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ABSTRACT The increased penetration of intermittent renewable energy sources and random loads has
caused many uncertainties in the power system. It is essential to analyze the effect of these uncertain factors
on the behavior of the power system. This study presents a new powerful approach called probability-boxes
(p-boxes) to consider these uncertainties by combining interval and probability simultaneously. The proposed
method is appropriate for problems with insufficient information. In this paper, the uncertainty in distribution
functions is modeled according to the influence of natural factors such as light intensity andwind speed. First,
the p-boxes load flow problem is studied using an appropriate point estimation method to calculate statistical
moments of probabilistic load flow (PLF) outputs. Then, the Cornish–Fisher expansion series is used to
obtain the probability bounds. The proposed approach is analyzed on the IEEE 14-bus, and IEEE 118-bus
test systems consist of loads, solar farms, and wind farms as p-boxes input variables. The obtained results
are compared with the double-loop sampling (DLS) approach to show the proposed method’s precision and
efficiency.

INDEX TERMS Cornish-Fisher expansion series, double-loop sampling, parameterized p-boxes, probabilis-
tic load flow, probability bounds.

I. INTRODUCTION
Load flow (LF) problem has been used in electric power
system fields, such as generation scheduling and operation.
LF’s problem involves solving non-linear equations. Sev-
eral reliable techniques, such as Fast-Decoupled and Newton
Raphson [2], have been proposed to solve it. However, the LF
problem’s input data includes uncertain errors due to several
different causes, such as power forecast errors [3]–[5], grid
parameters measurement errors. Ignoring these uncertainties
will lead to errors in analyzing the behavior of the power
network. So far, three general methods have been proposed to
address these uncertainties in the LF problem; probabilistic,
fuzzy, and interval methods.

In probabilistic methods, it is assumed that input data obey
precise probability distribution, and the parameters of the
distribution functions are precisely specified. Three different
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approaches are proposed to solve the PLF [6]: the numeri-
cal method, analytical method, and approximation method.
Monte Carlo simulation (MCS) is the most widely used
solution between numerical methods and provides accurate
results [7]. Nevertheless, MCS is time-consuming because it
requires analyzing many samples to obtain accurate results.
The analytical techniques operate based on assumptions and
simplification of LF equations [8], [9]. The linearization can
significantly reduce the computation burden, but simplifi-
cations cause more errors than the MCS. In approximation
techniques, the PLF is studied by employing determinis-
tic methods. They are faster than numerical and analytical
methods [10], [11].

The uncertainty in renewable energy sources (RESs) and
loads are typically complicated, and obtaining accurate data
about probability distributions associated with them is chal-
lenging. However, to overcome these problems, the interval
approach can be used to specify the output changes. In the
interval approach, the uncertainty in an input variable is
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expressed as the interval. The interval calculation methods
are performed in two ways: interval arithmetic or affine arith-
metic. Several techniques have been suggested to solve the
LF based on the interval arithmetic method. They are largely
based on non-linear equations through iterative approaches
such as Newton’s technique [12] and the Krawczyk-Moore
technique, [13]. These techniques are not suitable for ana-
lyzing nonlinear equations due to interval increase, which is
caused by the relationship among intervals [14]. To address
this shortcoming, affine arithmetic has been suggested. The
interval is illustrated as a central value and weighted partial
deviation as the affine arithmetic’s independent uncertainty
sources. In affine arithmetic, because the relationship among
intervals is persistent, the interval calculation precision is
improved [15].

The probabilistic model’s main disadvantage is that the
exact value of the probability distribution functions’ (PDF)
parameters must be precisely determined beforehand. How-
ever, constructing an accurate probability distribution is dif-
ficult. Therefore, the use of probabilistic approaches is not
always possible. In the interval LF, only the upper and lower
bounds of the input uncertainties are determined, so its mod-
eling is easy, and the obtained results are numerous intuitive.
However, the probabilistic structure of the input uncertainties
is not considered, which causes the probabilistic behavior of
the variables to be ignored.

The fuzzy LF is represented by fuzzy set theory [16], [17]
of which the random variables are illustrated as the pos-
sibility distribution, and the LF state possibility distri-
bution is computed, but it is not easy to use directly
in the LF problem. In short, fuzzy LF is difficult
to be modeled; therefore, the employment of which is
bounded.

In recent years, to consider uncertainties, a model based
on probability and interval has been developed [18], [19]
as the p-boxes; in this model, the uncertainty in a random
variable is determined by the upper and lower bounds of
the cumulative distribution function (CDF). The p-boxes
model combines interval and probability models to express
a stochastic variable’s uncertainty, so it can be employed
to deal with problems lacking adequate data efficiently.
The p-boxes are divided into two varieties, parameterized
and non-parameterized [20]. The parameterized p-boxes
expressed all feasible distributions resulting from a specified
distribution function, whose parameters are as the interval.
In fact, for a parameterized p-box, the distribution type of
a random variable is beforehand known, but some of its
distribution parameters could only be given intervals due
to insufficient data. The non-parameterized displaying con-
tains all feasible non-decreasing distributions lying within
its lower and upper CDFs. Theoretically, the interval-valued
distribution parameters can be simply specified employing
the interval estimation method [19]. In table 1, this method
is compared with other methods. According to this table,
p-boxes and simplicity in modeling can be utilized in prob-
lems without sufficient information.

In this paper, the uncertainty LF’s is studied based on the
parameterized p-box to consider the uncertainties of load and
RESs, and presents a new PLF model by combining interval
and probability approaches to solve the problem of obtaining
the exact CDF of PPF inputs in cases where historical data are
insufficient. The proposed approach includes two procedures:
(i) statistical moment estimation (ii) obtaining probability
bounds. The moments of the PLF outputs are calculated by
applying the point estimation method, and also, the Cornish-
Fisher series is employed to obtain CDFs of outputs. There-
fore, the proposed method estimates the statistical moments
faster than the DLS method, and also the probability bounds
are obtained with great accuracy.

The proposed method is numerically studied, and the
results obtained by the present method are compared with the
DLS approach in the standard IEEE 14-bus and IEEE 118-bus
systems.

This paper is organized as follows. The problem definition
is presented in section 2. In section 3, the proposed idea is
explained; in section 4, the IEEE 14-bus and IEEE 118-bus
systems numerical results are discussed, and the conclusion
is provided in section 5.

II. PROBLEM DEFINITION
A. BASIC CONCEPTS
In many practical problems, adequate data are not available to
obtain precise probability distributions of the input variables.
In these cases, the p-box model can be applied to illustrate the
uncertainty in a variable. The p-box of a random variable x is
specified by its lower and upper bounds as F(X ) ≤ F(X ) ≤
F̄(X ) where F(X ) shows the lower bound of the p-box and
F̄(X ) shows the upper bound of the p-box.

The imprecision in the parameters of the distribution func-
tion is determined using the interval model. The p-box of
random variable x is expressed as [20]:

FPX {FX (x; θ)} : θò
[
θL , θR

]
(1)

FX (.) is the CDF of the random variable, and θ contains
all distribution parameters that are defined as an interval.
Also, L and R denote the lower and upper bounds of an
interval value, respectively. The parameterized p-box of a
normal random variable with an exact standard deviation and
imprecise mean µò[µL , µR] is express as:

FPXN = {FXN (x;µ, σ) : µò
[
µL , µR

]
(2)

B. P-BOX LOAD FLOW MODEL
LF problem is the most important tool in the power system
study to calculate the bus angle, voltage magnitude, etc.
LF equation is defined as follows:

W = H (X1,X2, . . . ,Xn) (3)

where vectors X and W are input and output LF variables,
respectively. According to the above equation, the input vari-
ables’ stochastic behavior causes the LF outputs’ stochastic
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TABLE 1. Different method for uncertainty load flow analysis.

behavior. The deterministic LF does not consider uncertain-
ties of input data such as power generation and consumption.

Therefore, probabilistic, interval, and fuzzy approaches
should be applied to consider the uncertain parameters in LF.
In the PLF model, the input data distribution function must
be precisely specified beforehand, but accurate data are not
available to calculate the exact distribution of input variables.
In the interval approach, only the upper and lower bounds of
inputs are specified, so the variables’ probabilistic structure
is not considered and makes the modeling of variables not
real. Finally, the application of fuzzy LF is limited because
modeled is hard. Therefore, the p-box can be employed to
specify LF problem inputs. The purpose of the p-boxes anal-
ysis is to obtain output bounds considering p-box inputs.
In the p-box model, inputs are as p-box, so the output are
also p-box. Assume that vector X = (x1, x2, . . . , xm)T rep-
resents an m-dimensional independent input random variable
vector of the LF problem. Which are defined by the distribu-
tion functions (FX1 (x1; θ1) ,FX2 (x2; θ2) , . . . ,FXm (xm; θm)),
Where FX (.) is the CDF of a random variable; θ contains all
interval distribution parameters. The p-boxes analysis needs
to calculate the CDFs as follows:

W_X = min{HF (f ; θ )}, WX = max{HF (f ; θ )} (4)

whereW_X andWX are lower and upper bounds of the p-boxes
LF outputs, respectively. These bounds will include all fea-
sible CDFs of the outputs with the changes θ . In this paper
employing the point estimation method to calculate statistical
moments and the Cornish-Fisher series to calculate the CDFs,
the PLF outputs probability bounds are obtained with high
accuracy.

III. PROPOSED ALGORITHM
This section proposes the LF problem with parameterized
p-box input variables. DLS is an easy method for analyzing
p-boxes to obtain probability bounds [21]. The DLS has two
sampling loops: 1) parameter loop: This loop is associated
with distribution functions’ parameters. The parameter loop
includes a sampling of different values for a set of distribution
parameters specified as intervals. 2) Probability loop: This
loop is associated with PDFs. This loop includes a sampling
of distribution functions whose parameters are known. The
probability loop is essentially a MCS that determines the
statistical moments of the outputs. These two sampling loops
cause the very low efficiency of this method. In the proposed
approach, theMCS in the probability loop ofDLS is removed,
and the point estimation method is used to calculate the
statistical moments. Finally, the CDF of outputs is calculated

using the Cornish-Fisher series. The proposed approach is
divided into two main steps, 1) the statistical moment bounds
of the PLF outputs are computed using the point estimation
method, 2) the probability bounds are obtained by applying
the Cornish-Fisher expansion series. The calculation step of
the proposed approach is shown as follows:
Step 1: In the first step, set the number of iterations in the

parameter loop (n = number of iteration).
Step 2: Define all input uncertain parameterized P-box

X = (x1, x2, . . . xp), where x is the input random variable,
and p is the number of input parameterized P-boxes.
Step 3: Define interval distribution parameters (parameter

space), as, θ =
(
θ1, θ2, . . . θp

)
, θ ∈ [θL , θU ], Which θ

indicates interval distribution parameters and the L and R rep-
resent the upper and lower bounds of the interval distribution
parameters, respectively. These bounds are essential because
they express all imprecision in the PLF model.
Step 4: From the previous step, randomly select a point of

the parameter space as θp,j = θL + [θU − θL] × U [0, 1],
where U is a uniform distribution function.
Step 5: Calculate the statistical moments of the outputs

for the selected points θp,j in step 4, using the appropriate
point estimation method, mk,j = [m1,j,m2,j] where k is
moments order. In the appropriate point estimation, to calcu-
late the PLF’s statistical moments, the appropriate conversion
is applied to transform non-normal input stochastic variables
to their standard space. The description of this approach is
provided in [9].
Step 6: Go back to Step 4; repeat for j = 1, . . . , n.
The process of computing moments, iterated for n ran-

dom points in the parameter space. If the number of itera-
tions is over, compare the results to determine the statistical
moment’s interval, mLk = min[

(
mk,j

)
],mUk = max[

(
mk,j

)
].

Step 7: In each using the calculated statistical moments
in Section 5, the CDFs obtain using the Cornish-Fisher
series [22].
Step 8: Connect all the CDFs from the previous Step to

specify the PLF outputs’ probability bounds. The flowchart
of the above method is given in Fig. 1.

IV. RESULTS
The performance of the proposed method is studied using
the modified IEEE 14-bus and IEEE 118-bus systems. These
cases consist of loads, solar farms, and wind farms.

The results calculated by the proposed method are com-
paredwith the DLSmethod. The probabilistic models of wind
turbines power generation and the output power of the solar
farms are taken from [23]. We evaluate the precision of the
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FIGURE 1. Flowchart of the proposed method.

proposed approach, with used relative error-indices. These
definitions can be illustrated as follows:

Eµ =

∣∣∣∣µ− µDLSµDLS

∣∣∣∣× 100% (5)

Eσ =

∣∣∣∣σ − σDLSσ

∣∣∣∣× 100% (6)

where µ is the mean value, and σ is the standard deviation.
These indices determine the error of moments computed by
the proposed method from DLS. The simulations were pro-
duced in the MATLAB environment, and MATPOWER [24]
was employed to solve the deterministic LFs on a personal
system with a 2.2-GHz processor and 4GB of RAM.

A. IEEE 14-BUS TEST SYSTEM
In the modified IEEE 14-bus test system, six additional RESs
are integrated that consist of three wind farms at bus num-
bers 4, 5, and 6 and three solar farms at bus numbers 9, 13,
and 14. The probabilistic model of loads are taken from [25].
The correlations among loads, solar farms, and wind farms
are defined as a correlation coefficient matrix. The correlation
coefficient ρ = 0.2 is considered for uncertain loads. The
correlation coefficient between the wind farms located in
buses 6 and 13 is ρ = 0.6 and wind farms located at buses 3
and 6 are considered independent. The correlation coefficient
between the solar farms located in buses 5 and 9 is ρ = 0.4
and the solar farm located at bus 14 is considered indepen-
dent. For both methods, 100 iterations are executed in the
parameter loop, and the selected points of the parameter space
are the same for both methods. The number of simulations
in the probability loop (MCS) of the DLS method is 10000,
considered to stop MCS, and the stopping rule based on the

second moment is used [26]. For the proposed approach, the
appropriate point estimation method needs (ω × τ)+1 simu-
lations [9], if the number of iterations is n in parameter loop,
the computational burden of the proposed method would be
n (ω × τ + 1). In this modified IEEE 14-bus test case, there
are 17 random variables (ω), and the number of points (τ )
is four considered in univariate integration. Therefore, the
number of iteration is 69 for each iteration in the probability
loop. The CDFs are estimated to employ the Cornish-Fisher
series.

In this case, to analyze the uncertainty in the parameters
of distribution functions, the level of uncertainty is 10% in
the middle of the mean of the normal distribution function
[µ− 0.1×µ,µ+ 0.1×µ] and 5% uncertainty in the middle
of the Weibull and beta distributions parameters [α − 0.05×
α, α + 0.05× α], [β − 0.05× β, β + 0.05× β] supposing.
The proposed approach is used to analyze the LF problem

with p-boxes inputs. Fig. 2 show the probability bounds of
active power flow from bus 4 to bus 9 for the DLS method
and the proposed method. As can be seen from Fig. 2, the
CDF acquired by the two approaches is almost the same, and
the fitting, in this case, is perfect. Also, the cumulative curve
of the lower and upper probability distributions is almost
the same, which shows that the standard deviation does not
change much; therefore, it is the mean of outputs that creates
two different probability bounds.

Table 2 lists the bounds of mean and standard deviation
values given using two methods. In this table, Vmag−2 is the
voltage magnitude at bus 2, and Vang−4 is the voltage angle on
bus 4. Pbr,4−9 is the active power flow through line 4–9, and
Qbr,2−3 is the reactive power flow through line 2-3. It can be
seen from Table 6, that the changes in mean values computed
by the proposed method based on (5) fall within 0.0356%
compared to the DLSmethod; which verifies the efficiency of
the proposed approach, and the standard deviation bounds are
close to each other, which corresponds to the results shown in

B. COMPARISON OF RESULTS WITH PLF
In this section, p-boxes LF is compared with the PLF, which
includes precise distribution parameters. The random vari-
ables with exact parameters are replacedwith p-box variables.
The PLF model is performed in two scenarios. In the first
scenario, the mean values of the interval distribution parame-
ters are considered in PLF inputs and in the second scenario,
the values randomly are selected. Fig. 3 show the comparison
of different scenarios with the p-box LF. As it is observed
from the figure, the obtain CDFs, in these cases, are between
the probability bounds obtained by the p-box LF method.
Table 3 shows the mean and standard deviation values of the
selected variables given for two scenarios. It is seen that the
results obtained from these scenarios are between the values
obtained by the proposed method.

C. IEEE 118-BUS TEST SYSTEM
In themodified IEEE 118-bus system, eight additional energy
sources consist of five wind farms at bus numbers 2, 28, 38,
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TABLE 2. Sample results (p.u.).

TABLE 3. Result of Scenarios (p.u.).

TABLE 4. Characteristics of solar farms.

TABLE 5. Characteristics of wind farms.

57, and 108 and three solar farms at bus numbers 67, 70, and
71. The solar irradiation and wind speed characteristics are
given in Tables 4 and 5, respectively. Psf and Pwf are the rated
power of solar farms and capacity of wind farms, respectively.
Sstd is solar irradiation and Sc is certain irradiation. Vi,Vr
and Vo denoted the cut-in, cut-out, and rated wind turbine
speed. αL and αU are the lower and upper bounds of the scale
parameter of distribution functions, respectively. βL and βU

are the lower and upper bounds of the shape parameter of
distribution functions, each node’s active power obeys the
uniform and normal distribution as given in [25]. Also, the
parameters of loads that are modeled as p-boxes are given in
Table 6. According to the quantity of available information
for each of the input random variables, each distribution
function’s accuracy can be different. Therefore, in this case,
the value of changes in the parameters is considered vari-
ous. In this test case, for the p-box LF analysis, all energy
sources added and 20 loads, considered as the p-box random

TABLE 6. Parameters of loads (p.u.).

FIGURE 2. P-box of active power flow from line 4-9 (MW).

variables; other loads are considered as distribution functions
with precise parameters. Similar to the previous case, the
correlation coefficients among the uncertainties are consid-
ered. The correlation coefficient ρ = 0.2 is considered for
uncertain loads. The correlation coefficient between the wind
farms located in buses 2 and 28 is ρ = 0.6, and the correlation
coefficient between wind farms located at buses 38 and 57 is
ρ = 0.4.

The wind farms located at bus 108 is considered inde-
pendent. The correlation coefficient between the solar farms
located in buses 67 and 71 are ρ = 0.4, and the solar farm
located at bus 83 is considered independent. In this case, for
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TABLE 7. Sample results (p.u.).

FIGURE 3. Comparison of p-box load flow with probabilistic load flow for
active power flow from line 4-9 (MW).

FIGURE 4. P-box of active power flow from line 19-34 (MW).

both methods, 100 iterations are executed in the parameter
loop. In this modified IEEE 118-bus test case, there are 107
random variables, and the number of points is two considered
in univariate integration. Therefore, the number of iteration is
215 for each iteration in the probability loop.

Fig. 4 show the p-boxes of active power flow from bus 19
to bus 34 for both methods, respectively. Based on this fig, the
two approaches’ CDFs are almost the same, and the fitting,
in this case, is also perfect. As shown in Fig 4, the range
of changes in the mean parameter includes both negative
and positive values. This indicates that the uncertainty in the
distribution function parameters has a significant effect on the
outputs.

Table 7, shows the mean and standard deviation values
obtained by the two methods. In this table, Vmag−28 is the
voltage magnitude at bus 28, Vang−32 is the voltage angle on
bus 32, Pbr,19−34 is the active power flow through line 19–34,
and Qbr,64−68 is reactive power flow from bus 64 to bus 68.

FIGURE 5. Comparison of p-box load flow with probabilistic load flow for
active power flow from line 19-34 (MW).

TABLE 8. Result of scenarios (p.u.).

As can be seen, the proposed method’s accuracy in estimating
statistical moments is very close to the DLS method.

D. COMPARISON OF RESULT WITH PLF
In this section, to compare the p-box LF results with PLF, two
scenarios are considered. In the first scenario, the parameters’
main values are considered in PLF inputs, and in the second
scenario, the values are randomly selected. The results of this
comparison are shown in Fig. 5. Based on this fig, the PLF
results are located between the probability bounds of p-box
LF. In the Table 8 mean and standard deviation values of the
selected variables are given for both scenarios. It can be seen
that the values obtained are in the intervals of the p-box LF.

The calculation time required for calculations in the IEEE
14-bus system in the DLSmethod is 57.24 seconds and for the
proposed method is 5532.67 seconds. In the 118-bus system,
the DLS method takes 11819.74 seconds, and the proposed
method takes 227.69 seconds. So not only the proposed
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TABLE 9. Mean value for different iteration of parameter loop (IEEE 14-bus).

TABLE 10. Mean value for different iteration of parameter loop (IEEE 118-bus).

approach provides accurate results, but also it is faster than
the DLS method.

E. CONVERGENCE ANALYSIS
As a stochastic simulation method, more simulations in the
parameter loop increase the accuracy of the results. However,
by solving the problem in different sample sizes, some studies
can be performed to determine convergence. In this subsec-
tion, sensitivity to the number of parameter loop iterations is
studied. For this study, the p-box LF was made for different
iterations in the parameter loop (5, 30, 100, 300, and 500).
Mean have been used to measure the parameter loop the
accuracy. The results are shown in Tables 9, 10. It is observed
that 100 iterations are appropriate for two case studies, and in
more iterations, the changes in the means bounds are low.

V. CONCLUSION
In this paper, PLF based on the parameterized p-box is
analyzed; loads and renewable energy sources (RESs) are
modeled as p-boxes and the obtained results are probability
bounds of the PLF outputs. There are p-box variables in the
input data, so the obtained result is not the precise probability
distribution of the outputs. However, they include a set of
feasible distributions between the upper and lower prob-
ability bounds. The proposed approach framework allows
uncertainty in the parameters of distribution functions to be
analyzed. Therefore, it can be used in problems that lack suf-
ficient information. This approach was analyzed, in the IEEE
14-bus and IEEE 118-bus test systems, including loads, solar
farms, and wind farms. Load power, solar radiation, andWind
speed were modeled by Gaussian, Beta, andWeibull distribu-
tion functions as p-boxes random variables, respectively. The
precision of the results was comparedwith the DLS approach.
In the proposed method, statistical moments are calculated by
replacing the point estimation method with MCS in the DLS
method’s probability loop. The CDFs of outputs computed

using the Cornish-Fisher expansion series. Comparing the
results showed that the proposed approach provides results
close to the DLS method, and the computation time is much
lesser than the DLS method.
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