all container
layers (i.e., writable layers and read-only layers) as well as
execution state are transferred to ES(tgt) so that a container
with the consistent state can be started on ES(tgt) only by
using what has been transmitted.

The overall procedure of FC migration is illustrated in
Fig. 3. When a migration is triggered, the to-be-migrated

FIGURE 3. Flowchart of the proposed Full-Copy migration: FC migrates
the entire container image as well as the checkpoint so that ES(tgt) can
resume the service only with what has been transmitted. The buffering
and packet replay is used to trace and replay the state changes occurring
during migration.

container on ES(src) is exported and saved as a new
image including both writable and read-only layers. Docker
commit and save commands are used for this task. Then,
the new image including the persistent state of the container
is transferred to ES(tgt). The following step is to transfer
the execution state, and it can be done by checkpointing by
using checkpoint create command and sending it to
ES(tgt). All file transmissions are carried out by a secure copy
protocol tool, scp.
In this work, when exporting and checkpointing the

container, the container is configured to keep running by
using --pause=false and --leave-running=true
option, respectively, so that it can continuously provide ser-
vice to the user until its replica becomes ready on ES(tgt).
From the moment MU handoffs to AP-2 to when the con-
tainer becomes ready on ES(tgt), a non-negligible amount of
time passes, during which the container’s state might change.
To trace such changes, the proposed migration employs
packet relay and buffering technique.

Right after a user handoffs to AP-2 its serving container
is still operating on ES(src), while the user accesses AP-2
for communication. Until the container on ES(tgt) becomes
ready for service, the proposed migration allows AP-2 to
relay the user requests to AP-1 so that ES(src) can pro-
vide service. In the meantime, AP-2 buffers the same user
requests locally. When the container on ES(tgt) starts, all
buffered requests are replayed on the container. As soon as the
buffer becomes empty, ES(tgt) notifies AP-2 of its readiness.
AP-2, then, stops packet relay and buffering so that its
local ES, i.e., ES(tgt), can provide service to the user. Also,
AP-2 sends service stop request to ES(src) so that ES(src) can
stop and release the container resource. ES(src) may delay
the container stop for a certain amount of time, called grace
period, if there are waiting jobs in its queue.

158078 VOLUME 9, 2021



T. Kim et al.: Optimal Container Migration for Mobile Edge Computing

2) DIFFERENTIAL-COPY MIGRATION, DC
DC does not transfer the read-only layers, and thus, it can
achieve an efficient state duplication compared to FC. The
reduced amount of data transmission not only shortens the
migration time, but also alleviates network congestion com-
pared to FC. As aforementioned in Section II-B, a container
consists of a writable layer at the top and read-only layers
below. If the base image from which the container has started
is locally cached on ES(tgt), the consistent state in terms
of the persistent state can be achieved only by migrating
the writable layer. The checkpointing is also used in DC to
transfer the volatile state to ES(tgt). The overall procedure
of DC is illustrated in Fig. 4 assuming that when migrating a
containerized service, the base image is pre-cached on ES(tgt)
or it can be pulled from nearby repository instantly.

FIGURE 4. Flowchart of the proposed Differential-Copy migration:
DC migrates the writable layer as well as the checkpoint so that ES(tgt)
can resume the service in a consistent state with reduced data
transmission. The buffering and packet replay is used to trace
and replay the state changes occurring during migration.

When the migration is triggered by receiving the corre-
sponding message from the controller, ES(src) extracts the
file system changes (i.e., writable-layer contents), and ES(tgt)
checks if the base image is locally available. The name
of the base image is known to ES(tgt) by Controller. The
writable-layer contents can be extracted in two ways. One is
to list the changes by using docker diff command and
extract themwithdocker cp. The other is to locate the path
in which the changes are saved on the ES host’s file system.
The path is identifiable from the docker inspect result
by using the value of the UpperDir label. The former is safe
but it requires parsing the docker diff result, and thus,
the proposed DC uses the later for efficiency.

After transmitting the writable-layer contents, ES(src)
makes checkpoint and then transmits it to ES(tgt). Upon
receiving both, ES(tgt) resumes the container from the up-
to-date state. Any changes that are not included in either the
writable layer or the checkpoint are handled by the packet
replay and buffering method.

DC is similar to FC in the sense that both transfer state
to ES(tgt). However, FC transfers much larger data, and as
a result, it longer and incurs larger network load than DC.

3) LOG-REPLAY MIGRATION, LR
LR is a state reproduction method which is different from
FC and DC. Instead of receiving state from ES(src), ES(tgt)
collects the command trace executed at ES(src), starts the
base image from scratch, and replays the commands locally
to reconstruct the consistent state. The overall procedure of
LR migration is illustrated in Fig. 5.

FIGURE 5. Flowchart of the proposed Log-Replay migration: LR transmits
only the command logs so that ES(tgt) can reproduce the container with
the consistent state from scratch. The buffering and packet replay is used
to trace and replay the state changes occurring during migration.

To extract the command logs, the proposed LR utilizes
the docker logs. The docker logs command shows the
container’sSTDOUT andSTDERR streams. The complete and
full log can be found at the log file in JSON format along
with the timestamp. In this work, services are configured so
that when processing a user request the beginning and the
end is printed out at STDOUT. It can be simply done to any
application/service by launching it inside a wrapper module.
The path to the log file can be retrieved from the docker
inspect results by using the value of the LogPath label.
The LR parses the log and extract the commands therein

to retrieve the command trace in order. The command trace
is then transmitted to ES(tgt) so that it can be replayed
on ES(tgt). While the container becomes ready on ES(tgt)
the packet replay and buffering is used to capture any state
changes that are not included in the transmitted command
trace. Once the container on ES(tgt) completes replaying the
received command trace, it replays the buffered command
logs, and then, finally notifies AP-2 of its readiness. As a
side note, LR also computes how long each command or user
request takes so that it can be used in selecting the opti-
mal migration technique. Further details will be introduced
in Section IV.

VOLUME 9, 2021 158079



T. Kim et al.: Optimal Container Migration for Mobile Edge Computing

4) PACKET RELAY AND REPLAY BUFFER
The proposed replay buffer plays a key role in capturing the
last-minute state changes that are not included in what has
been transmitted from ES(src) to ES(tgt). The container on
ES(tgt) notifies AP-2 of its readiness only when the replay
buffer is empty and all queued commands are successfully
replay on ES(tgt). In the meantime, the user’s offloading
request packet received byAP-2 is relayed to ES(src) at AP-1.

This packet relay and replay buffer scheme is particu-
larly useful for container migration for the following two
reasons. The common stateful container migration approach
is based on iterative transmission of memory dumps until a
pre-defined number of iterations is reached [6]. If there are
remaining dumps to transmit after the iteration limit, it may
fail to recover the exactly same container at ES(tgt). Also,
during migration the amount of last-minute state changes
(i.e., dirty pages) to transmit can be larger than the com-
mand itself which caused the changes. If so, transmitting the
command log can be more efficient than sending the dirty
pages in terms of bandwidth and time. The other is related to
the service availability and the fail-safe property. In general,
common containermigration techniques stop the container on
ES(src), and then, resume its replica on ES(tgt) at some points
of migration procedure. However, such approach incurs ser-
vice downtime no matter how short the period is. Also, if,
for some reasons, it fails to launch the replica container
on ES(tgt) after stopping the original container on ES(src),
the containerized service becomes unavailable, violating
QoS requirement.

The proposed migration techniques, on the other hand,
can effectively overcome the two problems. The container on
ES(src) keeps providing service until its replica on ES(tgt)
becomes ready and fully-functioning, and as a result, there is
no service-unavailable period. Also, if ES(tgt) fails to launch
a container replica, the original one on ES(src) can continue
the service.

C. USE CASES AND APPLICATION PROPERTIES
The proposed three migration techniques have different char-
acteristics and different use cases. Choosing an efficient
migration technique in terms of migration time and network
load depends on both how each migration technique works
and the properties of the containerized service to be migrated.
FC is a send-all migration and generates a large amount

of network traffic since it transfers the base image
(i.e., read-only layers) as well. Despite of its seemingly inef-
ficiency, it is the only working solution when the base image
of the to-be-migrated container is available only at ES(tgt).
If it is not the case, however, FC is always inferior to DC in
terms of bandwidth use and migration time.
DC is particularly useful when state reproduction takes

long. For example, as reported in [42], training an Inception3
deep learning model for a plant leaf disease detection appli-
cation took approximately 2 hours. However, the resulting
model is only about 90MB in size. In such cases, as long as
the network delay between ES(src) and ES(tgt) is small and

bandwidth is large enough, transferring the trained model,
i.e., DC, is more time and bandwidth efficient than receiving
the training data set and training the model at the ES(tgt),
i.e., LR.

On the other hand, LR outperforms the rest if the state
restoration is faster than transferring the state. For example,
augmentation [43] is a common trick to multiply the data set
in deep learning for image-related applications to enhance
the generalization performance of a trained model. It can be
implemented with only a few lines of code (or command).
The augmentation techniques are based on simple linear oper-
ations, such as rotation, shift, shearing, zooming and flipping,
and can be quickly done, while resulting in an additional
voluminous data set. In such cases, instead of transferring
all augmented data (i.e., DC), replaying the augmentation on
ES(tgt) can save time and bandwidth.

IV. PROPOSED OPTIMAL MIGRATION SYSTEM
This section introduces an optimal migration decision algo-
rithm that chooses the best migration technique with respect
to both the migration time and the network load. To do so, the
algorithms considers characteristics of migration techniques
and the application to be migrated together. Also, this section
proposes a system design that can perform optimal migration
autonomously.

A. PROPOSED SYSTEM DESIGN: OVERALL ARCHITECTURE
The design of the proposed autonomous system that can
perform optimal live migration is depicted in Fig. 6, and
one possible deployment scenario is shown in Fig. 7. Note
that a resourceful AP may include the ES inside, and both
Controller and Logger can be implemented in a single
machine. The proposed system design consists of the follow-
ing modules:

FIGURE 6. The proposed autonomous optimal container migration
system design consists of controller, logger, AP, and edge server.

• Controller: When a handoff event is reported by Logger,
Controller determines the optimal migration technique

158080 VOLUME 9, 2021



T. Kim et al.: Optimal Container Migration for Mobile Edge Computing

FIGURE 7. An illustrative deployment scenario of the proposed system.

and notifies both ES(src) and ES(tgt) of the decision as
well as some extra information required to perform the
chosen migration.

• Logger: It collects all event logs, and saves them to
its local or remote storage. When the user handoff
event is reported by an AP, Logger pushes the event to
Controller.

• ES: It carries out containerized services and migration
procedure.

• AP: In addition to providing the network access to
associated users, AP is responsible for packet relay and
replay buffer.

• Mobile User (MU) or user: MU continuously offloads
tasks to containers, and due to its mobility, it incurs
handoff between nearby APs.

The components inside each module are introduced below by
using the example scenario (Fig. 2) introduced in Section III.
Suppose a user joins the network by associating

with AP-1. The MU also initiates a containerized offloading
service at ES-1, and AP-1 sends all event logs to Logger
by Event Reporter. Logger receives the logs and stores them
by Log Writer. Among the received logs, certain events are
pushed to Controller by the Event Push component. For
example, user’s association with AP-1 and the name of the
base image used for the containerized service are the events
to be pushed to Controller. Then, Controller saves the AP ID
(e.g., SSID, IP address and MAC address) and the image ID
(e.g., image name and tag) in Association DB and Image DB,
respectively.

In this paper, it is assumed that when a user triggers a
handoff event, migration always executes. This is a reason-
able assumption especially when the coverage of AP is large
and user devices are moving at slow speed. In the case of
IEEE 802.11, during the handoff procedure, a MU sends
REASSOCIATION REQUEST to the new AP (i.e., AP-2 in
Fig. 2), and this is the earliest moment a handoff event is
detected except the AUTHENTICATIONmessage exchange.
The re-association event log is also sent to the Logger, and the
Event Push component in Logger passes the handoff event to
Controller.

When Controller is notified of the handoff event,
the Migration Decision component starts by requesting
information, called profile, to ES-1 that is needed to choose

an optimal migration. ES-1’s Profile Extractor gathers pro-
file and sends it back to Controller. The set of information
included in a profile is introduced in the following subsection.
Also, Controller sends the AP-1 ID to AP-2, and AP-2 ID
to AP-1. Upon receiving the profile, Controller determines
the optimal migration technique, and sends the decision to
both AP-1 and AP-2. Migration Agent at ES responds to
the decision, and begins container migration. When AP-1
finishes state of log transmission, it sends a container start
request to AP-2. AP-2’s Migration Agent then allows Docker
engine to start the container and carries out any remaining
migration procedures, if any, before replaying commands in
the replay buffer. Once the migration procedure finishes, the
commands in the replay buffer is played on the container on
ES-2 until the buffer becomes empty. When there is no more
commands to replay, ES-2 notifies AP-2 of its availability,
which is then passed to AP-1 so that it can stop its container
at ES-1.

B. PROPOSED OPTIMAL MIGRATION DECISION
ALGORITHM
The proposed optimal migration decision algorithm jointly
considers the migration time and the traffic load to be injected
to the network as a result of migration. The migration time is
the time interval fromwhen the migration is started at ES(src)
to the moment the migrated container at ES(tgt) is ready
to provide offloading service. The migration time affects
service delay because when migration is in progress, a user
request received by AP-2 is relayed to ES(src) at AP-1. Also,
shortening the migration time saves computing resource
on AP-1, since the container on ES(src) can stop and release
the container resources only when the migration is finished.

Note that in this work, it is assumed that QoS is defined
as a function of the service delay. However, there is no
predetermined delay upper bound in this work since it can
vary depending on application, domain, physical network
performance, etc. Thus, in the remainder of this paper, it is
presumed that a lower service delay is preferred. Also, the
raw service delay will be measured and used for comparison
in Section VI. Yet, one QoS constraint we force in this study
is that an infinite delay is not permitted, which happens when
there is a service outage.

Which migration to execute affects the network load or
congestion since different migration technique injects differ-
ent amount of traffic to the network. No matter how short the
routing path from ES(src) to ES(tgt) is, the network traffic
as a result of migration enters the core network (see Fig. 1).
Thus, if the chosen migration technique generates too much
network traffic, it may result in network congestion. Also,
having more bits to transfer may increase the probability
of transmission errors. Such errors incurs re-transmissions,
increasing the migration time.

To formulate the optimal migration decision problem,
the first step is to express the expected migration time of
each migration technique. Let TFC be the migration time
for FC, which is defined by the sum of the following

VOLUME 9, 2021 158081



T. Kim et al.: Optimal Container Migration for Mobile Edge Computing

terms: time to generate an image timggen, time to generate a
checkpoint tchkgen, time to transmit the container image timgtx,
time to transmit the checkpoint tchktx, time to start the con-
tainer tctst, time to replay the buffered commands during
migration tbufrep. Let TDC be the migration time for DC, which
is defined by the sum of the following terms: time to gener-
ate a checkpoint tchkgen, time to transmit the writable layer
contents tdifftx, time to transmit the checkpoint tchktx, time to
start the container tctst, time to replay the buffered commands
during migration tbufrep. Let TLR be the migration time for
LR, which is defined by the sum of the following terms:
time to generate a command trace ttrgen, time to transmit the
trace ttrtx, time to start the container tctst, time to replay the
received trace trep, time to replay the buffered commands
during migration tbufrep.
Given that the amount of user commands executed at a

container affects the amount of memory state changes, it is
assumed that tchkgen ∼ ttrgen. Then, C can be defined as the
common time factor included in TFC, TDC and TLR. To be
specific, C = tchkgen + tctst + tbufrep for TFC and TDC, while
C = ttrgen + tctst + tbufrep for TLR. Finally, a shortened
migration time expressions can be given as follows:

TFC = timggen + timgtx + tchktx + C, (1)

TDC = tdifftx + tchktx + C, (2)

TLR = ttrtx + trep + C . (3)

Note that the terms mentioned here are in the unit of seconds.
Transmission times are the functions of both the number of
bits to transfer and the bandwidth B (bits per second), where
the latter is assumed to be known. The value of C to be used
for evaluation in Section VI is acquired by the average of
multiple experiments.

The amount of network traffic to be generated by three
migration techniques is defined as follows. Let LFC be the
network load to be generated as a result of executing FC,
and it is defined by the sum of the following terms: amount
of data for transmitting an image limgtx and amount of data
for transmitting a checkpoint lchktx. Let LDC be the network
load to be generated as a result of executing DC, and it is
defined by the sum of the following terms: amount of data
for transmitting an writable layer ldifftx and amount of data
for transmitting a checkpoint lchktx. Let LLR be the network
load to be generated as a result of executing LR, and it is the
amount of data for transmitting a command trace ltrtx. The
terms mentioned here are in the unit of bits.

From the above equations for migration time and network
load, it is obvious that DC is always superior to FC. This is
because the complete container image, i.e., read-only layers
and a writable layer, includes the writable layer, and in may
cases, the size of the complete image is much larger than that
of the writable layer. Therefore, in terms of both migration
time and network traffic to be generated, DC always outper-
forms FC. This claim also accords closely with the evaluation
results to be introduced in Section VI-A. For example, the
migration time of FC is 10-20 times larger than that of DC

as shown in Table 4 and 5. Therefore, the optimal migration
decision among three techniques can be reduced to choosing
the best migration between DC and LR. The corresponding
optimal migration decision problem is given below (denoted
by P. 4).

min
x

f (x) =
1
α
{x · TDC + (1− x)TLR}

+ w
1
β
{x · LDC + (1− x)LLR} (4a)

subject to: x ∈ {0, 1}, (4b)

where TDC and TLR are defined in Eq. 2 and Eq. 3, respec-
tively, w ∈ R+ is a non-negative design parameter indi-
cating the weight to the network load, tdifftx = ldifftx/B,
tchktx = lchktx/B, ttrtx = ltrtx/B. As w → 0, the migration
technique minimizing the migration time is chosen as optimal
solution, while as w gets larger, minimizing the network
traffic becomes more important. The bandwidth B can be
estimated by usingwell-known techniques such as packet pair
probing [44]. The time-related terms, i.e., TDC and TLR, are
measured in seconds, while network load-related terms, i.e.,
LDC and LLR, are in bits. This unit discrepancy may result in
the problem of one having much large value than the other by
nature. To make different terms have the same scale, both α
and β are introduced to normalize the corresponding terms in
the objective function, (4a).

The values needed to solve P. 4 are given, calculated or
estimated right before solving the problem without actually
performing either DC or LR. Some of the values are derived
by the averaged values acquired from multiple evaluations.
For example, the approach used for evaluation (Section VI)
is to carry out multiple runs of experiments in advance to
obtain the averaged values of tchkgen, tctst , ttrgen and timggen for
each scenario profile. On the other hand, other values can be
calculated as follows. The size of the command trace can be
given by parsing the log file as mentioned in Section III. The
size of the writable layer can be calculated by the du -h
-apparent-size command running at the UpperDir
as aforementioned in Section III. The size of the checkpoint
can be calculated by creating a checkpoint, which can be
quickly done. The approximate size can also be found by
using docker stats command which shows the real-time
memory usage of containers. The size of the image that
consists of read-only layers is given by checking the image
size, and B can also be estimated with high precision as
mentioned earlier. The only value that cannot be obtained
when solving P. 4 is tbufrep since it is hard to know which
user actions might be performed during migration in advance.
However, as it can be seen in Section VI, in some scenario
profiles, DC and LRmigration can quickly be done, and thus,
it has a negligible effect. Most importantly, tbufrep is part of
the common constant time factor C and applied to both DC
and LR. Such constant will be ignored when searching for an
optimal solution.

The given P. 4 is an integer (binary) optimization prob-
lem for having a binary constraint (4b). Although integer

158082 VOLUME 9, 2021



T. Kim et al.: Optimal Container Migration for Mobile Edge Computing

problems are in general intractable, due to the small size
of P. 4 that has only two binary decision variables, the optimal
solution can be quickly found, for example by using the
branch and bound algorithm [45]. However, instead of com-
puting the optimum for P. 4 by using conventional solution
methods, the proposed algorithm evaluates the problem with
each possible value of x separately, and chooses the best that
results in the smallest objective value. The decision variable
x takes value only between 0 and 1, and the terms included in
f (x) are linear, and thus, the proposed brute-force algorithm
can quickly terminate.

V. METHODOLOGY
This section explains the implementation detail, the set of
scenarios used for evaluation, and the method of validation,
performance measurement and analysis.

A. IMPLEMENTATION
For validation and performance evaluation, the proposed
three migration methods and automated optimal migration
system (Fig. 6) has been implemented, where the Python 3.8
has been used to implement the programs for user, Controller,
Logger, Edge Server, and AP. The testbed consists of off-
the-shelf three Desktop PCs and a laptop: PC #1 for Con-
troller and Logger, PC #2 for both AP-1 and ES-1, PC #3
for both AP-2 and ES-2, and the laptop for a MU. For
both wired and wireless connectivity, a WiFi router (ipTIME
A8004NS-M) has been used. The four machines are within
a single local area network, where PCs and a laptop are
connected via Ethernet cables and IEEE 802.11ac wireless
channel, respectively. PCs are homogeneous with the follow-
ing specifications: Intel Core(TM) i5-8500 CPU, 16GB RAM,
128GB SSD and 1000Mbps network interface card (NIC).
The laptop is equipped with Intel Core(TM) i5-1035G4 CPU,
8GB RAM, 256GB SSD, and IEEE 802.11ac-compatible
NIC. PCs are installed with Ubuntu 18.04.5 LTS oper-
ating system, while Windows 10 is installed on the lap-
top. The particular Docker and CRIU version used for
implementation is 17.03.2-ce (build f5ec1e2) and 3.15,
respectively.

In the testbed network, the background traffic has been
controlled to be as little as possible so that it does not affect
the delay and transmission rate during experiment. On aver-
age, the round trip time (RTT) measured by a series of ICMP
message exchanges between any two entities was approxi-
mately 20 ms. To control both the bandwidth and latency
of APs, tc (i.e., a Linux tool to configure Linux Traffic
Control) [46], has been used. With tc, the one-way net-
work delay between two APs has been configured to
be 100 ms, which increases the service delay when the
migration is in progress for the proposed packet relay.
In this work, to precisely schedule handover events, sim-
plified APs are implemented, and the user movements are
emulated so that handover occurs at a scheduled moment in
time.

B. SCENARIO
Each user exclusively accesses its dedicated and isolated
container for offloading service. As illustrated in the example
scenario (Fig. 2) in Section III, MU associates with AP-1 and
offloads tasks to ES-1(src), at the beginning. As MU moves
towards AP-2, handoff occurs, and the containerized service
is migrated to ES-2(tgt).

To evaluate the proposed method on practical and con-
trolled scenarios, the followings have been designed and
implemented: two application services, service 1 (SVC-1)
and service 2 (SVC-2), and two sequence of user actions (or
commands) for task offloading, ACT-1 and ACT-2, that are
applicable to both services. SVC-1 is a simple, light-weight
application container that can startup fast and generates a
small amount of data to be stored on the writable layer. On the
other hand, SVC-2 is a relatively heavy application container
that takes longer to startup, and user requests can generate
a large amount of data to store. ACT-1 consists of actions
that do not take long to complete. However, ACT-2 is a set
of actions that takes longer than that of ACT-1. In addi-
tion, the network bandwidth has been configured with two
different configurations, namely, small bandwidth and large
bandwidth. With the two applications, two action sequences,
and two network bandwidth setups, eight scenarios or profiles
are generated as summarized in Table 2.

TABLE 2. Eight different scenario profiles used for evaluation. Each
profile/scenario is characterized by which service to use, which action
sequence to execute, and which network bandwidth configuration to
apply for evaluation.

The combination of a service type, action sequence, and
network configuration constitutes a scenario profile, labeled
by AC-st/NC-b as shown in Table 2. By quantitatively ana-
lyzing the effect of each action sequence on each applica-
tion service with multiple experiments, it is found that each
scenario generates a certain amount of data to be written to
memory and writable layer, and also causes a certain period
of time for state reproduction on average. Based on such
findings, an AC-st label is attached to each scenario, whereas
NC-b simply indicates the size of the bandwidth configured.
The detail explanation on the labels are given below, and the
configuration details are listed in Table 3.
• s ∈ {L,H} (Low,High): the total sum of both the amount
of data to be stored at the writable layer and the size of
the checkpoint (for DC),

• t ∈ {F, S} (Fast, Slow): the state reproduction time for
LR (note: this is different from replaying the commands
buffered during packet relay), and

VOLUME 9, 2021 158083



T. Kim et al.: Optimal Container Migration for Mobile Edge Computing

TABLE 3. Application and network configurations for evaluation: four
configurations for the containerized application and two configurations
for the network bandwidth make eight different scenario profiles in total,
where WL is short for writable layer.

• b ∈ {L,H} (Low, High): the size of the configured
network bandwidth.

The configuration label s and t are related to DC and LR,
respectively, while the label b affects the performance of all
three migration techniques. In the case of FC, the amount of
data to transfer is the size of the complete container image
(i.e., read-only layers and a writable layer) and the check-
point, and the former is not mentioned above. As discussed in
Section IV, FC is always outperformed by DC, and thus, this
work mainly focus on the performance comparison between
DC and LR. The base image used for evaluation is the offi-
cial python:3.8 at DockerHub, and it is approximately
909MB in size.

For each scenario, each evaluation run lasts for 200 or 100
seconds, and MU generates a service request at the default
rate, i.e., 1 request/second. MU handoffs from AP-1 to AP-2
after 50 seconds from the beginning or when sending 50th

request to its associated AP.

C. PERFORMANCE MEASUREMENT
The key performance metrics considered in this study are the
service delay, the migration time, the amount of traffic to be
injected to the network as a result of migration, and the time
taken to reproduce the given state. Since the timestamped logs
that are related to service delay and migration time are sent
to Logger, both are measured by inspecting the accumulated
logs which act as regarded as raw data in this study. The
timestamp included in each log does not represent when it
is received by Logger, but when the event actually occurred.
On the other hand, The amount of traffic and the state repro-
duction time have been computed in advance.

To precisely measure the service delay before/during/after
migration, a MU is configured to generate offloading ser-
vice request at a fixed interval, i.e., 1 REQ/s. A user’s
offloading request is forwarded by an associated AP to the
co-located ES, where the request is actually processed. Once
the ES completes processing the offloaded task, it sends an
application-layer positive acknowledge (ACK) back to the
user via the AP. Thus, the response time or service delay
can be measured by the elapsed time between the moment
a user sends an offloading request and the moment the user
receives the corresponding ACK. The corresponding logs
are transmitted to Logger, and by identifying both logs, the
migration time can be calculated.

The migration time is the elapsed time between the
moment the migration is started at ES-1(src) and the moment
the migrated container at ES-2(tgt) is ready to provide the
offloading service. The corresponding logs are transmitted to
Logger, and by which, the migration time can be calculated.
There are predefined scenario profiles and they assumed to
be the same throughout the experiments. Thus, for a scenario
profile, the number of bits to be transmitted as well as the state
reproduction time remains the same. Multiple experiments
have been carried out and then the average has been taken
in advance to calculate both.

Note that the task offloading, in general, can reduce the
energy consumption of an end device, but the direct relation-
ship between the proposed migration and the saved power
consumption is beyond the scope of this study. In a nutshell,
as studied in [47], [48], the power consumption of a user
device is proportional to the computation load or the number
of CPU cycles required to process a given job. Since an
offloaded job is processed not on user device, but on edge
server, edge computing can effectively achieve power saving
of end devices.

D. VALIDATION
The validation of the proposed optimal migration has been
carried out from various aspects based on the accumulated
logs at Logger. The occurrence of migration has been vali-
dated by inspecting the logs indicating which ES processed
the offloading requests from the user. Whether the ES car-
ried out the chosen, optimal migration has been validated
by inspecting the log from Controller regarding its decision
and the logs from both ES-1(src) and ES-2(tgt) regrading
the migration they actually performed. Each task offload-
ing request from a user is sequentially numbered, and the
corresponding ACK from the serving ES includes the same
number. Thus, whether or not there has been any offloading
service outage has been validated by inspecting the numbers
of the request-ACK pairs. If there are N number of requests
and the corresponding ACKs in the logs without anything
missing, it is regarded that there was no offloading service
outage.

E. RESULTS ANALYSIS
For each scenario profile, five runs of experiments have been
carried out. To minimize the effect of the outliers and to
draw the common behavior on each scenario, an average has
been taken out of the results frommultiple experiments. Such
averaged results are, then, used for performance comparison
and analysis.

VI. EXPERIMENTAL EVALUATION
This sections shows the performance evaluation results of
the proposed optimal migration running on the testbed with
the scenarios configurations that are introduced in Section V.
Note that for all experiments carried out and report in this
section, there was no service outage, which is validated by
checking any missing requests or ACKs in the log at Logger.

158084 VOLUME 9, 2021



T. Kim et al.: Optimal Container Migration for Mobile Edge Computing

A. IN-DEPTH INSPECTION ON THE BEHAVIORS OF THE
THREE MIGRATION TECHNIQUES
1) MIGRATION ON AC-LF/NC-L SCENARIO
To begin with, AC-LF/NC-L and AC-LF/NC-H scenarios
have been carried out to take a close look at how each
migration technique behaves and how the per-request service
delay (i.e., response time) varies. Both AC-LF/NC-L and AC-
LF/NC-H have the same application configuration. However,
the network bandwidth is different, which affects the elapsed
time to transmit the migration-related data, resulting in dif-
ferent migration time. Fig. 8 and Fig. 9 show the experi-
ment result for the AC-LF/NC-L scenario profile that lasted
for 200 seconds. To be specific, Fig. 8 shows the per-request
response time trace for FC (Fig. 8(a)), DC (Fig. 8(b)) and LR
(Fig. 8(c)). Fig. 9 shows the on average per-request response
time for three migrations together.

FIGURE 8. Dark solid line shows the average per-request response time
trace on the AC-LF/NC-L scenario. The migration is triggered when the
50th request is sent out from the MU. The red and blue dotted line
represents the largest and shortest response time for each request,
respectively.

FIGURE 9. Average per-request response time trace for three migrations
on the AC-LF/NC-L scenario.

As expected, FC spent the most time on migration, result-
ing in the largest response time among the three migration

TABLE 4. Average migration time and response time for three migrations
on the AC-LF/NC-L scenario.

techniques. The response time is proportional to themigration
time, because the packet relays occur betweenAP-1 andAP-2
during migration, and the RTT between the two is relatively
large. While migration is in progress, the MU that has asso-
ciated with AP-2 communicates with AP-2. However, its
functioning container is still in ES-1 at AP-1, and the one
that is co-located with AP-2 has not been started yet. Thus,
AP-2 has to relay the MU’s requests to AP-1 so that the MU’s
container in ES-1 can respond to the requests. Due to this
relaying, the response time becomes larger during migration.

In this work, ES(src) with FC is implemented to perform
the following tasks in sequence for migration: T1) generates
a complete container image, including both the read-only
layer and the writable layer, T2) transmits the image, T3)
creates a checkpoint, and 4) transmits the checkpoint.
In the testbed setup, T1 takes a few seconds due to the
large size of the image. Also, for the low bandwidth in the
AC-LF/NC-L scenario profile, it took approximately 100 sec-
onds long to transmit the image. This is because the entire
traffic FC generates is approximately 960MB (i.e., 909MB
for the read-only image and 50MB for both checkpoint and
writable layer contents). Upon receiving the complete con-
tainer image and the checkpoint, ES-2 performs the following
tasks: T1) loads the received image, T2) creates a container
from the image, T3) starts the container with the received
checkpoint. The three tasks also requires a few seconds of
time.

On the other hand, both DC and LR resulted in a much
shorter migration time than FC. The main reason is the
reduced amount of data to transmit. DC spends approxi-
mately 5 second in transmission to deliver 50MB of data
which is the sum of the writable layer and checkpoint.
LR transmits only a small-sized text, i.e., command log,
which is approximately 1MB, and spends 5 seconds in replay-
ing the received command trace. LR migration was slightly
shorter than DC, although the difference is negligible. This is
mainly because of the time taken to generate and restore from
a checkpoint.

As it can be seen in the summary of migration time and
response time on average shown in Table 4, the migration
time directly affects the service delay or the response time
for the user requests. As a result, FC resulted in the largest
response time of 0.2029 seconds on average. The migration
time of DC is slightly longer than that of LR, but, the average
response time between the two does not much differ. This is
because the additional delay incurred by DC compared to LR
has become insignificant as the experiment progresses. If the
experiment lasts longer, the average delay between DC and
LR will become much closer.

VOLUME 9, 2021 158085



T. Kim et al.: Optimal Container Migration for Mobile Edge Computing

FIGURE 10. Dark solid line shows the average per-request response time
trace on the AC-LF/NC-H scenario. The migration is triggered when the
50th request is sent out from the MU. The red and blue dotted line
represents the largest and shortest response time for each request,
respectively.

FIGURE 11. Average per-request response time trace for three migrations
on the AC-LF/NC-H scenario.

TABLE 5. Average migration and response time for three migrations on
the AC-LF/NC-H scenario.

From the optimal migration point of view, LR is always
optimal for this scenario profile. LR always injects less traffic
to the network. Moreover, for the AC-LF/NC-L configura-
tion, LR resulted in a shorter migration time. Thus, LR is to
be chosen as optimal for any value of the weight parameterw.
Note that the values of alpha and beta are configured to 0.01
and 2, respectively, which are empirically obtained.

2) MIGRATION ON AC-LF/NC-H SCENARIO
Fig. 10, Fig. 11 and Table 5 show the evaluation results
for the AC-LF/NC-H scenario profile. The evaluation is
carried out for 100 seconds, not 200, and this affects
the on average response time. It is worth noting that

FIGURE 12. Objective value of P. 4 evaluated for the AC-LF/NC-H
scenario. The blue dashed line and black dotted line show the objective
value when x = 1 and x = 0, respectively, and the red solid line shows
the optimal migration with respect to the weight w .

migration methods that transfer much data take advantage
of the increased bandwidth. As a result, the migration
time for both FC and DC decreased much, while that of
LR did not significantly change compared to the previous
AC-LF/NC-L scenario profile. As a result, the migration
time of FC reduced to 37.1064 seconds, which contributed
to the reduced per-request response time. The increased
bandwidth also reduced the migration time of DC. How-
ever, the migration time of LR is not significantly changed,
because LR transmits only a little from ES-1 to ES-2.
The only data to transmit is the command trace which is a
text-only, small-sized file. The reduced migration time of DC
made the response time shorter than that of LR on average.

From the optimal migration point of view, an interesting
result was found as shown in Fig. 12. Although LR injects
less traffic to the network, DC resulted in a shorter migration
time for the AC-LF/NC-H configuration. Thus, in contrast to
the previous AC-LF/NC-L scenario profile, LR is not always
the optimal migration on AC-LF/NC-H. A small value of w
tends to ignore the effect of the amount of network traffic to
generate, and thus chooses DC as an optimal solution. How-
ever, when w > 11.1277 the importance on the migration
time vanishes, and thus, LR is chosen to be optimal.

From the evaluation results on both AC-LF/NC-L and
AC-LF/NC-H, it can be seen that the change in bandwidth
affects the performance of bothFC andDC that have relatively
large traffic to transmit. On the other hand, the performance
of LR that does not have much to transmit does not vary much
for the bandwidth size.

B. PERFORMANCE COMPARISON BETWEEN DC AND LR

MIGRATION
As discussed in Section IV,FC is always outperformed byDC.
Thus, from now on, the performance comparison between DC
and LR will be discussed, excluding FC. Also, the evaluation
is carried out only for 100 seconds.

1) MIGRATION OF SERVICE 1 CONTAINER
Both Fig. 13 and Table 6 show the evaluation results ofDC and
LR on the AC-LS/NC-L and AC-LS/NC-H scenario profiles.
As it can be seen, the migration time of DC changed much

158086 VOLUME 9, 2021



T. Kim et al.: Optimal Container Migration for Mobile Edge Computing

FIGURE 13. Average per-request response time trace for DC and LR on
AC-LS/NC-L and AC-LS/NC-H scenario profiles.

TABLE 6. Average migration time and response time for DC and LR on
AC-LS/NC-L and AC-LS/NC-H scenario profiles.

FIGURE 14. Objective value of P. 4 evaluated for AC-LS/NC-L and
AC-LS/NC-H scenario profiles. The blue dashed line and black dotted line
show the objective value when x = 1 and x = 0, respectively, and the red
solid line shows the optimal migration with respect to the weight w .

between the two scenario profiles for the network bandwidth
difference, but it was not the case to LR. With the ACT-2
action sequence, the ES-2 spends approximately 10 seconds
only to replay the commands in the log. On the other hand,
DC only needed to transmit the writable layer and checkpoint
which amount to 50MB in total, and as a result, the migration
time is smaller than that of LR.

Fig. 14 shows the change of the objective value of P. 4
evaluated for AC-LS/NC-L and AC-LS/NC-H scenario pro-
files. From the perspective of migration time, LR is outper-
formed by DC, and thus, the optimal migration changes as
w increases. For AC-LS/NC-L and AC-LS/NC-H scenario
profiles, the optimal solution changes from DC to LR when
w = 14.2179 and w = 29.2057, respectively. On the AC-
LS/NC-H scenario profile, a larger value of w is required to
switch the optimal solution from DC to LR compared to the
AC-LS/NC-L scenario profile. This is because the migration
time of DC in AC-LS/NC-H is less than that in AC-LS/NC-L,
while LR results in almost identical migration time in both
scenario profiles.

2) MIGRATION OF SERVICE 2 CONTAINER
The startup procedure of the SVC-2 application container
from scratch is more complex than that of SVC-1, and it
affects the migration time of LR. During migration, DC starts

FIGURE 15. Average per-request response time trace for DC and LR on
AC-HF/NC-L, AC-HF/NC-H, AC-HS/NC-L and AC-HS/NC-H scenario profiles.

TABLE 7. Average migration time and response time for DC and LR on
AC-HF/NC-L, AC-HF/NC-H, AC-HS/NC-L and AC-HS/NC-H scenario profiles.

a container at ES-2 from the most-recent state, and it does not
start a container from scratch. On the other hand, LR starts a
container from scratch on ES-2, and then, replays the received
the trace log. The time-consuming startup of SVC-2 delays
the entire LR migration process, which is noticeable in the
experiment results.

The evaluation with the container running SVC-2 has been
carried out on different action sequence and network band-
width configurations, and the results are shown in Fig. 15
and Table 7. SVC-2 containers result in a larger checkpoint
and writable layer than SVC-1 containers, and the amount
of network traffic to generate by DC is increased to 200 MB.
This is why DC took much longer for migration than LRwhen
the network bandwidth is small–see Fig. 15(a) and Fig. 15(c).
On the other hand, when the network bandwidth is large, the
migration time for DC is close to or shorter than that of LR by
reducing the data transmission time.

The migration time of DC largely depends on the network
bandwidth, and thus, DC resulted in a shorter migration time
when the bandwidth is larger, i.e., Fig. 15(b) and Fig. 15(d).
On the other hand, themigration time ofLR is largely affected
by the time taken to replay the transmitted log. Thus, LR
resulted in a shorter migration time only when the replay time
is shorter, i.e., Fig. 15(a) and Fig. 15(b).

Out of the four scenario profiles, DC outperforms LR only
on the AC-HS/NC-H scenario profile with respect to the

VOLUME 9, 2021 158087



T. Kim et al.: Optimal Container Migration for Mobile Edge Computing

FIGURE 16. Objective value of P. 4 evaluated for AC-HF/NC-L,
AC-HF/NC-H, AC-HS/NC-L and AC-HS/NC-H scenario profiles. The blue
dashed line and black dotted line show the objective value when x = 1
and x = 0, respectively, and the red solid line shows the optimal
migration with respect to the weight w .

migration time. Thus, for the other three scenario profiles,
LR is chosen to be optimal as shown in Fig. 16. On the
AC-HS/NC-H scenario profile, the migration time of DC is
slightly less than that ofLR. Thus, for a small value ofw,DC is
chosen to be optimal. However, for the value of w > 2.7602,
LR is taken as an optimal migration technique.

C. DISCUSSION
As aforementioned in Section IV, the optimal solution for
P. 4 can be found by evaluating the objective function f (x)
with all (i.e., two) possible values of x. The optimal x is
the one that resulted in the smaller f (x). On all scenario
profiles considered for evaluation, LR injects less traffic to
the network than the other two. Thus, DC can be chosen for
optimal migration only when its migration time is shorter
than LR. Nevertheless, as w increases, more weight is given
to the amount of network traffic to be generated as a result
of migration, and thus, LR is likely to be chosen as opti-
mal. For a given scenario profile, if the optimal solution
changes with w, it occurs once when both lines formed by
f (0) and f (1) intersect. This is because both f (0) and f (1)
are affine functions, and thus, if they ever cross, it occurs
only once when f (0) = f (1). Putting f (0) = f (1) yields the
exact value of w at which f (0) and f (1) intersect as follows:
w = β

α
×

TLR−TDC
LDC−LLR

.

To understand the time complexity of the proposed opti-
mal migration selection method, the overall procedure is
decomposed into four tasks from (T1) to (T4) as follows:
T1. A profile request message is transmitted from Controller

to ES-1(src).
T2. ES-1(src)’s Profile Extractor extracts profile, and sends

it back to Controller.
T3. Controller determines the optimal migration.
T4. Controller notifies both AP-1 (i.e., ES-1) and AP-2 (i.e.,

ES-2) of its decision, which triggers containermigration.

The time complexity of both (T1) and (T4) depends on the
network delay, which is in the order of 10 ms in a typical
(W)LAN. By ignoring the effect of the background traffic and
the medium access control protocol, the time complexity of
both can be regarded as a constant. The time complexity of
(T2) is a function of the CPU clock speed of ES, which also
can be treated as a constant value. In the experiment, it took
less than a second on average. The remaining (T2) can be
further decomposed into the following three sub-tasks: (T2.1)
evaluating f (0), (T2.2) evaluating f (1), and (T2.3) evaluat-
ing argmin between f (0) and f (1), where ties are broken
arbitrarily. Each of the three sub-tasks is carried out in a
constant time. Also, since the number ofmigration techniques
to consider is fixed, the number of sub-tasks in (T2) is also
fixed. Thus, (T2) is carried out in a constant time.

VII. CONCLUSION
This paper has proposed three seamless, stateful migration
techniques for containerized services. Both FC and DC are
state duplication methods in that they transfer state to the
target edge server. On the other hand, LR is a state reproduc-
tion method that replays the command trace to build a con-
tainer with a consistent state. To capture the last-minute state
changes, i.e., the state changes that are not included in what
has been transmitted to the target edge server, this paper has
proposed a packet relay and buffer replay method. Then, this
paper has proposed a system design for an autonomous opti-
mal migration selection system. It chooses the optimal migra-
tion technique considering the characteristics of the appli-
cation to be migrated and the migration methods together.
The proposed optimal migration selection problem considers
both the migration time and the network load, and makes an
optimal decision according to the tunable weight parameter.
This paper has introduced implementation details on the three
migration techniques as well as the autonomous migration
system, and also carried out experiments. The results have
revealed that the change in bandwidth largely affects the
performance of DC. On the other hand, the performance of
LR depends mainly on the application property of the trace
replay time. As a result, it is found that both the characteristics
of migration techniques and the properties of the applications
to be migrated should be jointly considered when making a
decision on optimal migration.

REFERENCES
[1] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang,

‘‘A survey on the edge computing for the Internet of Things,’’ IEEE Access,
vol. 6, pp. 6900–6919, 2017, doi: 10.1109/ACCESS.2017.2778504.

[2] M.Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem, A. Siddiqa,
and I. Yaqoob, ‘‘Big IoT data analytics: Architecture, opportunities, and
open resource challenges,’’ IEEE Access, vol. 5, pp. 5247–5261, 2017, doi:
10.1109/ACCESS.2017.2689040.

[3] L. Zhao, J.Wang, J. Liu, and N. Kato, ‘‘Optimal edge resource allocation in
IoT-based smart cities,’’ IEEE Netw., vol. 33, no. 2, pp. 30–35, Mar. 2019,
doi: 10.1109/MNET.2019.1800221.

[4] K. Kumar and Y.-H. Lu, ‘‘Cloud computing for mobile users: Can
offloading computation save energy?’’ Computer, vol. 43, no. 4,
pp. 51–56, Apr. 2010, doi: 10.1109/MC.2010.98.

158088 VOLUME 9, 2021

http://dx.doi.org/10.1109/ACCESS.2017.2778504
http://dx.doi.org/10.1109/ACCESS.2017.2689040
http://dx.doi.org/10.1109/MNET.2019.1800221
http://dx.doi.org/10.1109/MC.2010.98


T. Kim et al.: Optimal Container Migration for Mobile Edge Computing

[5] AWS Auto Scaling. Accessed: Sep. 24, 2021. [Online]. Available:
https://aws.amazon.com/autoscaling/

[6] C. Puliafito, C. Vallati, E.Mingozzi, G.Merlino, F. Longo, andA. Puliafito,
‘‘Container migration in the fog: A performance evaluation,’’ Sensors,
vol. 19, no. 7, pp. 1–22, Mar. 2019, doi: 10.3390/s19071488.

[7] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, ‘‘Mobile edge computing:
A survey,’’ IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018,
doi: 10.1109/JIOT.2017.2750180.

[8] E. Ahmed, A. Gani, M. K. Khan, R. Buyya, and S. U. Khan, ‘‘Seamless
application execution in mobile cloud computing: Motivation, taxonomy,
and open challenges,’’ J. Netw. Comput. Appl., vol. 52, pp. 154–172,
Jun. 2015, doi: 10.1016/j.jnca.2015.03.001.

[9] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, ‘‘A survey on
mobile edge computing: The communication perspective,’’ IEEE Com-
mun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017, doi:
10.1109/COMST.2017.2745201.

[10] M. Satyanarayanan, ‘‘The emergence of edge computing,’’ Computer,
vol. 50, no. 1, pp. 30–39, 2017, doi: 10.1109/MC.2017.9.

[11] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016,
doi: 10.1109/JIOT.2016.2579198.

[12] W. Shi and S. Dustdar, ‘‘The promise of edge computing,’’ Computer,
vol. 49, no. 5, pp. 78–81, 2016, doi: 10.1109/MC.2016.145.

[13] K. Kaur, T. Dhand, N. Kumar, and S. Zeadally, ‘‘Container-as-a-service at
the edge: Trade-off between energy efficiency and service availability at
fog nano data centers,’’ IEEEWireless Commun., vol. 24, no. 3, pp. 48–56,
Jun. 2017, doi: 10.1109/MWC.2017.1600427.

[14] S. Wang, J. Xu, N. Zhang, and Y. Liu, ‘‘A survey on service migration in
mobile edge computing,’’ IEEE Access, vol. 6, pp. 23511–23528, 2018,
doi: 10.1109/ACCESS.2018.2828102.

[15] V. Prokhorenko and M. A. Babar, ‘‘Architectural resilience in cloud, fog
and edge systems: A survey,’’ IEEEAccess, vol. 8, pp. 28078–28095, 2020,
doi: 10.1109/ACCESS.2020.2971007.

[16] M. Gusev and S. Dustdar, ‘‘Going back to the roots—The evolution of edge
computing, an IoT perspective,’’ IEEE Internet Comput., vol. 22, no. 2,
pp. 5–15, Mar. 2018, doi: 10.1109/MIC.2018.022021657.

[17] Docker. Accessed: Aug. 5, 2021. [Online]. Available: https://www.
docker.com/

[18] K. Govindaraj and A. Artemenko, ‘‘Container live migration for latency
critical industrial applications on edge computing,’’ in Proc. IEEE 23rd
Int. Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2018, pp. 83–90.

[19] P. Saha and A. Beltre, ‘‘Evaluation of Docker containers for scientific
workloads in the cloud,’’ in Proc. ACM PEARC, Pittsburgh, PA, USA,
2018, pp. 1–8, doi: 10.1145/3219104.3229280.

[20] Checkpoint/Restore in Userspace. CRIU. Accessed: Aug. 11, 2021.
[Online]. Available: https://criu.org/

[21] P. Karhula, J. Janak, and H. Schulzrinne, ‘‘Checkpointing and migration
of IoT edge functions,’’ in Proc. 2nd Int. Workshop Edge Syst., Analytics
Netw. (EdgeSys), 2019, pp. 60–65, doi: 10.1145/3301418.3313947.

[22] S. Nadgowda, S. Suneja, N. Bila, and C. Isci, ‘‘Voyager: Complete con-
tainer state migration,’’ inProc. IEEE 37th Int. Conf. Distrib. Comput. Syst.
(ICDCS), Jun. 2017, pp. 2137–2142, doi: 10.1109/ICDCS.2017.91.

[23] C. Dupont, R. Giaffreda, and L. Capra, ‘‘Edge computing in IoT
context: Horizontal and vertical Linux container migration,’’ in Proc.
Global Internet Things Summit (GIoTS), Jun. 2017, pp. 1–4, doi:
10.1109/GIOTS.2017.8016218.

[24] Kubernetes. Accessed: Aug. 11, 2021. [Online]. Available: https://
kubernetes.io/

[25] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P.Merle, ‘‘Autonomic vertical
elasticity of Docker containers with ELASTICDOCKER,’’ in Proc. IEEE
10th Int. Conf. Cloud Comput. (CLOUD), Jun. 2017, pp. 472–479.

[26] L. Ma, S. Yi, N. Carter, and Q. Li, ‘‘Efficient live migration of edge
services leveraging container layered storage,’’ IEEE Trans. Mobile
Comput., vol. 18, no. 9, pp. 2020–2033, Sep. 2019, doi: 10.1109/
TMC.2018.2871842.

[27] L. Ma, S. Yi, and Q. Li, ‘‘Efficient service handoff across edge servers
via Docker container migration,’’ in Proc. 2nd ACM/IEEE Symp. Edge
Comput., Oct. 2017, pp. 1–13.

[28] C. Yu and F. Huan, ‘‘Live migration of Docker containers through logging
and replay,’’ in Proc. 3rd Int. Conf. Mechatronics Ind. Informat., 2015,
pp. 623–626.

[29] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, ‘‘Live migration of virtual
machine based on full system trace and replay,’’ in Proc. 18th ACM Int.
Symp. High Perform. Distrib. Comput. (HPDC), 2009, pp. 101–110.

[30] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott, ‘‘Consolidate
IoT edge computing with lightweight virtualization,’’ IEEE Netw., vol. 32,
no. 1, pp. 102–111, Jan. 2018, doi: 10.1109/MNET.2018.1700175.

[31] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, ‘‘Migration mod-
eling and learning algorithms for containers in fog computing,’’ IEEE
Trans. Services Comput., vol. 12, no. 5, pp. 712–725, Sep. 2019, doi:
10.1109/TSC.2018.2827070.

[32] Linux Containers. Canonical. Accessed: Aug. 11, 2021. [Online]. Avail-
able: https://linuxcontainers.org/

[33] Open Source Container-Based Virtualization for Linux. Virtuozzo.
Accessed: Aug. 11, 2021. [Online]. Available: https://openvz.org/

[34] Containerization Software Market Share. Datanyze. Accessed:
Aug. 11, 2021. [Online]. Available: https://www.datanyze.com/market-
share/containerization--321

[35] R. Morabito, ‘‘Virtualization on Internet of Things edge devices with
container technologies: A performance evaluation,’’ IEEE Access, vol. 5,
pp. 8835–8850, 2017, doi: 10.1109/ACCESS.2017.2704444.

[36] O. Oleghe, ‘‘Container placement and migration in edge computing: Con-
cept and scheduling models,’’ IEEE Access, vol. 9, pp. 68028–68043,
2021, doi: 10.1109/ACCESS.2021.3077550.

[37] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, ‘‘An updated per-
formance comparison of virtual machines and Linux containers,’’ in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Mar. 2015,
pp. 171–172.

[38] Docker Storage Drivers. Accessed: Aug. 12, 2021. [Online]. Available:
https://docs.docker.com/storage/storagedriver/select-storage-driver/

[39] Docker Checkpoint. Accessed: Aug. 12, 2021. [Online]. Available:
https://docs.docker.com/engine/reference/commandline/checkpoint/

[40] A. Mishra, M. Shin, and W. Arbaugh, ‘‘An empirical analysis of the
IEEE 802.11 MAC layer handoff process,’’ ACM Comput. Commun. Rev.,
vol. 33, pp. 93–102, Apr. 2003, doi: 10.1145/956981.956990.

[41] Runtime Options With Memory, CPUs, and GPUs. Accessed:
Sep. 24, 2021. [Online]. Available: https://docs.docker.com/config/
containers/resource_constraints

[42] J. Hang, D. Zhang, P. Chen, J. Zhang, and B.Wang, ‘‘Classification of plant
leaf diseases based on improved convolutional neural network,’’ Sensors,
vol. 19, no. 19, pp. 1–14, Sep. 2019, doi: 10.3390/s19194161.

[43] F. Chollet. (Jun. 2016). Building Powerful Image Classification Models
Using Very Little Data. The Keras Blog. Accessed: Aug. Sep. 9, 2021.
[Online]. Available: https://blog.keras.io/building-powerful-image-
classification-models-using-very-little-data.html

[44] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy, ‘‘Bandwidth estimation:
Metrics, measurement techniques, and tools,’’ IEEE Netw., vol. 17, no. 6,
pp. 27–35, Nov. 2003, doi: 10.1109/MNET.2003.1248658.

[45] R. E. Davis, D. A. Kendrick, and M. Weitzman, ‘‘A branch-and-bound
algorithm for zero-one mixed integer programming problems,’’ Oper-
ations Res., vol. 19, no. 4, pp. 1036–1044, Aug. 1971, doi: 10.1287/
opre.19.4.1036.

[46] Linux Traffic Control. Accessed: Aug. 23, 2021. [Online]. Available:
https://man7.org/linux/ man-pages/man8/tc.8.html

[47] M. Chen and Y. Hao, ‘‘Task offloading for mobile edge computing in
software defined ultra-dense network,’’ IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018, doi: 10.1109/JSAC.2018.2815360.

[48] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W.Wu, and X. S. Shen, ‘‘TOFFEE:
Task offloading and frequency scaling for energy efficiency of mobile
devices in mobile edge computing,’’ IEEE Trans. Cloud Comput., early
access, Jun. 20, 2019, doi: 10.1109/TCC.2019.2923692.

TAEWOON KIM (Member, IEEE) received the
B.S. degree in computer science and engineer-
ing from Pusan National University, Republic of
Korea, in 2008, theM.S. degree in information and
mechatronics from the Gwangju Institute of Sci-
ence and Technology, Republic of Korea, in 2010,
and the Ph.D. degree in computer engineering
from Iowa State University, Ames, IA, USA,
in 2018. He is currently an Assistant Professor
with the School of Software, Hallym University,

Republic of Korea. From 2010 to 2013, he was a Research Engineer with
the Telecommunications Technology Association, Republic of Korea. His
research interests include modeling, optimization and protocol design for
wireless networking systems, such asWLAN, IoT/sensor networks, HetNets,
and C-RANs.

VOLUME 9, 2021 158089

http://dx.doi.org/10.3390/s19071488
http://dx.doi.org/10.1109/JIOT.2017.2750180
http://dx.doi.org/10.1016/j.jnca.2015.03.001
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/MC.2017.9
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/MC.2016.145
http://dx.doi.org/10.1109/MWC.2017.1600427
http://dx.doi.org/10.1109/ACCESS.2018.2828102
http://dx.doi.org/10.1109/ACCESS.2020.2971007
http://dx.doi.org/10.1109/MIC.2018.022021657
http://dx.doi.org/10.1145/3219104.3229280
http://dx.doi.org/10.1145/3301418.3313947
http://dx.doi.org/10.1109/ICDCS.2017.91
http://dx.doi.org/10.1109/GIOTS.2017.8016218
http://dx.doi.org/10.1109/TMC.2018.2871842
http://dx.doi.org/10.1109/TMC.2018.2871842
http://dx.doi.org/10.1109/MNET.2018.1700175
http://dx.doi.org/10.1109/TSC.2018.2827070
http://dx.doi.org/10.1109/ACCESS.2017.2704444
http://dx.doi.org/10.1109/ACCESS.2021.3077550
http://dx.doi.org/10.1145/956981.956990
http://dx.doi.org/10.3390/s19194161
http://dx.doi.org/10.1109/MNET.2003.1248658
http://dx.doi.org/10.1287/opre.19.4.1036
http://dx.doi.org/10.1287/opre.19.4.1036
http://dx.doi.org/10.1109/JSAC.2018.2815360
http://dx.doi.org/10.1109/TCC.2019.2923692


T. Kim et al.: Optimal Container Migration for Mobile Edge Computing

MOTASSEM AL-TARAZI (Member, IEEE)
received the Ph.D. degree from the Computer
Science Department, Iowa State University. He is
currently an Assistant Professor of practice
with the School of Computing, University of
Nebraska-Lincoln. His research interests include
cloud computing, edge computing, fog computing
and energy efficiency. He is a member of ACM.

JENN-WEI LIN received the M.S. degree
in computer and information science from
the National Chiao Tung University, Hsinchu,
Taiwan, in 1993, and the Ph.D. degree in electrical
engineering from the National Taiwan University,
Taipei, Taiwan, in 1999. He was a Researcher
at Chunghwa Telecom Company Ltd., Taoyuan,
Taiwan, from 1993 to 2001. He is currently a
Full Professor with the Department of Computer
Science and Information Engineering, Fu Jen

Catholic University, Taiwan. His current research interests include cloud
computing, mobile computing and networks, distributed systems, and
fault-tolerant computing.

WOOYEOL CHOI (Member, IEEE) received the
B.S. degree from the Department of Computer
Science and Engineering, Pusan National Uni-
versity, Busan, South Korea, in 2008, and the
M.S. and Ph.D. degrees from the School of Infor-
mation and Communications, Gwangju Institute
of Science and Technology (GIST), Gwangju,
South Korea, in 2010 and 2015, respectively.
From 2015 to 2017, he was a Senior Research
Scientist with the Korea Institute of Ocean Sci-

ence and Technology (KIOST), Ansan, South Korea. From 2017 to 2018,
he was a Senior Researcher with the Korea Aerospace Research Insti-
tute (KARI), Daejeon, South Korea. He is currently an Assistant Profes-
sor with the Department of Computer Engineering, Chosun University,
Gwangju. His research interests include cross-layer protocol design, deep
learning-based resource optimization, and experiment-driven evaluation of
wireless networks.

158090 VOLUME 9, 2021


