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ABSTRACT Image captioning can show great performance for generating captions for general purposes,
but it remains difficult to adjust the generated captions for different applications. In this paper, we propose
an image captioning method which can generate both imageability- and length-controllable captions. The
imageability parameter adjusts the level of visual descriptiveness of the caption, making it either more
abstract or more concrete. In contrast, the length parameter only adjusts the length of the caption while
keeping the visual descriptiveness on a similar degree. Based on a transformer architecture, our model is
trained using an augmented dataset with diversified captions across different degrees of descriptiveness. The
resulting model can control both imageability and length, making it possible to tailor output towards various
applications. Experiments show that we can maintain a captioning performance similar to comparison
methods, while being able to control the visual descriptiveness and the length of the generated captions.
A subjective evaluationwith human participants also shows a significant correlation of the target imageability
in terms of human expectations. Thus, we confirmed that the proposed method provides a promising step
towards tailoring image captions closer to certain applications.

INDEX TERMS Machine learning, semantics, task analysis, image captioning, psycholinguistics.

I. INTRODUCTION
Image captioning shows great performance in generating cap-
tions for general purposes and receives great attention in the
research community [15], [22], [43]. However, the require-
ments of different applications such as news articles, social
media, assistive technology, and so on, can be largely differ-
ent. It remains difficult to tailor the generated image captions
to a variety of such applications. The reason is manifold:
First, image captioning approaches usually target to generate
captions close to those in existing training data, and then are
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evaluated based on their similarity to the testing data. Both
the datasets and the evaluation metrics are made under the
assumption of performing general-purpose image captioning.
This generally results in a very low diversity of generated
captions, as some research has tried to tackle [9], [39], [41].
Second, the perception and the style of the generated captions
are rarely considered, although some research looked into
captioning styles and sentiment [3], [11], [24] and the visual
descriptiveness of captions [36]. Recent research towards
caption diversification propose introducing parameters such
as length-controllable models [7].

In this paper, we explore the diverse generation of image
captions with two controllable parameters: imageability and
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FIGURE 1. Proposed imageability- and length-controllable image captioning model. The imageability parameter allows for adjusting the visual
descriptiveness on captions with the same length, while the length parameter changes the length for a fixed degree of visual descriptiveness. Both
parameters can be changed at the same time to allow for creating diverse captions.

length. First, imageability, a concept derived from Psycholin-
guistics [27] which describes whether a word gives a clear
mental image, is used. Its usage for image-captioning has
been explored in our previous work [36], yielding promising
results for customized image captions. In context of caption-
ing, it can be used to adjust the visual descriptiveness of
captions, making them being either a more abstract or more
concrete description of the scene. Second, length provides
another dimension of customizability of captions for differ-
ent applications. While a news article might prefer a short
abstract caption, a caption for assistive technology would be
ideally longer and more descriptive. Further, by introducing
two controllable variables, the proposed model can adjust
both dimensions individually. The overall idea is illustrated
in Fig. 1, showing how different settings for imageability and
length can yield to vastly different captions. We believe that
this step towards customized captioning can be a promising
direction for application-tailored captioning.

This research is based on our previous work published
in a conference proceedings [36]. This initial work showed
promising results for imageability-aware captioning with an
LSTM-based architecture, yet yielding a still mixed correla-
tion to human perception and often unnatural captions. In this
follow-up research, we employ a transformer-based caption-
ing model [46] in order to greatly improve the naturalness of
the results, making it more viable for actual use in targeting
different applications. A data augmentation method similar
to our previous work is used to diversify captions for visual
descriptiveness. Furthermore, a length-controllable parame-
ter [7] is newly introduced, in order to allow for adjusting the
generated captions along a second dimension. With this, our
combined model allows for changing customization across
two dimensions independently. Note that imageability and
length encode different things; Changing imageability aims
to change visual descriptiveness of the caption for the same
length, while length aims to change the wordiness while
keeping contents similar. As such, we believe the proposed
method, being able to control them individually, is a great
first step towards tailoring captions to single applications
with different needs of contents and descriptiveness. The
evaluations show a greatly improved performance when gen-
erating customized captions, beating comparison methods.
Especially, a crowd-sourced subjective evaluation shows a

significant improvement over our previous work [36], now
closely correlating with the intended perception of the gener-
ated captions.

Our contributions can be summarized as follows:

• We propose an imageability- and length-controllable
image captioning framework which can create diverse
captions closely tailored to various applications.

• To the best of our knowledge, this is the first captioning
framework which allows to adjust both imageability and
length independently.

• The evaluation shows a significant improvement over
our previous work for imageability-aware image cap-
tioning, partially due to the introduction of the
transformer-based model.

II. RELATED WORK
In this section, we discuss related work regarding image cap-
tioning and imageability. The related work on image cap-
tioning can be categorized into general-purpose image cap-
tioning and affective image captioning. While the former
simply tries to summarize an image in a short sentence, the
latter puts focus on attributes like emotion/sentiment, style,
user-feedback, or descriptiveness. A rough overview of the
introduced work is visualized in Fig. 2.

A. GENERAL-PURPOSE IMAGE CAPTIONING
With the rise of deep learning-based models such as Long
Short-Term Memory (LSTM) [14], general-purpose image
captioning [16], [40], [43] achieved a great boost in perfor-
mance.

More recently, transformer models [10], [37] using an
attention mechanism have attracted researchers’ attentions
due to a very high performance in many natural language
processing-related tasks. Following, many recent state-of-
the-art models for image captioning [18], [46], [47] make use
of a transformer-based architecture.

Zhou et al. [46] combine a transformer model with atten-
tion on visual features extracted from images [18], [32] for
image captioning yielding very promising performance.Most
recently, Cornia et al. [5] and Pan et al. [28] added more
sophisticated attention modules to further improve the per-
formance of transformer-based image captioning.
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FIGURE 2. Related work in image captioning. The related work is split
into general-purpose and affective image captioning. The former tries to
simply summarize image contents in a neutral short phrase, while the
latter puts a strong focus on the emotion/sentiment, style, feedback,
descriptiveness, or other user perception of the output phrase.

B. AFFECTIVE IMAGE CAPTIONING
Rather than performing a neutral contents-based image cap-
tioning for general-purpose usage, there has been some
research focus on image captioning in context of affective
computing such as emotions and impressions [3]. They can
be loosely categorized into four kinds of affective output:

First, Mathews et al. [24] propose a method which allows
for customizing sentiment, yielding positive or negative sen-
timent captions.

Second, Gan et al. [11], Guo et al. [13], and
Zhao et al. [45] explore the generation of styles such as
humorous or romantic, which is further extended in a
transformer-based model [34] to concepts like sweet, dra-
matic, anxious, arrogant, and so on.

Third, a different approach has been investigated by
Cornia et al. [4], which allows user-interactive captioning
where the user can specify image areas to be explained in a
caption as well as their order. Chen et al. [2] propose similar
ideas where scene graphs are used to fine-tune customized
image captions.

Lastly, some approaches [7], [36] target specifying the
detail and amount of output. Deng et al. [7] propose a
length-controllable transformer model which can generate
captions with fixed contents but a flexible length. In our pre-
vious work [36], we proposed a method for image captioning
which can control the imageability of the generated captions.
Imageability is a concept derived from Psycholinguistics first
introduced by Paivio et al. [27], describing how easy it is
to mentally imagine a word. It has received some attention
in research for multi-modal analysis [25], [44], providing a
promising opportunity to use it as a parameter for customized
captioning.

In this research, we target the last discussed category
of affective image captioning, proposing a method which
allows for a high degree of customizability in descriptive-
ness of outputs. We build upon our previous work [36] on
imageability-aware captioning using an LSTM-based model.
We greatly improve the performance and naturalness of the
generated captions by introducing a transformer-based cap-
tioning model [46]. As an additional parameter, we further
introduce length-controllable captioning [7] to build a model
which can generate captions with two independent parame-
ters of customization.

III. IMAGEABILITY- AND LENGTH- CONTROLLABLE
IMAGE CAPTIONING FRAMEWORK
In this section, we introduce the proposed framework
for imageability- and length-controllable image captioning.
For the imageability-controllable parameters, an augmented
dataset with a high diversity in visual descriptiveness is
needed. The augmentation and caption imageability estima-
tion used in our method is largely based on our previous
work [36], but briefly introduced in Sec. III-A due to this task
being specialized and not yet receiving wide-spread attention.
The proposed model itself is introduced in great detail in
Sec. III-B.

A flowchart of the method is illustrated in Fig. 3.

A. DATASET PREPARATION
Following, we discuss the dataset needed for the proposed
method. While the length-embedding of the frame-
work is based on length-aware caption decoders as pro-
posed by Deng et al. [7], the knowledge used for the
imageability-embedding is trained on a diversified dataset.
Thus, we first use a data augmentation technique to increase
the number of captions in the dataset. The main focus lies on
increasing the variety of visual descriptiveness of captions.
Thus, we substitute information with more abstract terms,
making captions more abstract for training. Next, the caption
imageability is calculated for each caption, which is used for
the imageability embedding during training.

1) DATA AUGMENTATION
Existing image captioning datasets such as Microsoft
COCO [20] and Flickr30k [30] usually come with multiple
captions for each image. However, there is typically not much
diversity in terms of visual descriptiveness and each existing
caption describes the image in a roughly similar way. For
imageability-controllable captioning, we are interested in a
large variety of descriptions, from abstract to visually descrip-
tive. Imageability as a concept derived from Psycholinguis-
tics [27] describes whether a word gives a clear mental
image. For this research, we assume a rough relationship
between visual descriptiveness and imageability, and thus use
it to approximate a metric for visual descriptiveness. For a
low target imageability, an ideal description would be some-
thing rather abstract, not mentioning many visual details.
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FIGURE 3. Flowchart of the proposed framework. A general purpose
image captioning dataset is augmented using word substitutions through
WordNet. This generates a diverse caption-dataset with different levels of
visual descriptiveness. For each caption, an imageability score is
calculated, which is then used for generating an imageability-embedding.
The proposed model incorporates both an imageability- and a
length-based embedding. The model itself is shown in Fig. 5.

In contrast, for a high target imageability, a very detailed
description of visual details in the caption would be expected.

To emulate this idea, the augmentation process substitutes
words in existing captions with more abstract terms. With the
help of the transformer architecture, the augmented data can
then help the network to identify abstract language and how
it would change captions. Similar to our previous work [36],
each noun in a given caption is substituted by their hypernym
according to its WordNet [26] hierarchy. We replace a noun
with up to five levels of hypernyms in order to generate
additional captions. Note, that we avoid going too close to
the WordNet root node by removing the top-most two layers,
as terms like object or item become too abstract for meaning-
ful training. For captions with multiple nouns, we generate
augmented captions for each noun separately. The idea is
visualized in Fig. 4.

2) CAPTION IMAGEABILITY ESTIMATION
In order to learn the relationship between an image and the
visual descriptiveness of a caption, we calculate the caption

FIGURE 4. Data augmentation. Using WordNet [26], we extract a
hierarchy of hypernym terms for each noun in the existing captions.
We pick up to five replacements for each noun, e.g., replacing pasture
with the terms {area, location, region, field, grassland }. Note that we
avoid replacements too close to the WordNet root node, as they would
become too abstract. As such, grass will only be augmented by {food,
plant}, but not with item or object which would come above. This process
is repeated for all nouns in every caption to create an augmented dataset
with more abstract wordings.

imageability. The basic idea is to use imageability values for
individual words composing the caption in order to calcu-
late a value representative for the whole caption. Existing
imageability dictionaries such as [6], [31], [33], [42] describe
imageability on a Lickert scale (e.g., on an interval of [1,7] or
[1,5]) from very unimaginable to very imaginable.

For caption-imageability estimation, we follow the same
approach as in our previous work [36]. We start with a
caption from the dataset and assume available imageabil-
ity labels for all its individual words. As this is a strong
assumption, we skip stop-words, numerals, and the similar.
For our experiments, we target English language, which also
influences some design decisions discussed onwards, but an
adjusted process is expected to work for other languages, too.
We generate a parsing tree using the Stanford CoreNLP [23]
framework. Next, we employ a bottom-up approach which
calculates a sentence imageability score from all its words’
imageability values along the parsing tree. We assume nouns
to become more descriptive when being modified by adjec-
tives (e.g., ‘‘black cat’’ being a less visually ambiguous
description than ‘‘cat’’). For multiple words on the same
level of the parsing tree, we define some simple rule set for
weighting: 1) If there are one or more nouns, the last noun
is the most significant and weighted the highest (e.g., ‘‘cold
apple juice’’ are modifications of ‘‘juice’’). 2) If there is no
noun, the first word is the most significant and weighted
the highest (e.g., ‘‘run fast’’ is a modification of ‘‘run’’).
We calculate the imageability of sub-trees using

I = xs
n∏

i=1(6=s)

(
2− e−xi

)
, (1)
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FIGURE 5. Proposed captioning model. The proposed model uses a transformer-based architecture. It is based on [7]
which allows for length-controllable captioning. Inspired by their architecture, the proposed methods adds an
imageability embedding layer which encodes the visual descriptiveness of captions. Using this, the resulting model
allows both imageability- and length-controllable output.

where xi (i = 1, . . . , n | i 6= s) is the score of each modifying
word and xs is the score of the most significant word. This
process is repeated bottom-up until reaching the root node
of the parsing tree. Lastly, the results are normalized using
f (x) = 1− e−x .

We employ this method and calculate the caption image-
ability values for all captions in the augmented dataset.

B. CAPTIONING MODEL
For the captioning model, we employ a BERT-based trans-
former model [46]. Deng et al. [7] apply this model for
length-controllable captioning, where they add a layer of
length-embedding to the language features. Inspired by this,
we add an extra layer of imageability-embedding based on
the augmented dataset with caption imageability estimations.
Our proposed model is illustrated in Fig. 5.

First, we introduce each type of embedding and the features
used for the training.

1) LENGTH EMBEDDING
The length embedding is implemented in the same fashion as
proposed by Deng et al. [7].

For a caption C = {ci}Ni=1, with ci representing each
word in a caption, we assign C a length level with the
range [Llow,Lhigh] according to its length N . Then, the
length-embedding matrixWl ∈ Rk×d (with k being the num-
ber of length levels and d being the embedding dimension)
is trained to differentiate image captions on different length
levels.

A one-hot vector tl ∈ Rd for the length l is generated. The
length embedding is then defined as

elen = W T
l tl ∈ Rd . (2)

2) IMAGEABILITY EMBEDDING
Inspired by the length embedding discussed before, we imple-
ment an imageability embedding in the same way. For each
caption, we generate an imageability embedding based on
the caption imageability estimation obtained in Sec. III-A.
We assign an imageability level i to a captionwithin a range of
(Ilow, Ihigh] according to its caption imageability I . Through
this, the existing caption imageability annotations are binned
into evenly-sized levels. The imageability-embedding matrix
Wi ∈ Ra×d (with a being the number of imageability levels
and d being the embedding dimension) is trained to differen-
tiate image captions on different imageability levels. ti ∈ Ra

represents a one-hot vector for the imageability level. Finally,
the imageability embedding becomes

eimag = W T
i ti ∈ Rd . (3)

3) VISUAL FEATURES
The model applies a Faster-RCNN [32] network pre-trained
on the Visual Genome dataset [17] to extract visual features.
Using this object detection model, the regions R = {ri}Mi=1
corresponding to M objects are detected. We extract region
features Fe = {fe,i}Mi=1, classification probabilities Fc =
{fc,i}Mi=1, and localization features Fl = {fl,i}Mi=1 for each
object in the image.

The visual features are then defined as

xri = W T
e fe,i +W

T
p [LN (fc,i),LN (fl,i)]+ evis, (4)

describing the visual vector xri for the region ri. Here, evis is
a learnable embedding for differentiating the image regions
from text tokens. The projection matrices We and Wp are
trainable and project the corresponding features into d-D
space. LN refers to layer normalization while [·, ·] represents
feature vector concatenation.
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4) LANGUAGE FEATURES
For an input caption C = {ci}Ni=1, we use a BERT-based
model [46] to obtain a word-embedding ew,ci ∈ Rd and a
location-embedding ep,i ∈ Rd .
The length- and imageability-embeddings are added to the

language features, which are defined as

xci = ew,ci + ep,i + elen + eimag. (5)

5) MODEL TRAINING
The proposed model is based on the language generation
model by Ghazvininejad et al. [12]. For a correct caption
T = {ti}Ni=1, which is randomly masked with tokens [MASK ],
the transformer network is fed with a masked caption C =
{ci}Ni=1. Next, the pair of visual and language features is fed
into the network, predicting the masked token. The model
is trained by minimizing the cross-entropy loss between the
correct token ti of the ground-truth caption and the masked-in
token ci as expressed by

L = −
N∑
i=1

l(ci) ti log ci. (6)

Note that ci = [MASK ] is an indicator function that is 1 only
when l(·), and 0 otherwise.

6) CAPTION GENERATION
Following Ghazvininejad et al. [12], we use the ‘‘Mask-
Predict-Update’’ method to generate captions. Initially, the
whole caption is masked with [MASK ] tokens. The feature
embeddings are fed into the transformer network in order
to predict a mask position and its most suitable vocabulary.
The process is repeated iteratively until the whole caption is
generated.

IV. EVALUATION
In this section, we evaluate our proposed image caption-
ing method. After discussing the environment in Sec. IV-A,
we illustrate some generated captions of the proposedmethod
in Sec. IV-B.

Following, we evaluate the approach from three angles:
First, Sec. IV-C discusses the performance of the model
measured by general-purpose image captioning metrics. The
length-controllable transformer-based method has already
been extensively evaluated in [7]. Therefore, for the second
and third experiments, we focus on a deeper evaluation of
the imageability-controllable part of the transformer-based
model and its differences over the previous LSTM-based
work [36] for generating captions with different visual
descriptiveness. As such, Sec. IV-D discusses the imageabil-
ity diversity of the generated captions, and Sec. IV-E the
performance in a crowd-sourced human evaluation.

A. ENVIRONMENT
1) DATASETS
We employ the Microsoft COCO [20] dataset as a baseline
for the data augmentation. For training and testing, we use

Karpathy splits [16]. The extended dataset is generated as dis-
cussed in Sec. III-A1, aiming for twenty captions per image.
For the imageability estimation of captions, we employ
two imageability dictionaries by Ljubešić et al. [21] and
Scott et al. [33]. As the former is a large estimated dictionary
while the latter is a small crowd-sourced one, we favor the
ground-truth imageability of the latter dictionary in case of
overlaps. Images which did not yield sufficient numbers of
captions through data augmentation or did not have suffi-
cient imageability word annotations were excluded from the
experiments. We end up with 109,115 images for training,
4,819 images for validation, and 4,795 images for testing.

2) IMPLEMENTATIONS
We use a pre-trained Bidirectional Encoder Representations
from Transformers (BERT) [10] model consisting of twelve
layers of transformers. For both imageability and length,
we define classes as discussed in Sec. III.
For the imageability-controllable parameter, we define five

levels of imageability. The imageability from dictionaries is
normalized to an interval of [0, 1]. Due to the distribution
of imageability values in the original datasets, virtually all
captions result in an imageability above 0.5 through the
method discussed in Sec. III-A2. Thus, splitting the result-
ing data evenly, we end up with the five imageability lev-
els: I-1 (imageability between (0.5, 0.6]), I-2 ((0.6, 0.7]),
I-3 ((0.7, 0.8]), I-4 ((0.8, 0.9]), and I-5 ((0.9, 1.0]) used for
training. For the experiment, we are interested in how the
imageability captures human perception, i.e., whether the
visual descriptiveness of different levels actually resemble
the expectations of a human. As neighboring imageability
levels are very close and sometimes perceptually overlap,
we evaluate three classes in order to understand the overall
trend of results —concretely choosing: Low (I-1), Mid (I-3),
and High (I-5).

For the controllable length parameter, we define four
length levels: L-1 (length of [7, 9] with 10 iterations of Mask-
Predict-Update), L-2 ([10, 14], 15 iterations), L-3 ([15, 19],
20 iterations), and L-4 ([20, 24], 25 iterations).

We evaluate all combinations of L-x and I-x regard-
ing their qualitative and quantitative results. We further-
more also evaluate a variant where we only use the
imageability-controllable features I-x and exclude the length-
embedding. The reason for this is that the length-controllable
transformer model have been already exhaustively evaluated
in [7], while the imageability-controllable part of the trans-
former model is a contribution of this paper.

3) COMPARISON METHODS
For comparison, we tested a selection ofmethods from related
work on the same datasets.

First, we want to understand how the performance of
our imageability- and length-controllable captioning method
compares to general-purpose captioning. Thus, in Sec. IV-C,
we compare our results to a general-purpose method,
‘‘Show, Attend, and Tell’’ (SAT) by Xu et al. [43], the
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TABLE 1. Example of generated image captions when changing the target imageability and the length at the same time. The results verify a promising
performance for generating diverse captions for different applications.

TABLE 2. Example captions as qualitative comparison. As TAYI [36] cannot generate length-aware captions, these examples use the proposed method
without the length embedding. The results show that the proposed method generates much more natural results for the same imageability setting, and a
higher variety of descriptiveness in general (bold highlights).

length-controllable approach LaBERT by Deng et al. [7]
(using their best-performing variant with L-2 for the compar-
ison), as well as general-purpose methods X-Transformer by
Pan et al. [28] andM2 by Cornia et al. [5].
Second, we include our previous work ‘‘Tell As You

Imagine’’ (TAYI) [36], which generates imageability-aware
captions using an LSTM-based approach. This work is not
trained on grouped imageability levels, but can generate
individual values of imageability I = [0.5, 0.6, . . . , 0.9].
To yield a comparable output, similar to the way we defined
levels in the proposed method, we generate captions for Low
(with I = 0.5), Mid (I = 0.7), and High (I = 0.9).
We use this as the main comparison method for experiments
in Sec. IV-D and IV-E, as it is to the best of our knowledge,
the only related work tailoring its output to imageability.

B. QUALITATIVE EVALUATION
Before looking into the quantitative metrics, we showcase
some examples of the output of the proposed method.
Table 1 shows the output for an example image where
imageability- and length-parameters were adjusted at the

same time. We can see that the customization works well
in both dimensions, allowing for a promising way to tailor
the model output to individual needs of applications. Note
that this also results in a high caption diversity which could
also be useful for many applications. To the best of our
knowledge, there is no other method which can generate
both imageability- and length-controllable captions. Thus,
we cannot provide a comparison method.

TAYI [36] is the only related work targeting imageability-
aware captioning. We compare it to our proposed model in
Table 2. In this case, we excluded the length-embedding,
resulting in results which roughly resemble those of length
level L-2. As we can see here, the output of our method vastly
outperforms this comparison method, making the results
much more natural. This is mostly a result from the switch
to a transformer-based architecture compared to LSTM used
in the comparison method.

For length-controllable captions, LaBERT [7] provides
an exhaustive analysis. As our architecture without the
imageability embedding is largely identical to their setup,
we thus skip a more detailed analysis of this parameter.
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TABLE 3. Evaluation through general-purpose image captioning metrics. The proposed method is compared to TAYI [36] which is the only other related
work aiming at imageability-aware captioning and [5], [7], [28], [43] in order to compare performance against general-purpose captioning models. Due to
the very different style of captions generated for different levels of imageability, the scores are split into three groups, highlighting the average
performance for a low, mid, and high target imageability. The bold values correspond to the highest value within the imageability-aware methods.

C. EVALUATION WITH IMAGE CAPTIONING METRICS
For this experiment, we evaluate our proposedmethod against
comparison methods [5], [7], [28], [36], [43] regarding
the general-purpose image captioning metrics BLEU [29],
CIDEr [38], ROUGE [19], METEOR [8], and SPICE [1].
The results are shown in Table 3. As general-purpose image
captioning and imageability-aware image captioning are
strictly speaking different tasks and not directly comparable,
we grouped these methods for better visibility.

Overall, the imageability-aware models yield a reason-
able performance across all metrics, despite the more recent
general-purpose methods outperforming them. As the pro-
posed method discusses a specialized task of imageability-
and length-controllable captioning, we did not expect to
achieve the best performance in these metrics. Rather than
performing the best, we want to aim for a reasonable per-
formance while providing an additional dimension of cus-
tomizability. Note that most of the evaluation metrics actually
do not consider, but rather punish, diverse captions and style
changes, as the evaluation is based on a direct compari-
son to a ground-truth annotation. As such, methods aiming
for diversification or affective computing commonly slightly
degrade performance in such metrics by their nature. The
method by LaBERT [7] outperformed our proposed method
in most metrics, but the results are close enough to verify
a similar performance. As we were interested in general-
purpose performance, we used the best-performing variant
(L-2) of their model.

Newer architectures such as [5], [28] further outperform
the proposed method. Because of this, future research could
investigate into whether these architectures could also be
beneficial for imageability-aware captioning.

Note that the nature of the approach, actively purposefully
changing contents of the output, would naturally decrease
their performance in terms of these general-purpose image
captioning metrics.

We can also see a great improvement over TAYI [36],
which also aimed for imageability-aware captioning. Here,
the proposed method outperformed the comparison method
on all metrics.

TABLE 4. Quantitative evaluation of imageability-controllable captions.
The proposed method is compared to TAYI [36] which is the only other
related work aiming at imageability-aware captioning. This table shows
the output range of the proposed model. The variety and imageability
range are indicators for the diversity of the generated captions. Note that
the root mean squared error (RMSE) is not directly comparable as the
comparison method is trained on discrete imageability values on an
interval of [0, 1] while the proposed method is trained on five
imageability levels (changing the interval to [0, 4]).

D. EVALUATION OF IMAGEABILITY-CONTROLLABLE
CAPTIONS
In this experiment, we evaluate the imageability-controllable
captions. Here, we analyze the variety of the generated
captions.

The results are shown in Table 4. We can see that the
proposed method is able to yield an overall increased variety
of captions. While TAYI [36] aims for generating individual
results for imageability between [0.5, 0.6, . . . , 0.9], most will
actually result in very similar or identical captions. Sim-
ilarly, the range of output imageability is rather compact.
In contrast, the proposed method can generate a higher vari-
ety of diverse captions, yielding up to five distinct captions
(i.e., usually having individual results for each imageability
level I-1 to I-5). Furthermore, the span of imageability is
higher, leading to a perceptionally larger difference between
the generated captions.

E. SUBJECTIVE EVALUATION
Lastly, in this section, we explore the human perception of the
generated captions. As the imageability-controlled captions
are expected to have a varying degree of visual descriptive-
ness, we are interested inwhether this intended effect matches
the perception of users when reading the caption. Following,
we performed a crowd-sourced subjective evaluation where
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we asked participants to judge pairs of captions regarding
how easy they are to visually imagine. Note that we do
not include other related methods such as SAT [43] in the
comparison, as those methods provide no meaningful way to
generate multiple captions with different perceptions (such
as visual descriptiveness). As such, we compare our results
only to TAYI [36], which is the only related work with such
a parameter.

We generated three English captions each for 195 images,
corresponding to the Low (I-1), Mid (I-2), and High
(I-5) imageability levels as discussed before. Using Amazon
Mechanical Turk1 we asked participants to perform a Thur-
stone’s paired comparison task [35], judging which caption
is easier to visually imagine based on its textual contents.
Note that we do not show the actual image, because we
also want to see whether a high imageability might help
making a caption more suitable for assistive technologies.
For each pair, we asked fifteen US participants to obtain a
meaningful majority decision. The human judgements were
compared to the intended imageability values using Pear-
son’s rank correlation. The results are shown in Table 5. The
values in the right-half of the table show the distribution
of fully matching, half-matching, inverse-half-matching and
inverse-fully-matching between our intended imageability
and human perception. The avg. column shows the overall
correlation for each method. The proposed method vastly
outperformed the comparison method, resulting in an average
correlation of 0.70 over a correlation of 0.36 in the com-
parison method. Note that the 95% CI column shows 95%
confidence intervals for each method. As discussed before,
TAYI uses an LSTM-based architecture while the proposed
method uses a transformer-based architecture, resulting in a
well-improved performance. Together with the more natural
results illustrated in Table 1, we believe that the proposed
method provides a meaningful framework useful for many
real-world applications.

TABLE 5. Subjective evaluation of visual descriptiveness. The proposed
method is compared to TAYI [36] which is the only other related work
aiming at imageability-aware captioning. In the survey, participants were
asked to judge the mental image of a pair of captions. The results show
the correlation between the human perception of generated captions and
the target-imageability. For this experiment, the length embedding is
excluded, using only the imageability-controllable setting.

V. CONCLUSION
In this paper, we proposed a transformer-based method
to generate diverse image captions with two controllable
dimensions: First, building upon our previous work on
imageability-aware captioning, TAYI [36], we use image-
ability as a parameter to change the degree of visual

1https://www.mturk.com/

descriptiveness of a generated caption. Second, inspired by
recent work on length-controllable captioning [7], we use
length as another parameter to modify the length of a caption
independent of the degree of visual descriptiveness. Image-
ability and length encode two different angles: Changing
imageability aims to change visual descriptiveness of the
caption for the same length, while length aims to change
the wordiness while keeping contents similar. This capa-
bility allows to tailor the output captions towards different
use-cases for accessibility reasons, different media, or dif-
ferent user preferences. The resulting model is, to the best
of our knowledge, the first model which can generate a
variety of differently-perceived captions tailored to various
applications.

In the experiments, the proposed method showed a promis-
ing performance for generating captions across different
lengths and imageability values. A subjective evaluation
with human participants verified a vastly improved perfor-
mance compared to an existing method. This shows that
the transformer architecture in combination with imageabil-
ity as a prior can successfully learn the human perception
of sentences regarding the degree of visual descriptiveness.
For future work, it could be interesting to look into other
Transformer-based architectures such as [5], [28].
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