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ABSTRACT High-resolution temperature forecasting can often prove to be challenging for conventional
machine learning models as temperature is highly seasonal and varies with the time of the year as well as
with passing hours of the day. In most cases, only the daily extremes or mean temperatures are provided
by temperature forecasting methods. However, with the growing availability of data and the development
of deep neural networks (DNNs) capable of detecting complex relationships, high-resolution temperature
forecasting is becoming easier. Typically, historical temperature data along with multiple meteorological
sensor data is used for temperature forecasting which increases the complexity of the system making it
harder and costlier to implement physically. In this paper, high-resolution hourly temperature forecasting
is performed using only historical temperature data. The paper presents a comparative analysis among
four popular DNNs- simple recurrent neural network (SRN), gated recurrent unit (GRU), long-short term
memory (LSTM), convolutional neural network (CNN), and two hybrid models- CNN-LSTM parallel
network and GRU-LSTM parallel network trained on Beijing temperature dataset. Experimental results
showed GRU-LSTM parallel network obtained the lowest RMSE (1.691◦ C) whereas CNN has the best
computational efficiency obtaining a slightly worse RMSE (1.759◦ C). Additionally, a robustness analysis is
performed on temperature data from four additional geographically diverse locations (Toronto, Las Vegas,
Seattle, and Dallas) which reveals GRU to be the most consistent algorithm. Finally, the paper establishes
a correlation between the model performance and the dataset based on their variance and mean absolute
deviation with reference to the training dataset.

INDEX TERMS Deep neural network, CNN, LSTM, CNN-LSTM parallel, temperature forecasting, GRU,
RNN, GRU-LSTM parallel, robustness.

I. INTRODUCTION
Temperature forecasting is one of the most consistent areas of
research owning to its direct impact on utility demand, living
conditions, agriculture, and various industries. Temperature
has a high correlation to electric load demand in particu-
lar and therefore, temperature forecast is a prerequisite for
many load forecasting schemes. These forecasts are usually
provided by weathers stations in many countries, but often
only predict the daily extremes (maximum and minimum)
or average temperatures. Moreover, it does not specify what
time of the day this maximum or minimum will occur. The
extreme temperatures only help to predict the peak load;
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however, with the growing availability of data, higher reso-
lution temperature predictions can be made which will aid
utilities with the scheduling, supply operation and preparation
for sudden load change to a great extent. In this regard, hourly
forecast of temperature is an important feature that can further
improve the prediction horizon of many other applications.

To better schedule the generation scheme and avoid
under-generation or overgeneration, many utilities require
hourly temperature data for short-term load forecasting
(STLF) [1]. A significant percentage of electric demand
comes from heating, ventilation and air conditioning (HVAC)
which consumes more than 40% of a building’s power on
average [2]. HVAC is highly temperature-dependent, and
STLF such as 1 hour ahead (h ahead), 2h ahead and 3h ahead
can be crucial for preparing the HVAC systems to adapt to
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the change of load and enhance the operational safety of the
electric network.

Zhao and Liu [3] proposed a hybrid PLS-SVM model that
takes into account meteorological parameters and historical
data to perform up to 3h ahead and 24h ahead load forecast-
ing to optimize HVAC operations. The authors showed that
accuracy of the hourly temperature forecast directly affects
the proposed model. Higher resolution such as 1h ahead,
2h ahead and 3h ahead temperature forecasts yield higher
accuracy for the load forecasting model compared to using
daily extreme temperature forecasts. Hourly temperature data
is also required to analyze test reference years (TRYs) and
design summer years (DSYs) for energy use, to calculate
plant sizing, and to simulate building performance during hot
summers [4].

Shao and Lister [5] proposed a model which predicts
the hourly road surface temperature and state (wet/ice/dry)
using meteorological data from seven countries. This model
is a short-term model that predicts up to 3h ahead which
integrates an hourly temperature forecasting scheme as a
prerequisite feature for the next stage of the proposed fore-
casting model. A similar study by Bogren and Gustavsson [6]
used hourly air temperature forecast to predict the road sur-
face temperature. In agriculture, Kim et al. [7] used hourly
air temperature forecasts to estimate the duration of leaf
hydration retainability. Hourly temperature can even affect
biological parameters, such as the mortality burden of hourly
temperature variability which was studied extensively [8].
Another significant application of hourly temperature fore-
casting is in photovoltaic (PV) generation. For seamless grid
integration, predicting hourly fluctuations in PV generation
is crucial. Since the output of a PV system is a function of
temperature, hourly temperature forecasts are a prerequisite
in the solar industry.

So, there are a plethora of applications for hourly tem-
perature forecasting. After addressing the necessity of high
resolution hourly forecasts, the discussion proceeds to assess
the hourly forecast techniques that have been used so far as
well as the state-of-the-art regarding this topic.

II. TEMPERATURE FORECASTING METHODS
Weather forecasting mainly takes one of three routes- tra-
ditional physics-based, statistical and NN or DNN models.
This section briefly explores the different techniques, their
advantages and drawbacks.

A. PHYSICS BASED MODELS
Physics-based weather forecasting is the traditional method
and is still used by a number of public weather forecast
providers. These methods mainly take into account physi-
cal parameters like solar irradiance, wind speed, humidity,
precipitation, cloud covers, etc. and use theoretical formulae
to calculate the future temperature. Zhao and Liu [3] pre-
sented a purely physics-based temperature forecasting model
to determine the temperature which is a prerequisite for the
load forecasting part of their study. The study used a heat

conduction equation that assessed parameters such as heat
capacity, conductivity, current temperature, surface albedo,
solar irradiance, net longwave irradiance, ground conduc-
tive heat flux density, sensible and latent heat flux densi-
ties to derive the road surface temperature. Physics-based
models require sensor measurements from multiple sources
to compute the temperature; moreover, these values vary
significantly across different locations. These models tend to
work better for daily temperature forecasting rather than short
horizon predictions.

B. STATISTICAL MODELS
Mathematical models started gaining momentum around the
1990s. Since the temperature forecasts at that time only pro-
vided maximum and minimum temperature without speci-
fying what time of the day it will occur, the hourly electric
load curve had to be generated through interpolation of the
two extremes. Data-driven weather forecasting models are
built using different statistical and machine learning algo-
rithms. Such models can significantly decrease the setup
cost by trading off more historical data for additional sensor
data. However, these models may require extensive historical
data to yield good accuracy. Recently, with the increased
availability of precise data, data-driven models for weather
forecasting have gained popularity and are actively being
studied. Statistical models such as, autoregressive integrated
moving average (ARIMA) use time-series analysis to predict
long-term change in data like daily and monthly time hori-
zons [9]. ARIMA is one of the most common linear statistical
techniques and a form of regression analysis used in time
series forecasting. The auto-regressive component of ARIMA
regresses some of the lagged data, then integration is per-
formed to make the data stationary, and the moving-average
incorporates preceding error terms from a moving average
model applied to lagged observations. One of the biggest
drawbacks of ARIMA is that it is negatively affected by sea-
sonality, and temperature is a highly seasonal dataset. If sta-
tionarity is not confirmed in a trend, computation throughout
the whole process might not be accurate [10]. So ARIMAs
are not the best choice for temperature forecasting.

C. NEURAL NETWORK MODELS
In recent times, NN models have become increasingly pop-
ular specially for short-term predictions such as hourly
and daily time horizons compared to long-term predictions
achieved through statistical models. Existing research mostly
focus on temperature forecasting using consistent time unit
data where both the input and target data are of the same time
unit, for example, using daily input data to forecast day-ahead
temperature. However, with the increased availability of high-
resolution data, and continued development of processing
units, it is now possible to predict a time frame of different
duration compared to the input. Both hourly and daily pat-
terns can be employed to forecast daily temperatures, but as
the data is abundant and detailed, it is essential to process
them efficiently and accurately. With the correct models,
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TABLE 1. Literature on temperature forecasting using statistical and neural network models.

hourly temperature data can even be used to predict the hourly
temperature of the next day to a limit before the errors become
too significant. In this context, NN models have powerful
versatility to process large amounts of more detailed data,
which this paper aims to present.

Existing research on temperature forecasting using statisti-
cal and NNs are tabulated in Table 1. It can be observed that,
earlier versions of temperature forecasting use different sta-
tistical models such as MLP, ARIMA or modified ARIMAs.
Some of these papers include hourly temperature forecast-
ing as the prerequisite of a load forecasting model [12].
More recent works started adopting NNs and DNNs that
yield higher accuracy compared to statistical models, which
is discussed in [18]. However, most of these papers use
NNs to predict daily extremes and average [19]. To the
best of the authors knowledge, only one forecasting model

predicts hourly horizon using DNN, achieving an hourly
average RMSE value of 2.10 using their proposed convLSTM
model tested on a temperature dataset of Germany. However,
it uses five meteorological parameters as input. This not only
increases computation cost, but requires expensive sensor
data as well [18]. Univariate regression using NNs can mit-
igate this drawback. In addition, temperature patterns differ
significantly based on geographical location, so it will be
interesting to observe how DNNs trained on a local tempera-
ture pattern performs on a different region. It is apparent that
a study comparing the performance of the most recent DNNs
for hourly temperature forecasting, taking into account spatial
diversity (local and geographically diverse) and robustness is
yet to be explored.

This study intends to address the existing research gap and
make the following significant contributions:
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• Comparative analysis for hourly temperature forecasting
using four of the most popular DNNs (SRN, LSTM,
GRU, CNN) and two hybrid DNNs (CNN-LSTM par-
allel, GRU-LSTM parallel), with univariate time series
data.

• Comparison of hour-by-hour prediction and single run
prediction. In addition, explore the effect of normaliza-
tion of input data.

• A robustness analysis to check if the DNNs perform
similarly for four different regions and input patterns,
thus grading their ability to generalize.

• Correlation between model performance and different
input patterns based on variance and mean absolute
deviation (MAD) of the dataset.

The outcome of this study will be especially helpful
to determine which DNN might perform best for applica-
tions that require hourly temperature forecasting, particularly
load forecasting along with other applications mentioned in
Section I. The rest of the paper is organized as follows-
Section III gives a mathematical and illustrated overview
of the DNNs considered in this study. Section IV breaks
down the methodology and implementation of the models.
Section V presents the outcome of the comparative analy-
sis and Section VI discusses the robustness analysis of the
models along with its correlation to different parameters of
a dataset. Finally, Section VII concludes the paper with an
indication of future scopes.

III. FORECASTING ARCHITECTURE
A. SIMPLE RECURRENT NEURAL NETWORK (SRN)
Conventional feed-forward NNs are ineffective for prediction
using sequential data because it assumes all the units of input
vector to be independent of time [21]. RNNs differ from
conventional feed-forward NNs as they are sequence-based
models that allow the learning of time-based dependencies.
RNNs have the ability to create temporal correlation from
past data with the present state [22]. RNN allows the signal to
move forward and backward, and can make a loop in the NN.
Thus RNNs work specially well on sequential data where the
decision made at the previous time step (t − 1) is preserved
and utilized on the decision made at the current time step t .
SRN is the simplest form of RNN that takes two inputs-
current state xt at time t and previous hidden state ht−1, and
updates the values by a non-linear activation function. The
recurrent unit has a single hyperbolic tangent (tanh) layer.
The repeating module of SRN [23] can be expressed by the
following equation-

ht = tanh (wc · [ht−1, xt ]+ b) (1)

where ht is the hidden neuron at time t , ot is the output vector
and b is the bias value.
Figure 1 illustrates a basic SRN unit. The main drawback

of SRN is that it sometimes fails to converge to the optimum
minima due to its vanishing gradient problem that might
arise during back propagation [24]. So over the course of

FIGURE 1. Structure of a simple RNN (SRN) cell.

time, multiple modified versions of RNN have been pro-
posed, some of which have become very popular such as
LSTM and GRU.

B. LONG SHORT TERM MEMORY (LSTM)
LSTM is a modified version of RNN first proposed by
Hochreiter and Schmidhuber [25] which was proposed to
mitigate the vanishing gradient problem of SRNs. LSTM
can store previous data in its memory unit and add/discard
information during the learning process. LSTM has proven to
be very effective for sequential data such as signals, protein
patterns, text data, time series forecasting etc. Instead of the
single hyperbolic tangent layer in the recurrent unit of SRN,
LSTM has four layers. The basic components of an LSTM
unit are- a memory cell and three gating units- input gate
(it ), output gate (ot ) and forget gate (ft ) which are shared
by all cells in the block. In total, there are three inputs and
two outputs. Each layer receives an input xt , previous hidden
layer state ht−1 and previous cell state ct−1. The hidden layer
derives a hidden state vector ht and the output cell state ct .
The purpose of the input gate is to determine if a cell ct
should be updated by xt or not, ft decides if the previous cell
ct−1 should be forgotten, and the output of ht depends on
ot to control which part of ct should be used. An activation
function normalizes the state of the gates, 0 indicating no
information flow and 1 indicating full flow of information
through the gate. The basic structure of an LSTM unit is
illustrated in Figure 2.

The nodal outputs of a LSTM network are computed as
follows [26]:

it = σ (Wi · [ht−1, xt ]+ bi) (2)

ft = σ
(
Wf ·

[
ht−1,xt

]
+ bf

)
(3)

C̃t = tanh
(
Wc ·

[
ht−1,xt

]
+ bc

)
(4)

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)

ot = σ (Wo · [ht−1, xt ])+ b0 (6)

ht = ot ∗ tanh (ct) (7)

where input variable at time step t is denoted by xt . ct and ht
are cell state and hidden state respectively. c̃t is referred to
as the candidate cell calculated in Eq.4 whose output through
the tanh function has a value between -1 and 1. Wf , Wi, Wc,
Wo denote different weight matrices for input vectors. The
σ represents the sigmoid activation function and ∗ symbol
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FIGURE 2. Structure of a basic long-short term memory (LSTM) cell.

denotes element-wise multiplication operation. Lastly, bi, bc,
bf and b0 refer to the bias values of the it , ct , ft and ot respec-
tively. C̃t stores the state information and is updated by Eq. 7.
Eq. 4 and 7 uses a hyperbolic tangent operator to calculate the
memory cell and ot . This enables the LSTM network to retain
the useful information across different timescales. LSTMwas
modified to avoid the vanishing gradient problem by allowing
gradients to flow unchanged. However, LSTM networks are
still vulnerable to the exploding gradient problem [27].

C. GATED RECURRENT UNIT (GRU)
Another popular modification of the RNN is the GRU pro-
posed by Cho et al. [28] with an aim to make the recur-
rent units adapt and capture the dependencies of different
timescales and sequences. The updatedmechanism allows the
GRU to capture long-term dependencies. A GRU unit encom-
passes two gates, the reset gate rt and the update gate zt .
The update gate is similar to the forget gate and input gate

FIGURE 3. Structure of a basic gated recurrent unit (GRU) cell.

in LSTM as it controls storing or erasing potential features
from the previous state that can be useful later. Meanwhile,
the reset gate controls the amount of information that should
be discarded. The reset gate mechanism helps the efficiency
of GRU model capacity by allowing it to reset features that
are detected to no longer be useful. The basic unit of a GRU
is illustrated in Figure 3.

The equations for the input and output of a GRUmodel are:

zt = σ (Wz · [ht−1, xt ]+ bz) (8)

rt = σ (Wr · [ht−1, xt ]+ br ) (9)

h̃t = tanh (Wh · [r ∗ ht−1, xt ]+ bh) (10)

ht = (1− zt ) ∗ ht−1 + zt ∗ ht (11)

where h̃t and ht are the candidate activation and hidden state
at time t, respectively. Wz, Wr , Wh are the weight matrices
of update gates, reset gates and hidden states respectively.
The ‘‘*’’ is used to express element-wise multiplication and
σ is the sigmoid activation function. GRU is an updated
version of LSTM that has two gating units that hold the
flow of information but it does not have a separate memory
cell. As LSTM contains 12 parameters for each separate
unit, a fully connected LSTM layer becomes computationally
costly to implement, thus GRUs improve the computational
efficiency by combining two LSTM gates (the input and
forget gates) into a single update gate [22] which might
compromise performance a little, but its improved training
time makes GRU faster than LSTM.

D. CONVOLUTIONAL NEURAL NETWORK (CNN)
CNN has become a standard, go-to model for computer
vision and image classification applications. CNNmodels are
capable of filtering and extracting complex patterns and fea-
tures from massive visual datasets (with ground-truth labels).
It works by automatically learning a large number of filters
in parallel specific to a training dataset and repeatedly apply-
ing the same filter to an input which results in activations
known as a feature map. The fundamental concept utilizes
the mathematical operator called convolution to transform
two functions into a single function. Convolution can be
performed on two functions at a time, but CNN is used up
to 4D spatio-temporal processing [29].

FIGURE 4. Structure of a general convolutional neural network.

However, there was uncertainty regarding how CNN will
perform on 1D time series data, specially when the dataset is
not sufficient [30]. In the particular case of a 1D convolutional
layer, 1D pooling layers are used to create CNNs for signal
analysis as well as time series analysis. The internal struc-
ture of CNN encompasses three layers- convolutional layer,
dense layer and pooling layer. The convolution layers perform
convolution operation with the help of linear activation to
extract the local features. The forward and back propagation
are detailed in the following equations [30]:

x lk = blk +
Nl−1∑
i=1

conv1D(wl−1ik , sl−1i ) (12)

where wl−1ik denotes the kernel between ith neuron at layer l-1
and the k th neuron at layer l. sl−1i is the output from the ith
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neuron at layer l − 1. x lk and b
l
k are the input and the bias of

the k th neuron at layer l, respectively. In order to perform 1D
convolution without zero padding, the conv1D(., .) function
was used. This implies that the dimension of sl−1i (output
arrays) are higher than the dimension of x lk (input arrays). The
intermediate output ylk is obtained by applying an activation
function f (.) on the input x lk using the following equation:

ykl = f (xkl ) and skl = ykl ↓ ss (13)

where ↓ ss denotes a down-sampling operation with a scalar
factor, ss [30]. Down-sampling of the feature map is per-
formed in this layer which reduces several values into one
value keeping the integrity of the input data unchanged [19].
The last layer is the dense layer which receives the flattened
data of the pooling stage and makes it a 1D output sequence.
An attractive feature of 1D CNN is that low-cost hardware
implementation is possible as 1D CNNs only perform 1D
convolutions, which is basically additions and scalar mul-
tiplications. A basic internal structure of CNN is shown in
Figure 4.

E. CNN-LSTM PARALLEL NETWORK
Hybrid CNN-LSTM networks are often configured in series,
where CNN is used to extract features from the input data and
subsequently, the output of the CNN is fed into the LSTM as
an input. Combining CNN and LSTM can make use of their
complementary characteristics such as, CNN being used for
feature extraction that expresses spatial locality and LSTM
being implemented for time series data analysis for tempo-
ral feature detection. However, an obvious query to series
CNN-LSTM configurations is, to what extent the accuracy
of the CNN model affects the training of the LSTM model.
To avoid this confusion completely, CNN-LSTM parallel
networks can be used where each NN will have its own path
without intersecting or affecting each other [31]. The LSTM
follows a conventional path and outputs a 1D array. For the
CNN path, the convolution layer and pooling layer outputs a
2D array.

FIGURE 5. Model structure of CNN-LSTM parallel network for
temperature forecasting.

However, it has to be ensured that the vector output of the
two paths are of the same dimension before they are added.
A flatten layer stacks the 2D output of the pooling layer into
a 1D array and the dense layer ensures equal number of ele-
ments from both the pathways. One significant drawback of
this network is the increased computational cost. The model

of CNN-LSTM parallel network considered in this study is
shown in Figure 5.

F. GRU-LSTM PARALLEL NETWORK
GRU-LSTM hybrid models have previously been proposed
for series configuration. To the best of our knowledge, we are
the first to implement a GRU-LSTMparallel network for time
series prediction. The series configuration was also trained,
but the parallel GRU-LSTM yielded better results which is
why it is considered for this study. The concept is similar
to that of CNN-LSTM; in order to avoid the output of one
network adding any bias to the output of another, the series
configuration was replaced with a parallel network where
each DNN has separate paths for training the data. GRU and
LSTM have a similar working mechanism, with GRU being
a little faster than LSTM as it has two gates where LSTM
has three. Combining the two models have shown promising
results.

FIGURE 6. Model structure of GRU-LSTM parallel network for
temperature forecasting.

Similar to CNN-LSTM parallel network, it has to be
ensured that the vector outputs of the two separate NN paths
are of the same size before summing them. The combined
output enters three dense layers to prepare the data for pre-
diction. The GRU-LSTM parallel network considered in our
study is illustrated in Figure 6.

IV. METHODOLOGY
Two different approaches were taken using the six DNNs to
perform regression-

1) Considering each hour of the prediction horizon (6h)
as an individual regression problem (hour-by-hour
prediction).

2) Considering the total prediction horizon (6h) as a single
regression problem (full prediction in single run), and

Both approaches are used to predict up to 6h ahead hourly
temperature. All six DNN models are evaluated using both
approaches. Additionally, the models are trained on data with
normalization and compared to the same models trained on
data without normalization to see how normalization affects
DNNs for univariate time series data. Finally, datasets from
four other regions are used to perform a robustness analysis of
DNNmodels. To increase the resolution of the data, a hopping
window of hop size equal to 1h is used to divide the data
into overlapping blocks of 30h each, for both train and test
sets. From each of these blocks, the first 24h is taken as the
input sequence and the remaining 6h is taken as the output
sequence. This approach is followed for the full prediction
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FIGURE 7. The train-test split considered for the Beijing hourly
temperature dataset.

in a single run. For the hour-by-hour case, the 6h prediction
horizon is considered as six individual regression problems,
while the 24h input is kept the same. The models are trained
on both normalized data and data without normalization to
compare the raw performance of the DNNs, and also observe
how normalization affects the performance of the models.

A. DATA COLLECTION
The temperature data is collected from a dataset uploaded
by Zhang S. et al. titled ‘‘Cautionary Tales on Air-Quality
Improvement in Beijing’’ [32]. The original data contained
various air quality readings from twelve nationally controlled
monitoring sites. From the whole dataset, the Aoti Zhongxin
area is taken for its relatively low number of missing values.
The Aoti Zhongxin is considered in this study to represent
overall Beijing temperature because of the low variation in
readings from other centers.

The dataset consisted of hourly temperature data from
2013-03-01 00:00:00 to 2017-02-28 23:00:00 giving us a
total of 35064 hourly readings. The dataset is at first sorted
according to datetime. There were 20 missing temperature
values and because of the relatively small size of the miss-
ing data, it is filled using the forward fill method instead
of other complex imputation methods. Then maintaining
the order, first 90% of the data is selected for training
from 2013-03-01 00:00:00 to 2016-10-04 18:00:00 and the
remaining is taken for testing from 2016-10-04 19:00:00 to
2017-02-28 23:00:00. The train-test split can be visualized
from Figure 7.

The dataset for the robustness analysis titled ‘‘Histori-
cal Hourly Weather Data 2012-2017’’ [33] contains 5 years
of high resolution (hourly measurements) temporal data of
various weather attributes from January 2012, 12:00:00 to
December 2017, 00:00:00, out of which the temperature data
is extracted. This data is available for 30 US and Canadian
cities. Toronto, Seattle, Dallas and Las Vegas were chosen
for the robustness analysis because of their considerably scat-
tered geographical locations so that the temporal data vary as
much as possible.

B. MODEL CONSTRUCTION AND HYPERPARAMETER
TUNING
Hyperparameter tuning is an important part of NN con-
struction, which is usually done through extensive trial and

TABLE 2. Model based hyperparameters of the considered DNNs.

error. A common practice is to use rule-of-thumb param-
eters or combinations that have previously performed well
for other papers. However, we have carefully chosen all the
hyperparameters after manually testing from a wide range
of values. A validation run is conducted for each model
to decide the hyperparameters for best performance and
fitting before training the final models. The train set is
split 90-10 for the validation run. The layer-based hyper-
parameters determined from this run, are provided in the
Table 2.

General parameters such as optimizer, learning rate and the
number of epochs are also important to improve the over-
all performance and speed of the models. Commonly used
optimizers include rootmean square propagation (RMSprop),
stochastic gradient descent (SGD), the adaptive gradient algo-
rithm (AdaGrad), and adaptive moment estimation (Adam).
In this paper, after the validation run, the Adam opti-
mizer is chosen which is computationally efficient and
showed slightly better results during testing. The batch size
of all the models is taken as 64 and the loss functions
considered are- mean square error (MSE), cosine similar-
ity (for full time single run) and MSE for hour-by-hour
prediction.

V. RESULT ANALYSIS
A. FORECASTING OUTCOMES
The trained models were used to predict hourly temperatures
up to 6h ahead. The prediction is carried out for hour-by-
hour basis as well as the whole time horizon in a single
run. The training and testing period has been mentioned
in section IV-A. It is observed that the models trained on
unnormalized data perform better than models trained on
normalized data, and so only the prediction graphs of models
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FIGURE 8. Workflow of modeling the considered deep neural networks.

trained on data without normalization are included in the
paper (Figure 9 to Figure 20). The error metrics values are
tabulated and RMSE is plotted for both with and without
normalization.

B. EVALUATION METRICS
The performance of the DNNs are evaluated in terms of
three error metrics. The error metrics taken into account
are the conventional root mean squared error (RMSE)
and mean average error (MAE) and additionally, the
coefficient of determination R2. The mathematical expres-
sions of the above error metrics are given as
follows:

RMSE =

√√√√1
n

n∑
i=1

(
Ft − At

)2
(14)

MAE =
1
n

n∑
i=1

|

(
Ft − At

)
| (15)

R2 = 1−

∑n
i=1

(
Ft − At

)2
∑n

i=1

(
Ft − Āt

)2 (16)

where n is the number of data in forecasted temperature,
Ft is the forecasted hourly temperature and At is the actual
temperature at instant i. For R2, Āt is the mean value of
the observations. The R2 value indicates how good a model
fits the dataset. The maximum value of R2 is 1, where val-
ues closer to 1 indicate higher prediction accuracy. RMSE
puts more emphasis on higher errors compared to the lower
ones. Lower values of RMSE and MAE indicate better
performance.

FIGURE 9. Curve of actual temperature and predicted results for
hour-by-hour prediction using SRN.

FIGURE 10. Curve of actual temperature and predicted results single run
prediction using SRN.

C. PERFORMANCE ASSESSMENT BASED ON EVALUATION
METRICS
The performance of the DNNs is assessed mainly based
on their RMSE values. The effect of normalization is also
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FIGURE 11. Curve of actual temperature and predicted results for
hour-by-hour prediction using LSTM.

FIGURE 12. Curve of actual temperature and predicted results for single
run prediction using LSTM.

FIGURE 13. Curve of actual temperature and predicted results for
hour-by-hour prediction using GRU.

observed. The error metrics values for models trained on
unnormalized data and models trained on normalized are
tabulated in Table 3 and Table 4, respectively. The following
observations can be extracted from the results:

1) OVERVIEW OF MODEL PERFORMANCE
It can be observed from Figure 21 that SRN had the highest
RMSE, followed by GRU and LSTM, which is expected.
LSTM is the modified version of SRN, and despite GRU
being proposed after LSTM, its main purpose is to reduce
computational cost while retaining accuracy as much as
possible. Thus, SRN (1.79 for hour-by-hour, 1.88 for full
time) and GRU (1.81, 1.79) showed the poorest performance.
LSTM (1.77, 1.77) performed slightly better than SRN and

FIGURE 14. Curve of actual temperature and predicted results for single
run prediction using GRU.

FIGURE 15. Curve of actual temperature and predicted results for
hour-by-hour prediction using CNN.

FIGURE 16. Curve of actual temperature and predicted results for single
run prediction using CNN.

GRU. This also reflects the previously mentioned claim that
LSTM is more suitable for detecting long-term dependencies
rather than high resolution short-term outputs. CNN per-
formed similar to LSTM in both hour-by-hour (1.77) and
full-time prediction (1.76) cases.

2) RNNs VS CNN FOR TIME SERIES FORECASTING
In general, RNNs (SRN, LSTM, GRU) are known to work
better on text classification whereas CNN is the standard
for image classification. According to literature, RNNs work
well with sequential data which makes it ideal for predicting
values in a sequence (such as time series) while CNN is
excellent for feature extractions. However, it can be observed
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FIGURE 17. Curve of actual temperature and predicted results for
hour-by-hour prediction using CNN-LSTM parallel network.

FIGURE 18. Curve of actual temperature and predicted results for single
run prediction using CNN-LSTM parallel network.

from Table 3 and Table 4 that they perform similarly on
univariate time series predictions. A deciding argument in
this regard can be the computation time. CNNs have a huge
advantage of being very fast compared to RNNs. In our study,
the CNN model ran 5 times faster than LSTM, 4 times faster
than GRU and twice as fast as SRN.

3) SINGULAR MODELS VS HYBRID MODELS
An interesting case is observed for the hybrid models
CNN-LSTM parallel and GRU-LSTM parallel network. Both
models outperformed single models for single-run predic-
tions, yet both showed the worst performance for hour-
by-hour predictions. GRU-LSTM exhibited the best RMSE
(1.69) for single run, but the second worst hour-by-hour
RMSE (1.9) out of all the DNNs. Similarly, CNN-LSTM
yielded the second best RMSE (1.74) for single run, and the
worst RMSE (2.2) for hour-by-hour prediction. The highly
inconsistent performance for the hybrid models, in hour-by-
hour prediction can be observed in the form of random spikes
in Figure 21 and Figure 22. However, it should be noted that
the hybrid models are computationally more expensive than
single models.

4) EFFECT OF NORMALIZATION
It is evident from Figure 21 and Figure 22 that the mod-
els trained with normalized data performed worse than the
models trained without normalization. In Figure 21, only
CNN-LSTM parallel network showed random spikes, but in

FIGURE 19. Curve of actual temperature and predicted results for
hour-by-hour prediction using GRU-LSTM parallel network.

FIGURE 20. Curve of actual temperature and predicted results for single
run prediction using GRU-LSTM parallel network.

the case of Figure 22, almost every model including SRN,
LSTM, GRU-LSTM and CNN-LSTM performed inconsis-
tently. Although normalized data are expected to yield good
results on time series forecasting using DNNs, it performed
poorly on temperature data.

5) COMPARISON WITH EXISTING WORKS
In Section II, only one paper was found to predict hourly
temperature using DNN. They have proposed a convLSTM
model which achieved an hourly average RMSE of 2.1◦ C on
a temperature dataset of Germany. Although all the models
included in this paper have achieved better RMSE (<2.1◦ C)
for single run prediction, our work cannot be conclusively
compared as the works are based on two different datasets.

To summarize this section, the following conclusions were
reached:

1) GRU-LSTM parallel network shows superior perfor-
mance out of all six models (for full time single run
prediction, with/without normalization).

2) All DNNs perform better on hourly temperature
data without normalization compared to data that is
normalized.

3) Full time single run predictions are preferable to hour-
by-hour predictions, as hour-by-hour exhibited random
spikes. Not to mention the obvious drawback, the hour-
by-hour run requires 6 times more computational cost
than single runs.
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TABLE 3. Evaluation metrics of the considered DNNs trained on Beijing data without normalization.

TABLE 4. Evaluation metrics of the considered DNNs trained on Beijing data with normalization.
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FIGURE 21. RMSE statistics for considered models trained on Beijing dataset without normalization.

FIGURE 22. RMSE statistics for considered models trained on Beijing dataset with normalization.

4) In terms of computational cost, CNN is much faster
than any other model while sustaining good perfor-
mance.

VI. ROBUSTNESS ANALYSIS
In section V, a conclusion is drawn from the performance
of the models by testing them on the same dataset as they
trained on. In this section, the robustness of the models are
analyzed by testing the models on new datasets from different
geographical locations having uncorrelated climatic charac-
teristics. The robustness is a model’s ability to generalize
trends and output satisfactory performance on different or
altered datasets. The previous three error metrics are com-
pared among different DNNs to assess their robustness in
each location.

Four cities from different geographical locations were
chosen for the robustness analysis, discussed in section IV.
The time period considered for the prediction is from

1 March 2013, 00:00:00 to 28 February 2017, 23:00:00 (same
as Beijing dataset). The result obtained from the predic-
tions are summarized in Table 5. The models were run with
both normalization and without normalization, also hour-by-
hour and single-run approaches. Similar to the previous case,
models without normalization in a single run yielded better
results, so the discussion will be limited to this. To grasp the
changes easier, the comparative RMSE of the DNN models
is illustrated in Figure 23.

Figure 23 depicts that all the models performed satisfacto-
rily on untrained, unrelated datasets from different locations.
The RMSE of all the models did increase, but the increase is
comparatively low, indicating a model’s robustness and relia-
bility. FromTable 5, it can be observed that GRUhas achieved
the lowest average RMSE (2.0042◦ C), which indicates that
GRU is the most robust DNN.

To draw a correlation between a model’s performance and
different types of temperature datasets from different regions,

VOLUME 9, 2021 160657



E. Haque et al.: Comparative Analysis of Deep Neural Networks for Hourly Temperature Forecasting

TABLE 5. Robustness analysis of considered DNNs evaluated on four different geographical locations.

FIGURE 23. RMSE statistics for models evaluated on four different
geographical locations.

various parameters were initially considered, such as distri-
bution plot, autocorrelation function (ACF), partial autocor-
relation function (PACF), variance, mean absolute deviation
(MAD), etc. These parameters did not have any apparent
correlation, except the variance and MAD which showed a
negative correlation with model performance. Finally, it is
observed that the model performance on different datasets is
best explained by the product of the variance and MAD.

Table 6 lists the MAD and variance values of the datasets.
It indicates that the RMSE value has a positive correlation
with the variance and the MAD value of a particular dataset.
The MAD value is calculated keeping the Beijing data as a
point of reference. Initially, only the variance was considered
to draw a correlation. Higher variance in the data caused the
models to perform poorly. However, Toronto is an exception
where the models performed better despite encountering a
very high variance. This can be explained by the second
parameter, MAD. Toronto has the lowest MAD value among

TABLE 6. Variance and MAD of the considered geographical locations.

FIGURE 24. Correlation between model performance and MAD*variance.

the four regions. So, the best fit for correlating the model
performance with the type of regional temperature dataset
are considered as the product of the variance and MAD
values. The RMSE of all six models are plotted against the
MAD∗variance in Figure 24.

Figure 24 illustrates that LSTM,GRU, CNN, CNN-LSTM,
GRU-LSTM all perform worse as the MAD*variance
increases indicated by the upward trend of the RMSE values
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(except SRN which produced an outlier). Another important
point to note is that, for Seattle, all the models have yielded
a lower RMSE value compared to Beijing, as it has a lower
variance. This implies that the models are able to achieve a
degree of generality. On the other hand, the specificity of
the models can be understood from the positive correlation
of RMSE to the MAD value. This opens the scope of using
transfer learning for datasets that have little correlation to the
dataset models were trained on.

VII. CONCLUSION
This study has carried out a comparative analysis on six
DNN models to observe which performs the best for
high-resolution hourly temperature forecasting on Beijing
temperature data. The study has also presented an in-depth
robustness analysis to see the change in performance param-
eters of these DNNs when tested on a geographically diverse
dataset. The comparative analysis has revealed GRU-LSTM
parallel network to provide the best performance when tested
on the Beijing data at 1.691◦ CRMSE. CNNon the other hand
performs slightly worse at 1.759 ◦ C RMSE ranking 3rd in
terms of accuracy but has by far the best computational time.
The study has also found out that single-run models are better
and more consistent for prediction instead of single-point
regression models. The comparative analysis further revealed
that the models perform poorly on normalized temperature
data which is unusual as neural network models generally
tend to perform better on normalized data. In short, this study
aimed to act as a benchmark for high-resolution temperature
forecasting with only historical temperature data using neural
nets that yield sufficient accuracy and are computationally
inexpensive.

From the robustness analysis, the study was able to map
a correlation between model performance and the product of
MAD and variance of the dataset. It was further found that
the GRU-based model was able to generalize the most over
various geographical locations although it performed poorly
on Beijing data. This was explained by the high variability
of temperature data across the globe. To perform well on
temperature data of a particular location, the models had to
trade off robustness for a certain level of specificity. This
has indicated a future scope of work where transfer learning
can be adopted so that models trained on one dataset can
perform well on new data with little correlation with the
previous dataset. Moreover, this study can be incorporated
with research on embedded systems equipped with artificial
intelligence processing capabilities to be used in the future to
implement portable, compact devices for on-spot temperature
forecasting.
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