IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received November 8, 2021, accepted November 23, 2021, date of publication November 30, 2021,

date of current version December 10, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3131396

Low Latency Deep Learning Inference Model for
Distributed Intelligent loT Edge Clusters

SOUMYALATHA NAVEEN"1, (Student Member, IEEE),
MANJUNATH R. KOUNTE 2, (Senior Member, IEEE),

AND MOHAMMED RIYAZ AHMED 3, (Senior Member, IEEE)

ISchool of Computer Science and Engineering, REVA University, Bengaluru, Karnataka 560064, India
2School of Electronics and Communication Engineering, REVA University, Bengaluru, Karnataka 560064, India

3School of Multidisciplinary Studies, REVA University, Bengaluru, Karnataka 560064, India

Corresponding author: Soumyalatha Naveen (soumyanaveen.u@ gmail.com)

ABSTRACT Edge computing is a new paradigm enabling intelligent applications for the Internet of
Things (IoT) using mobile, low-cost IoT devices embedded with data analytics. Due to the resource lim-
itations of Internet of Things devices, it is essential to use these resources optimally. Therefore, intelligence
needs to be applied through an efficient deep learning model to optimize resources like memory, power, and
computational ability. In addition, intelligent edge computing is essential for real-time applications requiring
end-to-end delay or response time within a few seconds. We propose decentralized heterogeneous edge
clusters deployed with an optimized pre-trained yolov2 model. In our model, the weights have been pruned
and then split into fused layers and distributed to edge devices for processing. Later the gateway device
merges the partial results from each edge device to obtain the processed output. We deploy a convolutional
neural network (CNN) on resource-constraint [oT devices to make them intelligent and realistic. Evaluation
was done by deploying the proposed model on five IoT edge devices and a gateway device enabled with
hardware accelerator. The evaluation of our proposed model shows significant improvement in terms of
communication size and inference latency. Compared to DeepThings for 5 x 5 fused layer partitioning for
five devices, our proposed model reduces communication size by ~ 14.4% and inference latency by ~16%.

INDEX TERMS Convolutional neural network, deep learning, distributed intelligence, edge computing, fog

computing, heterogeneous devices, inference model, IoT clusters, low latency.

I. INTRODUCTION
Convergence of IoT with deep learning facilitates uninter-
rupted service for daily life and industrial applications that
use communication technologies and advanced data analyt-
ics. However, the massive amount of data generated by these
devices are processed in the cloud infrastructure. Since cloud
computing is plagued with issues like long transmission time,
demand for more bandwidth, latency between IoT devices
and the cloud, Edge computing has been introduced. This
paradigm helps for real-time predictions and improves scal-
ability, latency, and privacy by processing the data locally at
the source.

Across the globe, billions of cameras capture images
and videos every day, which constitute Big data. Cloud

The associate editor coordinating the review of this manuscript and

approving it for publication was Eyhab Al-Masri

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

infrastructure stores and processes these data using Intelli-
gent image/video analytics to generate actionable insights.
Figure 1 depicts one of the mission-critical applications of
‘Geriatric Care’. Unfortunately, due to lack of mobility and
proper balance, many elderly fall and succumb to death.
While ‘Fall’ seems to be the primary reason, the fatality is
due to the inability to recover from the fall, which leads to
poor physical and cognitive conditions. Most of the literature
supports the fact that if the elderly are attended within seven
minutes of the fall and can recover, the physical consequences
(such as brain injuries) following the fall can be avoided [1],
thereby reducing morbidity and mortality among the ageing
population. One can propose to incorporate a camera-based
monitoring system for fall detection. However, capturing the
images continuously, classifying them into normal (sleep)
and abnormal(fall) positions, and raising the alarm in emer-
gency need intelligent video analytics [2] within no time.

160607

https://orcid.org/0000-0001-9552-3047
https://orcid.org/0000-0002-2432-2552
https://orcid.org/0000-0002-6061-6937
https://orcid.org/0000-0002-5163-6792

IEEE Access

S. Naveen et al.: Low Latency Deep Learning Inference Model for Distributed Intelligent loT Edge Clusters

Data acquisition and Processing

Physical Layer (Sensor Layer) 1

L <

K ks

Edge Devices - Camera

Ultra reliable low latency
Application such asSmart healthcare

Insights

A
5

; Analytics, Alerts, Visualization

Intelligence Layer

Pre-trained deep learning
models

FIGURE 1. Illustration of ‘Geriatric care’ a time-critical application of 1oT deployment. Edge computing strategy overview where the edge
server is equipped with pre-trained DL models to identify the abnormal sleeping position (fall detection) with the least latency and high
accuracy. The computing is independent of the cloud to avoid associated transmission delays.

We cannot afford to wait for the cloud to take care of such
a huge data processing load in real-time. Cameras act as
IoT devices that record data, process it, and deliver valuable
insights on-site rather than sending it to the cloud, to reduce
response time and latency. Processing such sensitive and per-
sonal data locally at the edge also satisfies privacy concerns.

The CAGR Edge computing market analysis report [3]
estimates that the edge computing market is expected to reach
USD 43.4 billion by 2027 due to numerous applications’
growth of technologies such as 5G and data analytics. The
unprecedented demand for smart edge devices has driven the
industry to innovate and implement intelligent edge architec-
tures for real-time, mission-critical applications which deal
with large heterogeneous devices.

Any machine is intelligent if it mimics human behaviour
such as perception, attention, cognition, and decision making.
After a few winters of Al, machine learning [4] has brought
momentum, and the proliferation of intelligent devices is
driven via deep learning [5]. A convolution neural network
is a deep learning algorithm widely used in computer vision,
augmented reality, and virtual reality applications to process
and classify images. An intelligent edge device is capable of
handling data analytics via deep learning algorithms embed-
ded in it. With Edge Intelligence [6], the aim is to push
information processing load from the traditional cloud to
edge devices to make them suitable for real-time applications.

Among all the deep learning models, CNN stands as a
promising candidate for intelligent video analytics. Though
there are many reasons for its massive adoption, the huge
popularity can be owed to its ability to learn features without
any human intervention and computational efficiency. As a
result, many frameworks are being studied for the implemen-
tation of CNN. Among all the object detection algorithms,
YOLO is the most preferred framework for object detection
as it understands generalized object representation by looking
only once [7]. This feature makes it super fast and can be

160608

run in real-time. In addition, YOLO is a fully convolutional
network; it can process 45 frames per second.

Many attempts have been made to implement deep learning
algorithms for edge intelligent applications [8]-[14]. The
approach is either by training on the edge device [15] or
the cloud [16]-[19] or local host [20], [21]. The train-
ing on the cloud is done by developing inference
models [22], [23] on edge to provide a speedy and efficient
prediction process [24]. However, few studies are reported
to examine model compression techniques [25]-[28],
knowledge distillation, network science-based knowledge
partitioning algorithms [29], Early-Exit [30] and pruning
algorithms [31]-[34] to reduce the memory footprint [35].
Table 1 presents state of art on DNN implementation at the
edge and targeted performance metrics among recently pub-
lished articles. List of important abbreviations in alphabetical
order is found in Table 2.

In our extensive survey carried out for the DL imple-
mentation on edge devices, the following issues surfaced:
1) Deploying the deep learning model to edge devices such
as mobile and other IoT devices require enormous computa-
tional resources and leave a vast memory footprint. 2) There
is scarce research on inferencing techniques (for classifi-
cation or prediction) in distributed heterogeneous IoT clus-
ters. 3) Existing approaches are limited only to layer-based
partitioning (to reduce the inference time) while completely
neglecting the potential of compression techniques.

Generally, the previous works have tried to implement deep
learning on edge devices using various frameworks for object
detection, such as RCNN and SSD. YOLO is preferred for
object detection as it is faster than RCNN. However, com-
pared with SDD, the accuracy is less, has localization errors,
and poor recall rate. Therefore, we chose YOLOV2, which is
designed to overcome the limitations mentioned earlier.

Our work differs from previously published articles
mentioned above in many ways; most of the earlier

VOLUME 9, 2021

S. Naveen et al.: Low Latency Deep Learning Inference Model for Distributed Intelligent loT Edge Clusters

IEEE Access

TABLE 1. State of art on DNN implementations at the edge along with existing systems and frameworks including loT devices, objectives, employed
technologies, targeted performance metrics and effectiveness.

Ref. | IoT Devices Model Techniques used Performance Result
Metrics
[36] | Raspberry Pi Yolov2-16 layers Used fused layer partitioning of convolutional | Minimize 1.7X to 3.5X of speedup
layers along with work stealing approach Latency in CNN inference
[37] | Smart phones | Lenet, Inception-BN, | Partitioning the trained DNN model across | Speed Latency | 30.02% reduction in de-
VGG multiple mobile devices livery time
[29] | Raspberry Pi, | Resnet Network science-based solution to the knowl- | Reduce the to- | 33X of reduction in total
Odroid-XU4S edge partitioning tal latency latency
[38] | Raspberry Pi VGG-16, YOLOV2- 23 | Acceleration framework leveraging spatial par- | Improving the | 1.9X 3.7X of speedup
layers titioning techniques and parallelization inference speed
[39] | Raspberry Pi Yolov2, AlexNet, | Holistic optimization via Layer fusion and Par- | Speed up infer- | 1.52X of speed up
VGG-16, GoogleNet titioning the weight and fully connected layer | ence
[40] | Raspberry Pi GoogLeNet, ResNet Collaborative and adaptive CNN inference sys- | Reduced Infer- | Reduction upto 5.79X
tem through scheduling ence Latency

TABLE 2. List of important abbreviations in alphabetical order.

Acronym Definitions Acronym Definitions

5G Fifth Generation AE Auto-Encoder

Al Artificial Intelligence ANN Artificial Neural Network

AP Access Point AR Augmented Reality

BS Base Station CcC Cloud Computing

CNN Convolutional Neural Network Cv Computer Vision

D2D Device-to-device DL Deep Learning

DNN Deep Neural Network E2E End-to-end

EC Edge Computing EH Energy Harvesting

FC Fog computing FCNN Fully Connected Neural Network
HetNets Heterogenous Networks IoT Internet of Things

KD Knowledge Distillation KPI Key Performance Indicator
LSTM Long Short-Term Memory M2M Machine-to-machine

MC Mobile Computing MEC Mobile Edge Computing

ML Machine Learning MLP Multi-Layer Perception

NCS Neural Compute Stick NLP Natural Language Processing
NN Neural Network NoC Network-on-Chip

PCA Principal Component Analysis RFID Radio Frequency Identification
RNN Recurrent Neural Network SDN Software Defined Network
URLLC Ultra-reliable and low latency communication WLAN Wireless Local Area Network
WSN Wireless Sensor Network YOLO You Only Look Once

work have focused on layer partitioning or compression.
In contrast, we have used pruning algorithms even before
layer partitioning. In addition, the majority of the works have
aimed at implementation while we attempted to optimize the
pre-trained model to make it faster and robust for real-time
applications. Our objective in implementing DL for edge
devices is threefold:

e We propose an Edge-to-Device edge computing
framework that facilitates optimization using the
weight pruning method to deploy the model onto
small smart devices devised for time-critical appli-
cations. Our vision is to manifest a holistic distributed
deep learning framework that orchestrates edge clusters
to process the heterogeneous local data, take decisions
(with the aid of a pre-trained DL model obtained from
the cloud) and execute real-time applications with the
least latency.

e We formulate the latency minimization into a prun-
ing problem and obtain an optimized pre-trained
model by weight-pruning and fine-tuning. We intend
to build a horizontal collaborative CNN inference

VOLUME 9, 2021

accelerating system. The input feature maps are
partitioned and distributed among resource-constrained
edge devices, such that memory footprint and latency are
minimal.

e The performance of our proposed framework and
optimization techniques on a heterogeneous dis-
tributed edge network is evaluated under a variety of
system parameters.

The remainder of the paper is arranged as follows:
Section II provides an account of a brief review of edge
computing and a decent review of literature on using various
DL frameworks for object detection in real-time. Section III
presents the proposed model, while section IV presents the
details of the experimental setup. Results and discussions are
presented in section V, and the paper concludes in section VI.

Il. BACKGROUND AND LITERATURE REVIEW

Any IoT implementation aims to develop a smarter environ-
ment with the least intervention. IoT’s core is its comput-
ing framework [41]-[43], which processes data. The data
processing can happen either at a cloud server called cloud
computing or at the edge server called edge computing or

160609

IEEE Access

S. Naveen et al.: Low Latency Deep Learning Inference Model for Distributed Intelligent loT Edge Clusters

between them called fog computing. Cloud servers are pow-
erful computing machines [44] with no energy constraint.
However, since all data must be transmitted to the cloud,
cloud computing finds its limitation in processing IoT data
due to its inherent high latency, lack of privacy [45], [46] and
demand for high connectivity.

Moreover, [oT data differs from Big data and is char-
acterized by large amounts of streaming data, heterogene-
ity, time and spatial correlation, and high noise data.
Beyond traditional data analytics, IoT data demands fast and
streaming data analytics with time sensitivity [47]. Hence,
obtaining inference from this kind of data is not a straight-
forward task. However, recent progress in hardware with
superior computing speeds and advanced ML techniques
opens the doors for shifting the computing load to the
edge.

Several paradigms have been proposed for the workload
distribution of data analytics among the cloud, edge and
fog [48]. One approach is to have edge clusters (servers)
that will pre-process and send the raw data to the cloud
before training and send updates to the cloud after training.
In addition, edge clusters will carry out the data cleansing,
dimensionality reduction (PCA), noise removal (LDA) [49]
and may also employ an autoencoder for extracting stan-
dard features. Therefore, having edge clusters will bene-
fit in 2 ways: 1) alleviating the workload of the network
2) significantly reducing the network latency.

Edge computing is ideal for time-critical IoT applications
as it is near the end-user and is dedicated, unlike cloud com-
puting (shared), thereby avoiding delays incurred in trans-
mission. In addition, edge computing costs less, requires less
bandwidth, provides data privacy, and can be programmed
for application-specific tasks [50]. The features like mobility
management, geo-distribution, location awareness, scalabil-
ity, and ultra-low latency make edge computing [51] more
suitable for IoT data analytics. Mission-critical applications
(such as driverless cars, fire prediction, and geriatric care)
demand for latency less than 1msec [52] with reliability of
more than 99.99%.

The challenge is how to serve the resource-intensive func-
tionalities by resource-constrained [53], [54] edge devices.
Edge computing needs to embrace intelligent processes to
alleviate the burden of computation, communication, and
storage. Incorporating intelligence at the edge refers to spe-
cialized control mechanisms for being context-aware and
responsive while optimizing latency and energy efficiency
parameters. Edge intelligence (union of EC and Al) strives
to mimic human cognition by processing and learning from
the data generated among heterogeneous edge devices (and
servers) in the proximity. Beyond being fast, secure, and
economical, edge intelligence exploits the potential of richer
data to provide application-specific optimization [55]. Thus,
edge infrastructure will pave a path for the democratization of
Al [56]. Either intelligent process enables edge architecture
or vice-versa, the end-users will be beneficiaries with reduced
bottlenecks and enhanced scalability.

160610

Advancements in ML algorithms capable of emulating
human reasoning seems to be a step towards Al. DL, a subset
of ML, is a state-of-art method of uncovering patterns and
extracting valuable insights from a large chunk of data. As the
name describes, deep learning learns from multiple levels to
develop a model embedding complex relations among the
data [57]. Neural networks mimic neurons in the brain. Deep
Neural Networks is the core of machine learning techniques
spanning from simple data analytics to natural language
processing. A typical Deep Neural Network model contains
layers of fully connected nodes (depicting neurons), and the
process of passing forward the raw data from the input layer
to the concerned category at the output layer is called model
inference.

Deep Learning is independent of domain-specific training
among all ML techniques, thereby accelerating inference via
pre-trained models. However, DL implementation demands
resources for computation, memory (and cache), and power.
Leveraging the potential of DL models for inference on
resource-constrained edge devices [58] is the crux of the
matter. Hosting Artificial Intelligence on edge devices via
DNN computations, i.e. deploying DNN models close to the
users for fast real-time execution, has been focused on in
the past few years. However, though the idea is excellent, the
computational complexity creates a bottleneck for its imple-
mentation. As a result, resource-constrained edge devices
have to redefine themselves to achieve it.

Transforming edge computing is possible either by hard-
ware acceleration [5] or by software acceleration as described
below:

1 Hardware transformations embrace DNN computation
at the hardware level design for DL inference. Beyond
usage of accelerators, they include hardware friendly
optimizations such as matrix multiplication factoriza-
tion, data path optimization, and parallel operations.

2 Software transformations involve defining novel DNN
structures by finding the trade-off between accuracy and
computation. Then, the desired accuracy with moderate
computations in the resource-constrained devices can be
achieved by compressing the DNN models via Pruning.
Other techniques like quantization and approximation
are also employed.

3 Complementary to the above two approaches, one can
focus on run-time management. This includes DL. model
partitioning and offloading [59] the computational load
between the cloud, edge and device to accelerate diverse
embedded applications. The run-time management can
be applied over and above the two transformations men-
tioned earlier.

Hardware accelerators find limitations in providing storage
space for the large pre-trained model. They may also fail
to achieve the expected inference rate, which will worsen
when the accelerator executes other parallel tasks. Therefore,
software acceleration must complement hardware accelera-
tors to create an ecosystem for achieving inference models
with excellent performance. In this regard, many attempts

VOLUME 9, 2021

S. Naveen et al.: Low Latency Deep Learning Inference Model for Distributed Intelligent loT Edge Clusters

TABLE 3. Important definitions re-defined according to the edge computing domain.

Terminologies

Definitions

IoT devices
Edge Learning
Gateway

Cloud Computing

Offloading
Fog computing

Edge Computing
Computing Frameworks

Task Parallelization
Network Science
Model Inference

Model Compression

Pruning

Quantization

Knowledge Distillation

Model Partitioning

Latency

Jitter
Accuracy

IoT encompasses sensors to sense the event in the physical world, processing networks for the processing and
preparing data, data analytics to get insights from data, and system monitoring for data sharing between devices
and servers or among themselves.

Edge devices or edge servers perform prior learning at the edge of the network by pre-processing the raw data to
reduce the network traffic and speed up the computation at the data centers.

or Edge learning enables edge devices to send the context based raw data to the edge server for inference.
Gateway is a device to interface edge devices to the internet via various protocols.

In cloud computing, users can access plenty of computational resources over the internet on an on-demand basis
with little management effort and minimal interaction from service providers.

Sharing the workload among the cloud, edge and fog

Many distributed, heterogeneous distributed devices collaboratively cooperate to perform the tasks and store the
data in a fog server/cloud server.

Computing at the edge without passing anything to the cloud, works for offline mode.

To process the data collected by the IoT, different computing frameworks are used depending on the applications.
Computing frameworks are generally categorized as Fog computing, Edge computing and Cloud computing.
Task Parallelizationis an approach to maximize resource utilization for the dynamic task by exploiting
concurrency by executing the task parallel by adopting various techniques.

Deals with representing certain complex phenomena as networks an then create models that can be used to
understand and predict the desired phenomena

DNN model consists of series of inter-connected layers. The process of passing forward raw data from the input
layer to one of the category at output layer is called Model inference

Model compression refers to a class of techniques that reduce size and computations of DNN without losing
accuracy. It enables to run the model on tiny devices either through pruning(Weight, filter, layer) or by
Quantization(Lower precision- Fewer bits per weight)

Pruning is one of the compression techniques used in the deep neural network to reduce the model’s parameters
through weight or channel pruning to produce a simpler model without losing accuracy.

Quantization is an approach that can be used in machine learning for model compression to reduce the memory
footprint. Conventional deep learning models are trained with 32-bit floating-point weights and activations; this
approach reduces the number of bits used for representing weights and activation functions.

Train a significantly smaller student network to mimic a larger teacher model (model compression by replacing
teacher model by smaller student model)

Layer Partitioning: To distribute the work among the edge devices for faster inference and to reduce the memory
footprint, each layer input feature map is partitioned and assigned to the edge device. Fused Layer Partitioning:
Deep neural networks model’s stacked layers are fused and dividing vertically and assign each partition to edge
devices without any off-chip movement.

Latency is measured from the moment the request is initiated to the time the response is received, which includes
transmission, waiting, and processing time. Network Latency: During the data transmission, the time taken for
transferring the data from the device to the cloud is called Network Latency Service latency is measured as the
time taken by the processing device for computation based on the current workload.

Jitter is variation in latency and is an important measure for any applications.

Accuracy indicates the frequency at which predictions match the labels.

IEEE Access

have been reported to optimize the DNN models at edge
devices [60], [61]. While Communication load, communi-
cation overhead, cost, memory, processing speed, network
bandwidth, jitter, complexity are a few performance param-
eters, much of the preliminary research has focused on
low-latency and energy-efficient computations.

Tailoring the pre-trained DL models to suit the specific
application by creating hardware and software accelerators
is the need of the hour. Along with hardware accelera-
tors, DL model partitioning and distribution for inference
is the key to exploiting the full potential of edge comput-
ing. Several frameworks have been proposed to leverage
the capabilities of edge infrastructure enabled with hard-
ware accelerator and embedded with DNN models. The
aim is to have fast multimodal data analytics in smaller
scale platforms. DNN partitioning was conceived in a
bid to accommodate resource-intensive computations on
resource-constrained edge devices. The DNN model is parti-
tioned into multiple parts and shared among devices, thereby
collaboratively computing for low latency DNN inference.

VOLUME 9, 2021

Layer partitioning is done in two ways: layer wise par-
allelization, where each layer is independently parallelized
while selecting appropriate techniques for each layer to
obtain the best performance. Another method is a fused layer
parallelization where the output of one layer is fed as input to
the next layer without any off-chip data movement (i.e. with-
out going to the memory). This work considers parallelizing
by multiple fused layers instead of a single layer individually
because it is scalable, network bandwidth-efficient, and has
less memory footprint.

Table 3 provides the important definitions re-defined
according to deep learning based edge computing environ-
ment.

Table 4 outlines the architectures, critical performance
metrics, enabling approaches, and DL. Models and frame-
works for DNN model inference at the edge.

Our work focuses on reviewing, analysing, and imple-
menting DL model partitioning and distribution to accelerate
the inference task at the edge. The model assumes that a
pre-trained DL model is already obtained from the cloud

160611

IEEE Access

S. Naveen et al.: Low Latency Deep Learning Inference Model for Distributed Intelligent loT Edge Clusters

TABLE 4. Overview of systems and frameworks for edge computing
model inference, including the adopted architecture, the DL model
and the enabling technologies.

Aspects Various (Our considerations in bold)

Architecture Device, Edge, Device-Edge, Edge-Cloud
Performance Inference Latency, Memory, Energy, Communica-
Indicators tion cost, Communication overhead, Network Band-

width
Enabling Tech- Model compression (Pruning), Model Partitioning

nolgies (Fused Tile partiotioning), Quatization
Optimization ~ Resource efficient (Application specific optimization)
Frameworks DeepThings, ModNN

DL Models Yolo, Yolov2, VGG, AlexNet

and the entire execution is offline. While considering all the
trade-offs, we intend to optimize this pre-trained model via
Pruning. Parallelization is achieved through Fused layer parti-
tioning [62]. The model optimization via Pruning is employed
even before the model partitioning and distribution is per-
formed. We use a Raspberry Pi 3B plugged with Intel Movid-
ius Neural Compute Stick (NCS) as a hardware accelerator to
build a DL inference system. We report the pruning approach,
model partitioning and distribution methods, experimental
results, and improvements in performance achieved. In sum-
mary, we intend to build a horizontal collaborative CNN
inference accelerating system in which the feature maps are
partitioned and distributed among resource-constrained edge
devices, such that memory footprint and latency are minimal.

lll. PROPOSED MODEL
As CNNs are resource-intensive, the deployment of CNN
on resource-constrained IoT devices is challenging to make
this approach realistic for real-time applications. Therefore,
we propose a CNN inference model for distributed heteroge-
nous Edge clusters to minimize the communication size and
inference latency.

Table 5 presents the summary of notations used in this
article.

A. SYSTEM MODEL
Our proposed system consists of set of Edge devices, Edge
gateway and host machine. Edge devices and Edge gateway
device is interconnected to share the information among each
other and host machine is used to trigger the edge device and
gateway device to process the input feature map.

All the IoT devices in the network are denotes as D, and
C represents the communication Edges between the devices,
ED represents Edge device and EG represents Edge Gateway
which is presented as.

Overall network is denoted as

N =D, C] ey
Set of devices in the network is represented as

D = [ED;, EG;, Host] 2)

160612

TABLE 5. Summary of key notations used in this article that are relevant
to the algorithm and the theoretical analysis.

Symbol Menaning

D Set of devices

ED Edge devices

n Number of devices

C Connection

EG Edge Gateway

A Latency

Anl Network latency

Al Computational latency

il Inference latency

« Task assigning indicator

Yi Computational Complexity

zi Computational Capability

f Number of Filters

WJf N Optimized pre-trained model of the source model

WfS pre-trained model with f number of filters optimized for
s source

f Number of Filters

Dg Source data

Dy Target data

£0 Loss function during the optimization of the network

£0 Loss function during the optimization of the network

w Weights of the pre-trained model

B Bias of the pre-trained model

r* The optimized filter output after pruning

q Pruning ratio

Communication Edges of the network are represented
by C, and the value of IC| depends on the number of IoT
devices and edge computing devices.

If IDI = n, then maximum the values of ICl is given as below
in Equ

(n—1)

n
ICl=0<|Cl<——5— 3

Several authors have attempted to model the latency in
deep learning based Edge computing environment. To sim-
plify the analysis, let us denote latency as A and this contains
Computational latency (A7) and network latency (A,;) [63].

A= Ae + Al (4)

For our framework network latency (1,;) = O as data are
not transmitted to the cloud network. Hence Latency for our
framework

A=Ay (5)

The Computational latency (A.;) majorly depends on pro-
cessing the input and in turn depends on workload of each
processor’s of IoT devices. Computational Latency is cal-
culated as below at time t considering the task assigning
indicator (), is estimated as

het = () ©)
Zi
where y; is the computational complexity of the CNN used at
k and z; is the computational capability at k.

Hence the Inference latency(};;) [64] estimation for the [oT

edge clustering network is given by

Ail = el)

VOLUME 9, 2021

S. Naveen et al.: Low Latency Deep Learning Inference Model for Distributed Intelligent loT Edge Clusters

IEEE Access

ToT Device
LI

E[H]:

TTTTTT

Distributed Heterogenous
Edge Clusters

IoT Device
LIl

[]

TTTTTT

@ o0o0o0o

Gateway Device

Tri th 01.1.10
riggers the E a
devices c;.o

1 4

[l

ToT Device

Pruning

)

Optimal sub-model of
Pretrained Model

Splitting Distribution

Output

FIGURE 2. Proposed CNN based Inference Model for Edge-device inference. Initially, the framework takes the pre-trained Yolov2 model as input. This
model is compressed by weight pruning. In each iteration, the pruning approach removes the unimportant weights based on the threshold value. The
removed weights are updated in the back-propagation. Finally optimized sub-model of the pre-trained model is fed to the fused tile partitioning and
distribution module to split the model via fused layer and distribute each partition to each edge device for feature extraction and for minimizing the

inference latency.

We can envision that the proposed framework works well
for real-time intelligent device applications such as smart
homes, smart agriculture, intelligent surveillance, and auto-
mated vehicles, in which devices of varying capabilities need
to cooperate to make an inference. Hence, edge devices such
as intelligent devices with a wide range of computational
capabilities are considered for processing input and perform-
ing collaborative inference tasks.

These devices are deployed with optimal sub-model of
the pre-trained model of Yolov2 to make the devices intel-
ligent and make the decision quickly. Figure 2 represents the
proposed optimal pre-trained CNN based Yolov2 model for
edge devices. The proposed model consists of four modules.
The first module involves establishing heterogeneous edge
clusters for IoT. The second module involves applying the
pruning to the pre-trained model to obtain the pre-trained
model’s optimal sub-model while retaining significant accu-
racy. Finally, as the third step, we will load the optimized
pre-trained CNN based Yolov2 model onto the Edge clusters.
In the fourth step, fusion layer partitioning is applied, and
the task is distributed to IoT edge devices, then processed.
Lastly, the gateway device combines the results from all the
edge devices to perform collective inference and display the
total latency for the inference task. Each of the modules is
explained in detail in the following subsections.

VOLUME 9, 2021

B. HETEROGENOUS EDGE CLUSTERS

The distributed heterogenous Edge clusters set up involves
forming the interconnected distributed IoT device.
IoT devices are resource constraints in nature; to perceive the
limited computing resource, we have selected Raspberry Pi
3B+, Raspberry Pi 3B, Raspberry Pi 4 and Neural computing
stick-2(NCS2) to form Edge Clusters. These devices are
of different computing capabilities and also memory sizes.
Furthermore, to speed up the inference task and to accelerate
processing, the gateway device is plugged with NCS2. The
detailed experimental setup is discussed in section IV.

C. CONVOLUTIONAL NEURAL NETWORK

This paper focuses on CNN, a deep learning algorithm that
comprises an input layer, output, and multiple hidden layers.
We have chosen CNN based Yolov2 object detection and
classification CNN model as shown in Figure 3. Yolov2
network consists of 24 convolutional layers followed by a
fully connected feed-forward neural network. With the con-
volutional operations, features are extracted from the image.
In our experimental setup, we have used an image size of
608 x 608 x 3, which is width, height and three RGB chan-
nels, respectively, as input to Yolov2. As shown in Table 6
Yolov2 detection network, layerl uses 32 filters and hence
convolutional layer computes output as 608 x 608 x 32.

160613

IEEE Access

S. Naveen et al.: Low Latency Deep Learning Inference Model for Distributed Intelligent loT Edge Clusters

T
SN
N
N
N
N
. ol

Y

128
cony layer

G4

’:iE cony layer :::.::58
conv layer Ix3x64 s
3X3X32 Mp s

MP

route 16
conv layer
IxIx64
reorg
route

-

‘ A
!
: — |
1024 425
512 Eolty Jayek conv layer
5 -
conv layer -::-:::?i-‘ Ix3x1024
256 3x3x512 3x3x1024 Ix1x425
conv layer Ix1x256 1x1x512
3x3x256 3x3x512 3x3x1024
1x1x128 1x1x256 3x3x1024
IxIx256 Ix3x512 Ix3x1024
MP MmP MP

FIGURE 3. Yolov2 Architecture with the input image size 608 x 608. CNN based inference workflow for image classification tasks consists of a
series of convolution, max pooling, batch normalization and activation function for feature map extraction. Layer1 computes output as

608 x 608 x 32 for 32 filters and Maxpooling reduces the image size to reduce the computation cost. In the feature extraction stage, the input
image is processed to generate hidden features followed by a fully connected layer for classification. Feature extractor takes large inference

latency leading to the bottleneck of CNN inference.

Furthermore, layer 2 Maxpooling performs a down sampling
operation to reduce the image size, and hence the number of
learnable parameters reduces the computation cost.

The Yolov2 detection network uses filters of size 32,64,128
and so on. These are two- or three-dimensional arrays applied
across the input data through the sliding window through
the element-wise dot product to produce the feature map.
Stride represents the number of pixels shifting during the
convolutional process. Value of Stride of one indicates the
movement of 1 pixel at a time.

For better accuracy in Yolov2 architecture, the Reorg layer
combines features from layers of middle level and high level.
The 28th route layer uses the 27th and 24th layers to append
the features of the previous layer and obtains the output as 19
x 19 x 1024. Three channels- R, G, B are considered with
a momentum of 0.9 with a learning rate of 0.001, the stride
of 1 and leaky activation function is used.

The role of the fully connected layer is to make the final
decision by executing an activation function on the overall
sum of the linear combination of the input.

D. PRUNING

In the literature, several compression techniques [29] such
as pruning, quantization, and knowledge distillation have
been used to optimize the convolutional neural network-based
model without sacrificing accuracy.

Pruning is applied to minimize the network parameters
to reduce the model’s size and make it suitable for deploy-
ment on to resource constraint IoT devices for faster predic-
tions. Pre-trained models are trained with large scale datasets.

160614

Transfer learning allows the model to be reused for similar
tasks.

Due to the significant results shown by the pre-trained
models, Transfer learning improves performance by opti-
mizing the existing model on other related model designs.
Pruning the trained model yields better results for efficient
inference. The standard performance metrics used to evaluate
the model after pruning are prediction accuracy, model size in
terms of bytes/kilobytes and computation time through Float-
ing point operations (FLOP) or memory utilization. The CNN
can be optimized by either weight pruning, layer pruning,
or filter pruning.

The most effective approach is to apply weight prun-
ing. In our work, the pre-trained model of Yolov2, which
is trained with large scale datasets, is tuned to accelerate
by removing unimportant weights through weight pruning.
The computation time is reduced with a smaller number of
model parameters, and the model performs better with greater
accuracy.

Formulation of pruning as an optimization problem [18]
is represented below. The objective of pruning is to generate
the optimized sub-model of the pre-trained model. Here,
ij . represents the optimized pre-trained model of the source
model.

Wfs indicates the pre-trained model with f number of filters
optimized for s source.

Consider Dy = Xy, X1, ... X, and D; = Y, Y1, ...
source data and target data respectively.

£() represents the loss function during the optimization of
the network.

.Y, as

VOLUME 9, 2021

S. Naveen et al.: Low Latency Deep Learning Inference Model for Distributed Intelligent loT Edge Clusters

IEEE Access

TABLE 6. Detailed Yolov2 detection network architecture for feature
extraction. In our work Yolov2 pre-trained model is used. Yolov2 uses
Darknet-19 architecture an open source neural network framework.

In the table the repeated 1 x 1 convolution enables to reduce the number
of parameters. In the table Conv-layer indicates the convolutional layer.

Algorithm 1 Pruning the Pre-Trained Model, Dataset

Input: Pre-trained model, pre-trained weight

Output: Optimized sub model of pre-trained model
Initialization: Pre-trained model Wfs , pre-trained weights
W, source data Dy, loss function £(), Optimized sub

Layer Filter |SizeStride|Input Output model of pre-trained model ws
Conv-layer |32 |3X3/1 |608 X608 X3 |608 X 608 X 32) Ix
Maxpooling 2X 212|608 X 608 X 32 |304 X 304 X 32 1: pruningPerc=0.30
Conv-layer |64 |3X3/1 |304 X 304 X 32 |304 X 304 X 64 2: threshold=percentile(sum(W), pruningPerc)
Maxpooling 2X2/2 |304X304X64 [152X 152X 64 3: WeightPrune(Wfs’ pruningPerc)
Conv-layer |128 |3X3/1 |152X 152X 64 |152X 152X 128) o .
Comvlayer |64 [IX /1 [152X 152X 128|152 X 152 X 64 4 for i = [to modelweight do
Conv-layer |128 |3 X3/1 |I52X 152X 64 |152X 152 X 128 5. if (i >threshold) then
Maxpooling 2X2/72 152X 152X 128|76 X 76 X 128 6: i=i
Conv-layer 256 |3X3/1 |76 X716 X 128 |76 X 76 X 256 7 else
Conv-layer 128 [1X1/1 |76 X76X256 |76X 76X 128 =0
Conv-layer 256 |3X3/1 |76 X716 X 128 |76 X 76 X 256 8 L=
Maxpooling 2X 22 |16X76 X256 |38 X 38 X 256 9: endif
Conv-layer |512 |3X3/1 |38X38X256 |38 X 38 X 256 10: end for
Conv-layer 256 |1X1/1 |38 X 38X 512 |38 X 38 X 256 . . .
Conv-layer |512 |3X3/1 |38X38X256 |38 X 38X 512 11: Retrain the pruned mOd,el untl,l)
Comv-layer [256 |[IX 1/ |38 X38X512 |38 X 38 X 256 12: Calculate the loss function using equation 10
Conv-layer |512 |3X3/1 |38X38X256 |38X38X512 13: if (Lossfunction >T) then
Maxpooling 2X2/1 |38X38X512 |19X19X512 14 break
Conv-layer |1024 |3 X3/1 [19X19X512 [19X 19 X 1024 1s: else
Conv-layer |512 |IX1/I [19X 19X 1024 |19 X 19 X 512 : ,
Conv-layer |1024 |3 X3/1 [19X19X512 [19X 19 X 1024 16: Wf*=Wf
Conv-layer |512 |1X1/T [19X19X 1024 [19X 19X 512 17: end if
Conv-layer |1024 |3 X3/1 [19X19X512 [19X 19 X 1024 18: return optimizedmodel W
Conv-layer |1024 |3 X3/1 |19 X 19X 1024 |19 X 19 X 1024 fx
Conv-layer |1024 |3 X3/1 |19 X 19X 1024 |19 X 19 X 1024
route 16
Conv-layer |64 I X1/1 |38X38X512 (38X 38X64 .
reorg 2 38X 38X 64 |19X 19X 256 after pruning.
route 27 &
24 ff=f*q% 9)
Conv-layer 1024 |3X3/1 19X 19X 1280 |19 X 19 X 1024
Conv-layer |425 |[IX 1/ |[19X 19X 1024 [19X 19 X 425 WJ?'*, the optimized pre-trained model of the source model
detection is evaluated as

The parameters such as W = Wy, Wy, Wo, Wa....W,
and B = By, By, By, B3B, are weights and bias of the
pre-trained model. These are optimized to minimize the loss
function with respect to source data

Pruning percentage denoted by q% varies from 20% up
to 80% on source data. The threshold is calculated using
percentile over all the weights and the pruning percentage.
Accuracy of 90% is maintained during the pruning process for
producing the sub-optimized model of the pre-trained model.

We define loss function as

£(Ds|W7) ®)

While optimizing the pre-trained model, Loss function
£() is defined as minimizing the loss on source data Dy of
pre-trained model W}f to loss on source data of optimized
pre-trained model with respect to accuracy.

To generate the optimized sub-model W,f* with minimal
loss function with respect to source data Dy, pruning has to
be performed with q% of pruning ratio.

Let f represents the number of filters optimized for
source data set, f* represents the optimized filter output

VOLUME 9, 2021

WS, = min|($(D,|W}) — $(Ds|WE)) (10)

Algorithm 1 provides steps for pruning the Yolov2
pre-trained model to optimize using weight pruning.

In Algorithm 1, the weights are pruned to lower the size of
the yolov2 model while maintaining considerable accuracy
without compromising the original task. Next, the model is
pruned iteratively based on the weights and thresholds set.
If the weights are less than the threshold, they are set to zero.
Finally, the model is retrained based on the loss function.
The optimized sub-model of the pre-trained model is obtained
after achieving a minimum loss function and significant
accuracy.

E. PARTITIONING THE FUSED LAYERS

In this work, we employ fused layer partitioning [36], [62]
for CNN inference models for multiple resource constraints
edge devices. The primary purpose of fused layer partitioning
is to reduce inference latency and communication size by
distributing the input across multiple devices.

CNN consists of convolutional layers, pooling layers and
activation functions for feature extraction and classifier to
classify. In CNN, input to the layer purely depends on the
output of the previous layer. The optimized pre-trained model

160615

IEEE Access

S. Naveen et al.: Low Latency Deep Learning Inference Model for Distributed Intelligent loT Edge Clusters

Input feature maps

,,,,,,, Gateway-edge device-G1

Layer 1

~ Layer 2
: Maxpooling

Layer 3

Convolutional Layer

Output feature maps

Partitioning- Tile 1, Tile 2.... Tile 16

Size
(202,202)

Size

(607,607) (100,100)

Layer 1 (607,607)
Size

(100,100)

Layer2 (303,303)

Layer 3

FIGURE 4. CNN consists of multiple convolutional and max-pooling layers. In Fused Tile partitioning, CNN is divided vertically into
tiled stacks of fused convolutional and pooling layers. As shown in the figure, Feature maps of each layer are divided into small tiles.
Fused Tiles across the layer are executed independently by the devices parallelly to reduce the latency and communication overhead.
This concept distributes sizeable deep learning models that do not fit on a single memory-constraint loT device.

parameters are split into multiple fused partitions to distribute
among multiple devices to reduce the latency, as shown in
Figure 4, Each partition in each device generates output fea-
ture maps. Finally, partial output from each device is collated
by the gateway device to form the final output. As single
input is distributed across numerous devices, this method
minimizes computation latency and communication size as
communication happens between the devices only during the
partitioning in the beginning and at the end for the merging
process.

Consider CNN with M layers. Each layer takes N set of
feature maps in an input. Each convolution operation in each
layer of m = 1,2,... M with input dimension Wm — 1 x
Hm — 1 with set of Km filters with dimension Dm x Dm
are used to slide across input with Stride Sm. Summation of
result of multiplication of filter values with the set of input
feature map produces output feature map. Process continues
for Km filters. Among convolutional operation, maxpooling,
activation function and fully connected layers, convolutional
layer consumes more computational cost compared to other
layers.

Hence to optimize the computational resources, the
first 16 layers of yolov2 are vertically partitioned into tiles.
Then the corresponding tiles from each layer are fused ver-
tically to form a single unit. Finally, the input features map
(input data region) for that particular tile is loaded from
memory and subsequently, the intermediate layers compute
intermediate values.

The process of fused layer partitioning and distribution
is shown in Figure 5. The figure illustrates the fused tile
partitioning of two layers. First Layer is partitioned into N
sets of 5 x 5 tiles. Thus, only 5 x 5 x N input data are
brought from memory. Next, the convolution operation is
performed on Layerl with a 3 x 3 x N filter producing

160616

Input '\ N
feature
map

ConvLIution

Layerl-M filtersof 3X3 XN

) f
Layer1 b—————
Output Layer2-P filters of 3X3 XM
feature |: =
map 1X1XP

FIGURE 5. lllustrates fusion of two convolutional layers refer as

layer 1 and layer 2. Layer1 receives the input feature map as input. These
inputs comprise N different 5 x 5 feature maps. This feature map is
convolved with 3 x 3 kernels for the stride of one and extends the same
process down for all feature maps. The layers create a computational
pyramid across the layers of feature maps.

a 3 x 3 x M intermediate feature map. Finally, the input
is obtained to Layer 2, which convolves with P filters, and
produces 1 x 1 x P output feature maps.

IV. EXPERIMENTAL SETUP

The proposed system has been evaluated with the well-known
CNN based Yolov2 model. An optimized sub-model of the
pre-trained model has been obtained after pruning. Parame-
ters of the optimized model are fed into the framework, and
fused layer partitioning and distribution modules have been

VOLUME 9, 2021

S. Naveen et al.: Low Latency Deep Learning Inference Model for Distributed Intelligent loT Edge Clusters

IEEE Access

TABLE 7. List of hyperparameters considered for pruning the model,
parameters of fused tile partitioning approach and detailed

experimental parameters.

Parameters

Values

Pruning parameters

Pruning percentage(q%)

10%, 20%, 30%.. . .80%

batch-size 32
conf-thresh 0.005
stride 1
pad 1
Fused Tile partitioning
Deep Learning model Yolov2
FTP partitioning 3X3, 4X4, 5X5
Experiment setup
Number of Edge devices 5
Number of Gateway devices 5

Local Host
Edge device configuration

Gateway device configuration

1

Raspberry Pi with the network
connectivity

Raspberry Pi with the network

connectivity plugged with NCS2
Darknet Neural Network
NNPACK

Inference engine
Software Accelerator

Gateway Device
with NC2

FIGURE 6. Hardware experimental setup of heterogeneous distributed
collaborative loT clusters consists of five 1y pi’s as edge devices,
one Hub, and one raspberry pi plugged with NCS2 as a gateway device.
We use an input image of size 608 x 608.

implemented to distribute the task into multiple IoT devices
for faster predictions. These modules are implemented in C
and C- based Darknet neural network libraries used as CNN
inference engines. As IoT devices are resource constraints
in terms of Processing capabilities, Darknet with NNPACK
has been used for accelerating the CNN performance on IoT
devices. The experimental setup is as shown in Figure 6.
TCP/IP socket APIs are used to communicate distributed
edge clusters between hosts, gateway devices, and edge
devices. An optimized sub-model of the pre-trained model
is deployed on a set of IoT devices. To mimic the real-world
scenario, which usually has resource constraint IoT devices,
in our experiment, we have opted for 5 Raspberry Pi devices
as Edge devices and one Gateway device accelerated by

VOLUME 9, 2021

TABLE 8. List of different heterogenous configurations we considered in
our study. Focus on heterogeneity in computational ability(different
device speeds) in order to evaluate the robustness of our approach and
speed of inference.

Device Frequency] RAM| Core

Raspberry Pi 3| 1.4GHz | 1GB | Cortex-A53,ARM v8§
Model B+

Raspberry Pi 4| 1.5GHz |2GB | quad-core, Cortex-
Model B AT2,ARM v8
Raspberry Pi 3 —|1.2GHz | 1GB | Quad-Core,ARM
Model B Cortex-A53
Raspberry Pi 4| 1.5GHz |4GB | quad-core,Cortex-
Model-B A72 (ARM v8)

Intel Movidius Myriad X Vision Processing

Inte] Neural Com- Unit, Supports Ubuntu, Windows, Raspbian

pute Stick 2

NCS2 and a Host machine. The edge devices used for evalu-
ation are Raspberry Pi 3 Model B+ with 1GB RAM, Cortex-
A53 1.4GHz, Raspberry Pi 4 Model B with 2 GB RAM,
quad-core, Cortex-A72, 1.5GHz and Raspberry Pi 3 —
Model B with 1GB RAM, Quad-Core, 1.2GHz and Intel
Neural Compute Stick 2 has been used to accelerate the Gate-
way devices for faster inference. Assumptions considered in
designing the framework and experimental setup are listed
below.

« Input data is considered as an image of any size.

« Computing capabilities such as varying processor speed

and size of RAM is considered as heterogeneous
IoT devices.

« Asingle input data frame has been processed by multiple

devices.

« Each device has sufficient memory to load the trained

weights and to perform the task.

The experiment involves testing the impact of varying
the number of devices, starting from one device up to five
devices, on communication size and latency for distributed
heterogeneous edge clusters.

Table 8 lists the different heterogeneous configurations
considered for the experiment. In this experiment, we have
focused on heterogeneous IoT infrastructure to understand
the inconsistency and the impact on inference speed.

The experiment is conducted for splitting the fused layer
into 3 x 3,4 x 4,5 x 5 partitions by considering the
first 16 layers of Yolov2. We started the evaluation of the
model with the host device, a gateway device and a single
edge device. We noted the communication size and inference
latency required for a single data frame with a single edge
device. Similarly, we evaluated the model by increasing the
number of devices for each partition and observed the output.

Communication size depends on the number of partitions
and communication between input and output data. Dis-
tributed IoT edge clusters involve communication between
the partitioned layers; the proposed system produces bet-
ter results for the more exemplary partitioning, as shown
in Figure 7.

With the varying number of partitions from 3 x 3to 5 x 5
and an increasing number of devices, we measured the com-

160617

IEEE Access

S. Naveen et al.: Low Latency Deep Learning Inference Model for Distributed Intelligent loT Edge Clusters

3 X 3 partitioning

4 X 4 partitioning

5 X 5 partitioning

18 { /=@= MoDNN
DeepThings
16 { =@= Proposed Model

~e— MoDNN
DeepThings
=e= Proposed Model

Communication Size(MB)
Communication Size(MB)
5

18 =@= MoDNN
DeepThings
16 { =@= Proposed Model

®

Communication Size(MB)

3
Number_of_devices

3

Number_of_devices

3
Number_of_devices

FIGURE 7. Impact of Communication Size on 3 x 3, 4 x 4 and 5 x 5 partitioning. Communication overhead depends on FTP- partitioning and distribution
approach. As in FTP only input and output data of each fused tile needs to be communicated. As shown in figure for finer partitions like 3X3
partitioning,communication overhead is slightly larger because of additional overlapped input data during FTP process. In case of MoDNN , in each layer
intermediate data is transferred to gateway device further leads to linear increase in communication overhead as number of devices increases from 1 to
5. In case of DeepThings, partitioning method in FTP reduces the communication overhead compared to MoDNN.In general as our proposed model are
optimized with reduced number of parameters in the model , it still reduces the communication overhead and maintains an averge of 9.175MB.

3 X 3 partitioning

4 X 4 partitioning

5 X 5 partitioning

~e— MoDNN
DeepThings
~e~— Proposed Model

~e— MoDNN
DeepThings
~e~ Proposed Model

Inference Latency(sec)

s =
Inference Latency(sec
o 5 8 & & &

e

IS

~e— MoDNN
DeepThings
~e~ Proposed Model

a &

I

Inference Latency(sec)

=

s

N s o o®

~
IS

Number_of_devices

Number_of_devices

3 4

IS
“

Number_of_devices

FIGURE 8. Impact of Inference latency on 3 x 3, 4 x 4 and 5 x 5 partitioning. In the case of MoDNN, due to centralized data distribution
and process synchronization communication overhead increases and as computation time is inversely proportional, latency will be
reduced and increase after third devices. In the case of DeepThings, it adaptively explores the available communication bandwidth and for
finer partitioning, up to three devices due to the overlapped partitioning latency being higher and saturated thereafter. Our proposed
model performs the best as it does not depend on layer-wise synchronization and is due to the optimized pre-trained model.

munication size. Increasing the number of edge devices will
improve the performance. However, it impacts the execution
time. As more devices are involved for intelligent computa-
tion, the amount of time required for processing is reduced
and the lighter way it increases the communication size. The
proposed model achieved an accuracy of 92% for the edge
devices varying from one to five Raspberry Pi devices.

We can observe from Figure 8. the inference latency on
different partitions. The figure depicts that as we increase the
number of devices, computation is shared by more devices,
which reduces the execution time. The inference latency is
compared with DeepThings [36] and MODNN [37] on a
single data frame. Our proposed model outperforms inference
latency for 3 x 3,4 x 4 and 5 x 5 partitioning due to the
reduced computation as the pre-trained model is optimized.
In MODNN, computation time is slightly higher as the num-
ber of devices increases due to centralized data distribution,
layer-wise synchronization, and processing. In DeepThings,
communication size and inference latency are more signif-
icant due to partitioning; processing occurred without opti-
mizing the model.

As we have optimized the model and deployed it onto the
IoT devices, communication size and inference latency are
reduced due to the reduced number of parameters. As a result,

160618

TABLE 9. Summarizes the key difference between the present work and
existing literature on CNN based edge intelligence from the perspective of
model compression and heterogeneous distributed device inference.

Performance met- | Related | Techniques

rics work

Inference Latency | [36] FTP, Work sharing and Stealing

Latency and com- | [37] Partitioning the trained DNN model

munication Size across multiple mobile devices and Par-
allelization

Latency and com- | Our Optimized pre-trained model through

munication Size work pruning and CNN portioning and dis-
tributing

the proposed model achieves a minimum communication size
of 8.56MB~9.59MB and inference latency of Ssec~7sec for
3 x 3to 5 x 5 fused layer partitioning for up to 5 devices.

V. RESULTS AND DISCUSSIONS

To evaluate and validate the proposed system, we have
compared the results with few existing models similar to
our setup. Table 8 describes the experimental setup, and
Table 9 depicts the related work and techniques adopted in
the recent research. During the comparison, inference latency
is considered for a single data frame as input. Paper [36]

VOLUME 9, 2021

S. Naveen et al.: Low Latency Deep Learning Inference Model for Distributed Intelligent loT Edge Clusters

IEEE Access

involves fusing of few convolutional layers for reducing the
communication overhead. Our proposed model involves opti-
mizing the pre-trained model and then adopting the fusion
of layers for the heterogeneous Clusters of edge devices.
Finally, in the paper [37] author examined parallelizing deep
neural networks on IoT edge devices. However, it includes the
transfer of a large number of feature maps across the devices.

The inference latency and communication size are com-
pared with MoDNN and DeepThings. Both the framework
does not explore model compression techniques and dis-
tributed heterogeneous IoT environment, where each actual
physical IoT device may have different operating frequen-
cies and memory size. MoDNN considered smartphones as
edge devices, and Lenet, Inception-BN, VGG; deep learning
models are considered for evaluation and achieved a 30.02%
reduction in delivery time. DeepThings fused only the ini-
tial 16 layers of CNN and obtained 1.7 x to 3.5x of speedup
in CNN inference.

Compared to these two frameworks, our proposed work
performs partition and distribution of fused layer for the
optimized pre-trained model and obtains communication size
of 8.56MB~9.59MB and inference latency Ssec~7sec for
3 x 3to5 x 5 fused layer partitioning for five devices.
The proposed framework of optimized heterogeneous edge
clusters enables CNN inference on multiple heterogenous
devices; hence can be used in the applications such as smart
homes, smart cities, competent healthcare, intelligent traf-
fic signal, autonomous vehicles, intelligent drone, and com-
puter vision applications where-in deep learning models are
deployed on edge devices such as camera, mobile or any other
intelligent devices.

Consider the case study to envision the adoption of
the proposed framework for innovative home applications.
Smart home consists of multiple intelligent cameras in var-
ious places to capture the image. Rather than sending the
image to the cloud, the proposed framework will perform
on-device computation in real-time. This framework not only
reduces communication overheads but can provide faster
inference even for distributed and heterogenous devices—the
work between the other smart cameras to process the image,
reducing the latency in real-time applications.

VI. CONCLUSION AND FUTURE WORK

From our brief review of the background, we learnt that while
focusing on Low latency, we could face many demands and
challenges. For example, the demand for increased bandwidth
can be addressed using mmWave, while parallel and coded
computing can address the demand for computing power and
task dependency. Furthermore, shifting the computing to edge
devices and making them intelligent (capable of machine
learning) will reduce propagation delay and prediction delay,
respectively. Finally, proactive computing is a promising
approach towards reducing propagation delay and making
the system energy efficient. In our work, we have shifted
computing to the edge, implemented DNN based ML on the
edge devices while parallelizing (partitioning) the task and

VOLUME 9, 2021

distributing among the edge clusters to minimize propagation
delay, prediction delay and power requirement.

In this paper, we have examined a hardware-based proto-
type and a software framework to optimize the pre-trained
model and have designed a lightweight, optimized sub-model
of the pre-trained CNN based Yolov2 model. The optimized
sub-model is partitioned, and inference is distributed among
multiple resource constraint edge devices and IoT gateway
devices. Initial layers of CNN highly contribute to over-
all communication size and inference latency. Hence the
first 16 layers of the sub-optimized CNN layers are split
into multiple stacks of executable tasks and assigned to
multiple IoT devices. The proposed framework obtains the
sub-optimal pre-trained model and then splits and distributes
CNN parameters into multiple heterogeneous IoT devices.
In this process, each partition produces a set of partial output.
Finally, partial outputs are collated by the gateway device
to produce the final output. Hence for a single input, this
approach achieves less inference latency.

To recreate the realistic scenario of clusters of hetero-
geneous devices (- i.e. resource-constrained IoT devices)
in the lab, our model is demonstrated by deploying the
model on 5 Raspberry Pi boards with different core fre-
quencies for real-time on-device inference. Evaluation result
has shown that our proposed optimized model achieved sig-
nificant improvement in the result and has got minimum
communication size of 8.56MB~9.59MB, thereby reducing
the communication size by ~ 14.4% and inference latency
of 5sec~7sec, which is a reduction by ~16% compared to
DeepThings for 3 x 3 to 5 x 5 fused layer partitioning for
five devices. Thus, our model outperforms DeepThings and
ModNN with improved inference latency while maintaining
significant accuracy and minimal communication size for the
popular Yolov2 CNN model.

We further propose to explore federated learning and
channel intermittency to achieve reliability and scalability
in the proposed work. In future, we intend to define a
hardware-software ecosystem capable of hardware aware
hyperparameter tuning while being sensitive to the DNN con-
tainerization and fault-tolerant. In addition, future researchers
can explore potential advantages of Neuromorphic comput-
ing such as in-memory computing and event-based spiking
NN. This framework is suitable for smart homes, healthcare
applications. However, processing various data generated by
the devices, such as audio, video, or sensor readings, poses a
hurdle. Furthermore, [oT devices running on different oper-
ating systems introduces new research challenges.

ACKNOWLEDGMENT

The authors are greatly indebted to the anonymous reviewers
whose thought-provoking and encouraging comments have
motivated them to modify significantly and update the paper.
They also like to express their gratitude to REVA University
for extending research facilities to carry out this research.
Special thanks to B. U. V. Prashanth for his assistance in the
study.

160619

IEEE Access

S. Naveen et al.: Low Latency Deep Learning Inference Model for Distributed Intelligent loT Edge Clusters

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

E. S. Kumar, P. Sachin, B. P. Vignesh, and M. R. Ahmed, “‘Architecture for
IoT based geriatric care fall detection and prevention,” in Proc. Int. Conf.
Intell. Comput. Control Syst. (ICICCS), Jun. 2017, pp. 1099-1104.

R. Rajavel, S. K. Ravichandran, K. Harimoorthy, P. Nagappan, and
K. R. Gobichettipalayam, “IoT-based smart healthcare video surveillance
system using edge computing,” J. Ambient Intell. Hum. Comput., vol. 5,
pp. 1-13, Mar. 2021.

(May 2021). Edge Computing Market Worth $61.14 Billion
By 2028. Accessed: Jul. 15, 2021. [Online]. Available: https://www.
grandviewresearch.com/press-release/global-edge-computing-market

M. G. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan,
and F. Hussain, ‘““Machine learning at the network edge: A survey,” 2019,
arXiv:1908.00080.

A. Marchisio, M. A. Hanif, F. Khalid, G. Plastiras, C. Kyrkou,
T. Theocharides, and M. Shafique, “Deep learning for edge computing:
Current trends, cross-layer optimizations, and open research challenges,”
in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI), Jul. 2019,
pp. 553-559.

Z.Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence:
Paving the last mile of artificial intelligence with edge computing,” Proc.
IEEE, vol. 107, no. 8, pp. 1738-1762, Aug. 2019.

J. Lee and K.-I. Hwang, “YOLO with adaptive frame control for real-
time object detection applications,” Multimedia Tools Appl., 2021, doi:
10.1007/s11042-021-11480-0.

X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp.869-904,
2nd Quart., 2020.

Y. Li, F. Qi, Z. Wang, X. Yu, and S. Shao, “Distributed edge computing
oftloading algorithm based on deep reinforcement learning,” IEEE Access,
vol. 8, pp. 85204-85215, 2020, doi: 10.1109/ACCESS.2020.2991773.

L. Hu, G. Sun, and Y. Ren, “CoEdge: Exploiting the edge-cloud collabo-
ration for faster deep learning,” IEEE Access, vol. 8, pp. 100533-100541,
2020, doi: 10.1109/ACCESS.2020.2995583.

J. Chen and X. Ran, “Deep learning with edge computing: A review,” Proc.
IEEE, vol. 107, no. 8, pp. 1655-1674, Aug. 2019.

L. Zhou et al., “Distributing deep neural networks with container-
ized partitions at the edge,” in Proc. 2nd USENIX Workshop Hot Top-
ics Edge Comput. (HotEdge), 2019. [Online]. Available: https://www.
usenix.org/conference/hotedge 19/presentation/zhou

Z. Zhao, K. Wang, N. Ling, and G. Xing, “EdgeML: An AutoML frame-
work for real-time deep learning on the edge,” in Proc. Int. Conf. Internet-
of-Things Design Implement., May 2021, pp. 133-144.

R. Stahl, Z. Zhao, D. Mueller-Gritschneder, A. Gerstlauer, and
U. Schlichtmann, “Fully distributed deep learning inference on resource-
constrained edge devices,” in Proc. Int. Conf. Embedded Comput. Syst.
Cham, Switzerland: Springer, 2019, pp. 77-90.

D. Gupta, O. Kayode, S. Bhatt, M. Gupta, and A. S. Tosun, “Learner’s
dilemma: IoT devices training strategies in collaborative deep learning,” in
Proc. IEEE 6th World Forum Internet Things (WF-10T), Jun. 2020, pp. 1-6.
I. Jang, H. Kim, D. Lee, Y.-S. Son, and S. Kim, “Knowledge transfer
for on-device deep reinforcement learning in resource constrained edge
computing systems,” IEEE Access, vol. 8, pp. 146588-146597, 2020, doi:
10.1109/ACCESS.2020.3014922.

G. White and S. Clarke, “Urban intelligence with deep edges,”
IEEE Access, vol. 8, pp. 7518-7530, 2020, doi: 10.1109/ACCESS.2020.
2963912.

J. Ren, H. Wang, T. Hou, S. Zheng, and C. Tang, “Federated learning-
based computation offloading optimization in edge computing-supported
Internet of Things,” IEEE Access, vol. 7, pp. 69194-69201, 2019, doi:
10.1109/ACCESS.2019.2919736.

J. Wang, J. Zhang, W. Bao, X. Zhu, B. Cao, and P. S. Yu, “Not just privacy:
Improving performance of private deep learning in mobile cloud,” in Proc.
24th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Jul. 2018,
pp. 2407-2416.

H. Yi, H. Jung, and S. Bae, “Deep neural networks for traffic flow pre-
diction,” in Proc. IEEE Int. Conf. Big Data Smart Comput. (BigComp),
Feb. 2017, pp. 328-331.

C.-H. Yu, C.-N. Chou, and E. Chang, “Distributed layer-partitioned train-
ing for privacy-preserved deep learning,” in Proc. IEEE Conf. Multimedia
Inf. Process. Retr. (MIPR), Mar. 2019, pp. 343-346.

160620

(22]

(23]

[24]

(25]

[26]

(27

(28]

[29]

[30]

(31]

[32

—

(33]

(34]
(35]

(36]

(37

—

(38]

[39]

[40]

(41]

[42]

(43]

T. Guo, “Cloud-based or on-device: An empirical study of mobile deep
inference,” in Proc. IEEE Int. Conf. Cloud Eng. (ICE), Apr. 2018,
pp. 184-190.

Y.Li, Z. Han, Q. Zhang, Z. Li, and H. Tan, “Automating cloud deployment
for deep learning inference of real-time online services,” in Proc. I[EEE
Conf. Comput. Commun. (INFOCOM), Jul. 2020, pp. 1668-1677.

C. Zhang, M. Yu, W. Wang, and F. Yan, “Mark: Exploiting cloud services
for cost-effective, slo-aware machine learning inference serving,” in Proc.
USENIX Annu. Tech. Conf. (USENIX ATC), 2019, pp. 1049-1062.

M. Z. Khan, S. Harous, S. U. Hassan, M. U. G. Khan, R. Igbal, and
S. Mumtaz, “Deep unified model for face recognition based on con-
volution neural network and edge computing,” in IEEE Access, vol. 7,
pp. 72622-72633, 2019, doi: 10.1109/ACCESS.2019.2918275.

S. U. Amin and M. S. Hossain, “Edge intelligence and Internet of Things
in healthcare: A survey,” IEEE Access, vol. 9, pp.45-59, 2021, doi:
10.1109/ACCESS.2020.3045115.

Y. Yan, Q. Pei, and H. Li, “Privacy-preserving compressive model
for enhanced deep-learning-based service provision system in edge
computing,” [EEE Access, vol. 7, pp.92921-92937, 2019, doi:
10.1109/ACCESS.2019.2927163.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “‘Pruning filters
for efficient convnets,” in Proc. 5th Int. Conf. Learn. Represent. (ICLR),
2017, pp. 1-13.

K. Bhardwaj, C.-Y. Lin, A. Sartor, and R. Marculescu, ‘“Memory- and
communication-aware model compression for distributed deep learning
inference on 10T,” ACM Trans. Embedded Comput. Syst., vol. 18, no. Ss,
pp. 1-22, Oct. 2019.

E. Baccarelli, M. Scarpiniti, A. Momenzadeh, and S. S. Ahrabi,
“Learning-in-the-fog (LiFo): Deep learning meets fog computing for
the minimum-energy distributed early-exit of inference in delay-critical
10T realms,” IEEE Access, vol. 9, pp.25716-25757, 2021, doi:
10.1109/ACCESS.2021.3058021.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,”
2015, arXiv:1510.00149.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convo-
lutional neural networks for resource efficient inference,” in Proc. 5th Int.
Conf. Learn. Represent. (ICLR), 2017, pp. 1-17.

W. Shi, Y. Hou, S. Zhou, Z. Niu, Y. Zhang, and L. Geng, “Improving
device-edge cooperative inference of deep learning via 2-Step pruning,”
2019, arXiv:1903.03472.

B. Liu, Y. Cai, Y. Guo, and X. Chen, “TransTailor: Pruning the pre-trained
model for improved transfer learning,” 2021, arXiv:2103.01542.

M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy
of pruning for model compression,” 2017, arXiv:1710.01878.

Z. Zhao, K. M. Barijough, and A. Gerstlauer, “DeepThings: Distributed
adaptive deep learning inference on resource-constrained IoT edge clus-
ters,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37,
no. 11, pp. 2348-2359, Nov. 2018, doi: 10.1109/TCAD.2018.2858384.

J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “MoDNN: Local
distributed mobile computing system for deep neural network,” in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2017, pp. 1396-1401,
doi: 10.23919/DATE.2017.7927211.

L. Zhou, M. H. Samavatian, A. Bacha, S. Majumdar, and R. Teodorescu,
“Adaptive parallel execution of deep neural networks on heterogeneous
edge devices,” in Proc. 4th ACM/IEEE Symp. Edge Comput., Nov. 2019,
pp. 195-208.

R. Stahl, A. Hoffman, D. Mueller-Gritschneder, A. Gerstlauer, and
U. Schlichtmann, “DeeperThings: Fully distributed CNN inference on
resource-constrained edge devices,” Int. J. Parallel Program., vol. 49,
pp. 1-25, Apr. 2021, doi: 10.1007/s10766-021-00712-3.

Q. Liu, T. Han, N. Zhang, and Y. Wang, “DeepSlicing: Deep reinforce-
ment learning assisted resource allocation for network slicing,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2020, pp. 1-6, doi:
10.1109/GLOBECOM42002.2020.9322106.

S. A. Hossain, M. A. Rahman, and M. A. Hossain, “Edge computing
framework for enabling situation awareness in IoT based smart city,”
J. Parallel Distrib. Comput., vol. 122, pp. 226-237, Dec. 2018.

M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,
and A. P. Sheth, “Machine learning for Internet of Things data analysis:
A survey,” Digit. Commun. Netw., vol. 4, no. 3, pp. 161-175, Aug. 2018.

M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, ‘“‘Deep learning
for IoT big data and streaming analytics: A survey,” IEEE Commun.
Surveys Tuts., vol. 20, no. 4, pp. 2923-2960, Jun. 2018.

VOLUME 9, 2021

http://dx.doi.org/10.1007/s11042-021-11480-0
http://dx.doi.org/10.1109/ACCESS.2020.2991773
http://dx.doi.org/10.1109/ACCESS.2020.2995583
http://dx.doi.org/10.1109/ACCESS.2020.3014922
http://dx.doi.org/10.1109/ACCESS.2020.2963912
http://dx.doi.org/10.1109/ACCESS.2020.2963912
http://dx.doi.org/10.1109/ACCESS.2019.2919736
http://dx.doi.org/10.1109/ACCESS.2019.2918275
http://dx.doi.org/10.1109/ACCESS.2020.3045115
http://dx.doi.org/10.1109/ACCESS.2019.2927163
http://dx.doi.org/10.1109/ACCESS.2021.3058021
http://dx.doi.org/10.1109/TCAD.2018.2858384
http://dx.doi.org/10.23919/DATE.2017.7927211
http://dx.doi.org/10.1007/s10766-021-00712-3
http://dx.doi.org/10.1109/GLOBECOM42002.2020.9322106

S. Naveen et al.: Low Latency Deep Learning Inference Model for Distributed Intelligent loT Edge Clusters

IEEE Access

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, ‘“Communicating while
computing: Distributed mobile cloud computing over 5G heterogeneous
networks,” IEEE Signal Process. Mag., vol. 31, no. 6, pp.45-55,
Nov. 2014.

Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-
efficient edge Al: Algorithms and systems,” IEEE Commun. Surveys Tuts.,
vol. 22, no. 4, pp. 2167-2191, 2020.

H. Zeyu, X. Geming, W. Zhaohang, and Y. Sen, “Survey on edge com-
puting security,” in Proc. Int. Conf. Big Data, Artif. Intell. Internet Things
Eng. (ICBAIE), Jun. 2020, pp. 96-105.

M. Merenda, C. Porcaro, and D. Iero, “Edge machine learning for AI-
enabled IoT devices: A review,” Sensors, vol. 20, no. 9, p. 2533, Apr. 2020.
A. Morshed, P. P. Jayaraman, T. Sellis, D. Georgakopoulos, M. Villari, and
R. Ranjan, “Deep osmosis: Holistic distributed deep learning in osmotic
computing,” IEEE Cloud Comput., vol. 4, no. 6, pp. 22-32, Nov. 2017.
Y. Huang, X. Ma, X. Fan, J. Liu, and W. Gong, “When deep learning meets
edge computing,” in Proc. IEEE 25th Int. Conf. Netw. Protocols (ICNP),
Oct. 2017, pp. 1-2.

Q. D. La, M. V. Ngo, T. Q. Dinh, T. Q. S. Quek, and H. Shin, “Enabling
intelligence in fog computing to achieve energy and latency reduction,”
Digit. Commun. Netw., vol. 5, no. 1, pp. 3-9, Feb. 2019.

H. Li, K. Ota, and M. Dong, “Learning IoT in edge: Deep learning for
the Internet of Things with edge computing,” IEEE Netw., vol. 32, no. 1,
pp. 96-101, Jan. 2018.

C. She, R. Dong, Z. Gu, Z. Hou, Y. Li, W. Hardjawana, C. Yang,
L. Song, and B. Vucetic, “Deep learning for ultra-reliable and low-latency
communications in 6G networks,” IEEE Netw., vol. 34, no. 5, pp. 219-225,
Sep./Oct. 2020.

J. Shao and J. Zhang, ‘“‘Communication-computation trade-off in resource-
constrained edge inference,” IEEE Commun. Mag., vol. 58, no. 12,
pp. 20-26, Dec. 2020.

P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture
and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19, no. 3,
pp. 1628-1656, 3rd Quart., 2017.

L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Hierarchical quantized
federated learning: Convergence analysis and system design,” 2021,
arXiv:2103.14272.

C. Garvey, “A framework for evaluating barriers to the democratization
of artificial intelligence,” in Proc. 32nd AAAI Conf. Artif. Intell., 2018,
pp. 1-2.

Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless net-
works: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 20,
no. 4, pp. 2595-2621, 2018.

F. M. C. D. Oliveira and E. Borin, “Partitioning convolutional neural
networks to maximize the inference rate on constrained IoT devices,”
Future Internet, vol. 11, no. 10, p. 209, Sep. 2019.

T. Yang, H. Feng, S. Gao, Z. Jiang, M. Qin, N. Cheng, and L. Bai, “Two-
stage offloading optimization for energy—latency tradeoff with mobile edge
computing in maritime Internet of Things,” IEEE Internet Things J., vol. 7,
no. 7, pp. 5954-5963, Jul. 2019.

Y. Matsubara, D. Callegaro, S. Baidya, M. Levorato, and S. Singh,
“Head network distillation: Splitting distilled deep neural networks for
resource-constrained edge computing systems,” IEEE Access, vol. 8,
pp. 212177-212193, 2020, doi: 10.1109/ACCESS.2020.3039714.

A. Nazir, R. N. Mir, and S. Qureshi, “Exploring compression and paral-
lelization techniques for distribution of deep neural networks over edge—
fog continuum—A review,” Int. J. Intell. Comput. Cybern., vol. 13, no. 3,
pp. 331-364, Jun. 2020.

M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN
accelerators,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2016, pp. 1-12, doi: 10.1109/MICRO.2016.7783725.
Veeramanikandan, S. Sankaranarayanan, J. J. P. C. Rodrigues, V. Sugu-
maran, and S. Kozlov, “Data flow and distributed deep neural network
based low latency IoT-edge computation model for big data environment,”
Eng. Appl. Artif. Intell., vol. 94, Sep. 2020, Art. no. 103785.

L. U. Khan, S. R. Pandey, N. H. Tran, W. Saad, Z. Han,
M. N. H. Nguyen, and C. S. Hong, “Federated learning for edge
networks: Resource optimization and incentive mechanism,” [EEE
Commun. Mag., vol. 58, no. 10, pp. 88-93, Oct. 2020.

VOLUME 9, 2021

SOUMYALATHA NAVEEN (Student Member,
IEEE) received the M.Tech. degree from
Visvesvaraya Technological University, India. She
is currently a Research Scholar with the School of
Computer Science and Engineering and an Assis-
tant Professor with the School of Multidisciplinary
Studies, REVA University, Bengaluru, India. Her
main research interests include edge computing,
the Internet of Things, deep learning, intelli-
gent IoT systems, and optimization at resource
constraint IoT device.

MANJUNATH R. KOUNTE (Senior Member,
IEEE) received the bachelor’s degree in electron-
ics and communication engineering and the mas-
ter’s degree in computer network engineering from
Visvesvaraya Technological University, Belgaum,
India, and the Ph.D. degree in the domain of
machine vision from JAIN University, Bengaluru,
in 2017. He is currently serving as an Associate
Professor and the Head for the Department of
Electronics and Computer Engineering, School of
Electronics and Communication Engineering, REVA University, Bengaluru.
He has more than 13 years of teaching, research, and administrative experi-
ence. He has published one book and more than 40 peer reviewed publica-
tions, including 12 journals. He is a reviewer of various reputed international
journals. He is also the Head of the Machine Learning and Blockchain
Laboratory, REVA University, India. His research interests include
machine learning, video processing, IoT edge computing, and blockchain
technologies.

MOHAMMED RIYAZ AHMED (Senior Member,
IEEE) received the B.E. and M.Tech. degrees in
electronics and communication engineering and
computer networking from Visvesvaraya Tech-
nological University, Belgaum, India, in 2007
and 2010, respectively, and the Ph.D. degree in
electronics and communication engineering from
JAIN University, Bengaluru, India, in 2016.

Since 2011, he has been with REVA University,
Bengaluru, where he is currently an Associate Pro-
fessor and an Assistant Director with the School of Multidisciplinary Studies.
He is an Advisor of IEEE EMBS Student Chapter and a Mentor to IEEE
ComSoc Student Chapter at REVA University. He is also the founder and
the PI of the CPS Laboratory, REVA University. He is an advisor and the
consultant to a number of higher educational institutes for their transfor-
mation into an Entrepreneurial University for knowledge economy. He is
involved in investigation and teaching of design thinking as an enabler for
individual, institutional, and international sustainable development. He has
published more than 100 research papers in refereed journals and interna-
tional conferences and as an invited speaker. His research interests include
the computational cognitive neuroscience, WSNs, 5G and beyond, genomic
data sequencing, tribology, neuromorphic engineering, spintronics, the IoT
and edge computing, and green technologies. He has served as the TPC
Member for IEEE ICAECC Conference and a technical reviewer for seven
IEEE journals and transactions along with numerous achieved journals and
conference proceedings.

160621

http://dx.doi.org/10.1109/ACCESS.2020.3039714
http://dx.doi.org/10.1109/MICRO.2016.7783725

