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ABSTRACT Features in data samples usually need a unified dimension by a standardization process before
clustering. However, there still exists a non-standardized metric in which the distance between samples is
greater than 1 after features are standardized. It is difficult to find the optimal search path if the data sample
metrics are not standardized. To address this problem, we develop a dynamic-metric accelerated method
for fuzzy clustering by introducing a metric matrix, whose diagonal elements consist of infinite norms of
the metric matrix into the Fuzzy C-Means (FCM) clustering algorithm and its derived algorithms. More
specifically, we focus on constructing a dynamic metric matrix that is used to unify the metric between data
samples and updating cluster centers to optimize the search path of the cluster center. In addition, we propose
a new evaluation index named the Coefficient of Variation Metric (CVM) to evaluate metric effectiveness.
The dynamic metric accelerated method, whose complexity remains unchanged, can effectively accelerate
the iteration speed of fuzzy clustering. The comparisons between the algorithm using the dynamic metric
accelerated method and the corresponding algorithm on UCI, business district and COVID-19 CT image
datasets show the superiority of the dynamic metric accelerated method in accelerating effect and clustering
performance.

INDEX TERMS Dynamic metric, fuzzy clustering, iteration acceleration, coefficient of variation metric.

I. INTRODUCTION
Generally, clustering depends on a metric that describes the
similarity between data samples [1]–[4]. Metrics can express
rich information, and metric-based clustering approaches in
which the metrics of data samples are the main component
of objective functions have been widely used in industrial
applications [5]. For the above reasons, research on clus-
tering algorithms focuses on algorithm design and metric
research [6].

What’s more, Metric plays a more important part in fuzzy
clustering. There are many metrics in fuzzy clustering, such
as Euclidean distance [7],Minkowski distance [8],Manhattan
distance [9], Chebyshev distance [10], Mahalanobis dis-
tance [11]–[13], angular cosine [14]–[16], correlation coef-
ficient [17], entropy [18]–[20], and Hamming distance [21].
In addition, in recent years, many studies have been done on
metric learning of the kernel method [22]–[26]. The learning
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process of the fuzzy clustering algorithm depends on the
metric that describes associations between different objects.
Fuzzy c-means (FCM) uses Euclidean distance to mea-
sure relationship between samples and distance centers [27];
SFCM measures relationship between data samples, dis-
tance centers and supervised information by using Euclidean
distance [28]; eSFCM measures data samples and cluster
centers and entropy to measure supervised information by
using Euclidean distance [29]; SMUC measures relationship
between samples and distance centers and entropy to measure
supervised information by using Mahalanobis distance [30];
In addition, there are some kernel methods [31], [32].
However, the learning process of the relationship between
data samples will be affected due to the limitations of metrics.
The learning process of the relationship between data samples
will be affected due to the limitations of metrics. The cluster-
ing algorithms based on Euclidean distance have the advan-
tages of fast iteration convergence and stable results [33].
However, in the face of complex data in practical applica-
tions, these clustering algorithms are sensitive to data sample
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dimensions and cannot apply to nonlinear data [34]. The
introduction of the Mahalanobis distance can solve these
problems, but it will also lead to the exponential growth of
algorithm computation requirements [30].

In the past, research mainly focuses on three kinds of
metrics in fuzzy clustering: Entropy [17], [25], [35], [36],
Euclidean distance [37]–[40], and Mahalanobis distance
[11], [41], [42]. Relative entropy measures the difference
of data from the perspective of probability distribution and
uncertainty [43]–[45]; it has the advantage of being insensi-
tive to common noises [46], [47]. Euclidean distance is the
most popular metric in objective functions of fuzzy clus-
tering because it can reflect the real distance in the sample
space [48]. However, there exists a case that Euclidean dis-
tance ignores the differences among different features in the
sample, which makes it difficult to reflect the associations
between data samples [49]. The Mahalanobis distance can
better reflect the correlation between data samples, so the
process of fuzzy clustering is not affected by the feature
dimensions, but the calculation of the inverse matrix of the
covariance matrix in Mahalanobis distance greatly increases
the complexity of the calculation [50]–[52]. In addition, the
three metrics mentioned above don’t change with iterations.
We call this kind of metrics the static metrics. In our research,
the standardization of static metrics can achieve normaliza-
tion at the feature level, but cannot guarantee the normal-
ization of distance. This paper analyzes this phenomenon
and proposes a dynamic metric accelerated method based on
dynamic measurement.

Our work is summarized as follows:

1) We introduce distance standardization and how it
affects the clustering process using static metric
algorithms

2) We propose a dynamic metric accelerated method for
fuzzy clustering that has better adaptability than the
traditional static metric method for fuzzy clustering.
In addition, we analyze the time complexity and opti-
mality of metric

3) For the dynamic metric, we define a Coefficient of
Variation Metric (CVM) to evaluate the effectiveness
of the metric.

4) We use the dynamic metric accelerated method to
improve the metric effect in clustering and set exper-
iments on the classic UCI dataset, classic image
dataset, business circle dataset [53] and COVID-19-CT
dataset [54] to verify the effect of the dynamic metric
accelerated method.

II. RELATED WORK
A. FUZZY C-MEANS CLUSTERING (FCM)
FCM is a widely used unsupervised fuzzy clustering
algorithm. The Euclidean distance which is used in FCM is
widely used in clustering algorithms.

1https://github.com/ChoiNgai/paper_DynamicMetricClustering/tree/
main/data/4.18

Let us first assume that the sample set to be clustered is
X = {x1, x2, . . . , xn}, where xj ∈ Rd (1 ≤ j ≤ n) in
the d-dimensional Euclidean space, and c is the number of
clusters. The objective function of FCM can be expressed
as [27]:

J (U ,V ) =
c∑
i=1

n∑
j=1

umij (xj − vi)
T I (xj − vi) (1)

For the convenience of introduction, the objective function
is expanded as follows:

J (U ,V ) =
c∑
i=1

n∑
j=1

umij (xj − vi)
TA(xj − vi) (2)

where I is the identity matrix, A is a metric matrix, only when
A = I , Eq.(2) is equivalent to Eq.(1) .and the corresponding
metric is Euclidean metric. m is any real number (m >1)
which denotes the degree of fuzziness, uij is the membership
degree of the j-th sample xj belonging to the i-th cluster whose
centroid is vi,U = (uij), V = [v1, v2, . . . , vc], 1 ≤ i ≤ c,
1 ≤ j ≤ n, 2 ≤ c < n and uij satisfies the following constraint
condition:

c∑
i=1

uij = 1, uij ≥ 0 (3)

By minimizing (1) and using the Lagrange optimization,
we obtain the following alternative update equations for the
cluster center vi and the membership degree uij:

vi =

n∑
j=1

umij xj

n∑
j=1

umij

(4)

uij =

(
(xj − vi)TA(xj − vi)

) 2
m−1(

c∑
h=1

(xj − vh)TA(xj − vh)
) 2

m−1

(5)

B. KERNEL-BASED FUZZY C-MEANS CLUSTERING OF
METRIC ACCELERATED (KFCM)
KFCM is an unsupervised fuzzy clustering algorithm that
projects the original data into the kernel space and takes
the inner product of the kernel space as the metric of the
algorithm.

Let V = {v1, v2, . . . , vc} be the V cluster centers in the
kernel space. c is the number of clusters. This minimizes the
following objective function subject to conditions as consid-
ered in FCM:

JKFCM (U ,V )

=

c∑
i=1

n∑
j=1

umij (ϕ(xj)− ϕ(vi))
T I (ϕ(xj)− ϕ(vi))

=

c∑
i=1

n∑
j=1

umij (2− 2 · K (xj, vi)) (6)
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where K (xj, vi) is the Gaussian radial basis function, and its
form is as follows:

K (xj, vi) = e
||xj−vi||

2

−2σ2 (7)

In the iterative process of KFCM, the memberships and the
cluster centers are updated as follows:

uij =
(1− K (xj, vi))

−1
m−1

c∑
k=1

(1− K (xj, vk ))
−1
m−1

(8)

vi =

n∑
j=1
µmijK (xj, vi)xj

n∑
j=1
µmijK (xj, vi)

(9)

C. SEMI-SUPERVISED FUZZY C-MEANS CLUSTERING
(SFCM)
SFCM is a semi-supervised fuzzy clustering algorithm that
utilizes Euclidean distance to express the relationship of the
membership matrix and the prior membership matrix. Its
objective function is as follows:

JSFCM (U ,V )=
c∑
i=1

n∑
j=1

umij (xj − vi)
T I (xj − vi)

+α

c∑
i=1

n∑
j=1

(uij − ũ2ij)(xj−vi)
T I (xj − vi)

(10)

where m(m > 1) denotes the degree of fuzziness. As m
tends toward 1, SFCM approaches HCM. uij(0 ≤ uij ≤ 1)
is the membership degree of the j-th sample xj belonging to
the i-th cluster and vi is its centroid. V = [v1, v2, . . . , vc],
1 ≤ i ≤ c, 1 ≤ j ≤ n, 2 ≤ c ≤ n, uj = (u1j, . . . , ucj), and uij
satisfies the following constraint condition:

s.t. uij ∈ [0, 1] ;
c∑
i=1

uij = 1, (j = 1, 2, . . . , n) (11)

m is the weighted index, which is an empirical value, and the
value is usually 2. Then, we obtain the iterative formula of
the membership degree and clustering center:

uij =
1

1+ α


1+ α(1−

c∑
i=1

ũij)m−1

(xj−vi)T I (xj−vi)
c∑

h=1
(xj−vh)T I (xj−vh)

+ αũij

 (12)

vi =

n∑
j=1
µmij xj

n∑
j=1
µmij

(13)

ũij is an a priori membership matrix, which is transformed
from label information; α is a predetermined suppression
coefficient.

D. ENTROPY SEMI-SUPERVISED FUZZY C-MEANS
CLUSTERING (eSFCM)
eSFCM is a semi-supervised fuzzy clustering algorithm that
utilizes information entropy to express the relationship of
the membership matrix and the prior membership matrix. Its
objective function is as follows:

J (U ,V ) =
c∑
i=1

n∑
j=1

µij(xj − vi)T I (xj − vi)

+ λ−1
c∑
i=1

n∑
j=1

(∣∣µij−fijbj∣∣ ln ∣∣µij−fijbj∣∣) (14)

vi =

n∑
j=1
µijxj

n∑
j=1
µij

(15)

uij = ũij +
e−λ(xj−vi)

T I (xj−vi)

c∑
h=1

e−λ(xj−vh)
T I (xj−vh)

(1−
c∑

h=1

ũij) (16)

Among them, λ is an empirical parameter.

E. SEMI-SUPERVISED METRIC-BASED FUZZY CLUSTERING
(SMUC)
SMUC is a semi-supervised fuzzy clustering algorithm using
Mahalanobis distance and entropy. By introducing the Maha-
lanobis distance on the basis of eSFCM [29],semi-supervised
metric-based fuzzy clustering (SMUC) algorithm [30] was
proposed, and its objective function is as follows:

JSMUC (U ,V ) =
c∑
i=1

n∑
j=1

uij(xj − vi)TM (xj − vi)

+ λ

c∑
i=1

n∑
j=1

(uij − ũij) ln(uij − ũij) (17)

where is subject to conditions (2) and (5) and the following
conditions:

M =

1
n

c∑
i=1

n∑
j=1

ũij(xj −

n∑
j=1

ũ2ijxj

n∑
j=1

ũ2ij

)(xj −

n∑
j=1

ũ2ijxj

n∑
j=1

ũ2ij

)T


−1

(18)

There is the following optimal solution [30]:

vi =

n∑
j=1

uijxj

n∑
j=1

uij

(19)

uij = ũij +
e−λ(xj−vi)

TM (xj−vi)

c∑
h=1

e−λ(xj−vi)TM (xj−vi)
(1−

c∑
h=1

ũij) (20)
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FIGURE 1. The numerical range is beyond [0,1] in the iterative process.

FIGURE 2. Synthetic dataset1 in which the distance between samples is
less than 1.

III. ACCELERATED ITERATIVE METHOD FOR FUZZY
CLUSTERING
A. MOTIVATION
At present, clustering algorithms usually need to standardize
sample features to eliminate the influence of different feature
dimensions before conducting iterative calculations. After
data normalization, the value of each sample feature is limited
to [0,1] for iterative calculations, but the value of the sample
distance will exceed [0,1] after calculations, as shown in
Fig 1.

It can be seen from Fig 1 that the standardized feature does
not mean that distance (i.e., metric) between samples is also
standardized.

To verify the necessity of standardizing metrics, we built
artificial datasets. The distance between samples in dataset
(a) was less than 1, and some of the distances in the dataset
(b) were more than 1 (as shown in Fig 2 and Fig 3).

Fig 2 and Fig 3 represent the simulation dataset of dataset 1
and dataset 2, respectively, whose feature number is 2
(two-dimensional space) and sample number is 100.

Let us assume that the number of cluster centers is 2,
the initial cluster center is [0.3, 0.5; 7, 0.5], the maximum
number of iterations of clustering in dataset (a) is 50, and
the solution path-length of the two clustering centers is

FIGURE 3. Synthetic dataset in which the distance between samples
exceeds 1.

FIGURE 4. Two possible cases caused by traditional methods (longer
search distance).

0.0029. The maximum number of iterations of clustering in
dataset (b) is 52, and the solution path length is 0.0097.

If the sample distribution exhibits the phenomenon in
Fig 3, then after the usual iterative process, the search path
may become longer and indirect, as shown in Fig 4b:

We are committed to making the solving path closer to
Fig 4a instead of Fig 4b.

B. METRIC COMPLEXITY
The Mahalanobis distance, which has a good effect on elim-
inating the dimensional effect, is commonly used to metric
the continuous type of feature. At present, the Mahalanobis
distance has a good influence on data of different dimensions,
so the Mahalanobis distance is widely used for metric data
of different dimensions. However, it is difficult for the Maha-
lanobis distance to apply to image recognition and other fields
because it needs to calculate the covariance matrix and its
inverse [30], resulting in a large amount of calculations (as
shown in Fig 5).

In Fig 5, the number of randomly generated samples is
fixed at 1000, and the number of features is from 1 to 1000.
The time consumption of calculating the sample and distance
and the sample data and the randomly generated 3 × d size
matrix is gradually calculated, where the number of features
is d . With the increase of features number, the amount of
computation increases exponentially.

C. DYNAMIC STANDARDIZATION OF EUCLIDEAN METRIC
In the iterative process of the algorithm, there exists a case in
which the distance between the sample and the cluster center
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FIGURE 5. Comparison of computational complexity (time-consuming)
between the Mahalanobis metric and Euclidean metric.

FIGURE 6. Distance standardization process (compress).

FIGURE 7. Distance standardization process (expand).

is greater than 1, so it is necessary to compress the distances
so that all the distances after the transformation are in [0,1]
(as shown in Fig 6).

When the distance between the sample and cluster center is
small, the rounding error produced in the calculation process
will have a great impact on the clustering process. Therefore,
it is necessary to expand the distance by transformation. The
effect of stretching is shown in Fig 7:

In Fig 6 and Fig 7, the left side is a non-standardized
distance, and the right side is a standardized distance.
To ensure that the mathematical relationship between dis-
tances is unchanged and that the algorithm is fast itera-
tive, we satisfy the distance with the following relationship
between the standardized distance and the non-standardized
distance:

di,1
di,2
=
d∗i,1
d∗i,2

,
di,2
di,3
=
d∗i,2
d∗i,3

, . . . ,
d∗i,j−1
di,j
=
d∗i,j−1
di,j

(21)

where di,j is the non-standardized distance between xj and vi;
d∗i,j is the standardized distance between xj and vi.

D. DYNAMIC METRIC ACCELERATION
The Euclidean distance between the sample and the cluster
center expression in clustering expands from ||xj − vi||2 to
(xj − vi)TA(xj − vi).

1) When A = I , where I is the identity matrix, the
corresponding metric is Euclidean distance.

2) When A = M−1, where M is from (18), the corre-
sponding metric is the Mahalanobis distance.

3) When A is a diagonal matrix whose elements consist
of the positive infinite norm of the distance matrix, the
correspondingmetric is a dynamicmetric whosematrix
changes with each iteration. We call the method using
dynamic metrics for fuzzy clustering as the dynamic
metric accelerated method for fuzzy clustering.

Calculation steps of the metric matrix in the dynamic metric
accelerated method:

1) Compute the Euclidean distance between the sample
and the cluster center to get the Euclidean distance
matrix;

2) Calculate the infinite norm according to the distance
matrix;

3) Calculate the dynamic measure matrix A based on the
infinite norm.

The Euclidean distance between xj and vi is denoted as
D = {dij}; the infinite norm of the matrix is:

||D||∞ = max
1≤i≤n

n∑
j=1

|dij| (22)

Then, the metric matrix A composed of the infinite norm
of the metric matrix is as follows:

C =


||D||∞ 0 · · · 0

0 ||D||∞ · · · 0

0
...

. . .
...

0 0 · · · ||D||∞


d×d

(23)

where ||D||∞ is the infinite norm of the metric matrix:

A = C−1 (24)

The metric matrix A = diag(m1, . . . ,md ), and the expres-
sion of element A is:

mk =
1
||D||∞

(25)

where d is the number of features, k = {1, 2 . . . , d}.
Therefore, the distance calculation expression of the

dynamic metric is:

(xj − vi)TA(xj − vi) (26)

IV. ANALYSIS OF WEIGHTING EXPONENT M IN FCM
The dynamic metric will inevitably affect the membership
matrix when the iterative process changes, and the weighting
exponentM of the FCMmodel plays a role in determining the
validity of FCM partitions. Therefore, we explore the impact
of theweighting exponentM in FCMwhen using the dynamic
metric accelerationmethod. In this part, the effect of the value
of M is analyzed through experiments using the Wisconsin
breast cancer dataset.2 The internal evaluation index data

2http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+
Wisconsin+%28Diagnostic%29
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reconstruction error rate [56], the external evaluation index
purity [57] and the number of iterations are used to analyze
the influence of the m value on the dynamic metric and
conventional Euclidean metric in FCM.

A. EXTERNAL EVALUATION INDEX

Purity(�,C) =
1
n

∑
c

max
j
|ωc ∩ yj| (27)

where n is the number of samples, � = {ω1, . . . , ωc} is
the clustering result, and Y = {y1, . . . yj} is the real clas-
sification. Purity reflects the similarity between clustering
results and reality. We propose an internal evaluation index
Purity(�,C)/iter to evaluate the improvement level of the
clustering accuracy of the algorithm:

Purity(�,C)/iter =
1
n

∑
k

max
j
|ωc ∩ yj|/t (28)

where iter represents the number of iterations of the algorithm

B. INTERNAL EVALUATION INDEX
VRE is the error rate of data reconstruction, which is defined
as follows:

VRE =
1
n

n∑
i=1

||I ′g(i)− Ig(i)||
2 (29)

It analyzes the difference between reconstructed data and
the original data after clustering.
I ′g(i) is the gray level of the i-th sample of the reconstructed

data:

I ′g(i) =

c∑
k=1

u2kiIg(i)

c∑
k=1

u2ki

(30)

Table 1 shows the influence of m value on the iteration speed
of the algorithm. In terms of cluster purity, dynamic metric
does not affect the role of the m value in FCM, as shown in
Table 2. Table 3 shows that with the increase in the m value,
the clustering error rate of the FCM algorithm increases.
At the same time, combined with Nikhil R. pal’s conclu-
sion [55], we can conclude that M = 2 is a better choice in
the dynamic acceleration matrix.

C. EVALUATING INDICATOR AND VERIFICATION
To measure the effectiveness of the standardization of met-
rics, we analyzed the maximum and minimum distances
between data sample and cluster centers.

FCM experiments were carried out on theWisconsin breast
cancer dataset3 with 2 clusters.

The maximum and minimum distance curves are shown in
Fig 8. In order to better describe this process, we define some
metric related concepts

3http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+
Wisconsin+%28Diagnostic%29

TABLE 1. Influence of m value on iterations.

TABLE 2. Influence of m value on purity.

TABLE 3. Influence of m value on VRE.

Definition 1 (IterativeMax/MinDistance):Themaximum /
minimum distance from the sample’s t-th iteration to vi is:

d (t)i = ||xj − v
(t)
i ||

2 (31)

where T is the maximum number of iterations, 1 < t <
T , 1 < i < c.
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FIGURE 8. The relationship between the number of iterations and the
distance of the samples and each cluster center.

FIGURE 9. Difference in the distance extreme deviations between
different clusters.

Definition 2 (The Extreme Deviations of Distance): The
extreme deviations of the distance from the sample to v(t)i are
calculated as follows:

r(t)i = max
1<t<T

d(t)i − min
1<t<T

d(t)i

= max
1<t<T

||xj − v
(t)
i ||

2
− min

1<t<T
||xj − v

(t)
i ||

2 (32)

However, due to Max_d(t)i � Min_d(t)i , the range of

distance is mainly controlled by Max_d(t)i . To avoid this
case and express the intensity of the transformation between
distances better, we normalize it to obtain the improved range.
To express the normalization of the distance range conve-
niently, we define the following function:

8(d (t)t ) =
d(t)i −min |d(t)i |

max |d(t)i | −min |d(t)i |
(33)

The improved extreme deviations of the distance are:

R(t)
i = 8(Max_d(t)i )−8(Min_d(t)i ) (34)

The improved distance extreme deviations diagram is
drawn, as shown in Fig 9:

The difference between the maximum and the minimum
of the distance between the sample and each cluster center is
increasing. The change process of the distance is shown in
Fig 9.

We call the above distance as the Coefficient of Variation
Metric (CVM). The CVM is used to evaluate this case.

FIGURE 10. Add data points to simulate the change of edge points.

Before defining CVM , we need to explain the Variation
Metric (VM ).
Definition 3 (Variation Metric): As appendix Fig 1 shows,

we define the D-value as VM (t), and its mathematical expres-
sion is:

VM (t)
= max |R(t)| −min |R(t)| (35)

where t is the number of iterations. The smaller VM (t) is, the
smoother the iteration process and the better the normaliza-
tion effect.
Definition 4 (Coefficient of Variation Metric):

CVM =

T−1∑
t=1

[
( VM (t)

VM (t)+VM (t+1) ) ·
t
T

]
1
T ·

T−1∑
i=1

i

(36)

The coefficient of variation metric satisfies the following
properties:

If the mean value of VM is 0.5 and the standard deviation
is 0, then CVM = 0.5.
If VM and VM (0) > 0.5 is monotonically increasing, then

0 < CVM < 0.5.
If VM and VM (0) < 0.5 is monotonically decreasing, then

0.5 < CVM < 1.
In addition, the value of CVM is independent of the initial

value
One example of dynamic metric acceleration is the itera-

tion process, and the variation of metric is shown in appendix
Fig 2.

A larger CVM represents a more stable iteration for the
metric.

The CVM is calculated and shown in Fig 9 as: CVM =
0.5013+ 0.0010.
After acceleration by the dynamic metric in Fig 11,

CVM = 0.8132± 0.0110.
From the comparison of appendix Fig 1 and Fig 2,

we can see that the measured acceleration method effectively
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TABLE 4. (FCM, FCM-M) algorithm performance.

TABLE 5. Time complexity analysis of different metrics.

improves the optimization of the iteration. In order to explore
the optimization effect of using dynamic indexes, we use
FCM algorithm to experiment and try to verify its optimality.
The experiment reflects the optimal dynamic metric by using
the change of internal and external evaluation indices before
and after dynamic metric acceleration in multiple datasets.
In parentheses, the left side is the algorithm without dynamic
metric, and the right side is the algorithm with dynamic
metric. We let α = 5, e = 10−5, the maximum number
of iterations is 100, λ = 10, and randomly initialize cluster
centers in experiments. Five labeled samples were used as
supervised information in all experiments.

We compare the traditional fuzzy clustering algorithmwith
the dynamic metric accelerated fuzzy clustering algorithm,
FCM-M, for five datasets with the same m value.

The results are shown in Table 4.The results are the mean
of 10 repeated experiments. The dataset used in the experi-
ment is shown on first column.

V. OPTIMIZATION OF DYNAMIC METRICS
The experimental results show that the dynamic metric not
only maintains the FCM clustering effect, but also achieves a
better iterative speed for most data sets and ensures the stan-
dardization of the metric. Combined with the above results,
we can conclude that the dynamic accelerated method can
achieve iterative acceleration without affecting the optimal
solution, and can stably achieve the purpose of normalized
distance.

VI. DISCUSSION ON TIME COMPLEXITY
In the previous section, we present a dynamic accelerated
method based on infinite norms. This section discusses the
time complexity of various metric calculations.

Here, n is the number of samples, d is the number of
features, and c is the number of cluster centers.

The time complexity of calculating Euclidean metric is
O(n ·d ·c). The time complexity of computing the covariance
matrix by the Mahalanobis metric is O(n2 · d), and the time
complexity of finding all elements in the Mahalanobis metric
matrix is O(d4 · n · c). Thus, the time complexity of the
Mahalanobis metric is O(d4 · n · c+ n2 · d).
The time complexity of the three kinds of metrics are

shown in Table 5.

VII. IINFLUENCE ANALYSIS OF EDGE POINTS
The Euclidean distance of the sample points at the edge of
the cluster is farther from other points, so change of the edge
points will affect the infinite norm in the metric matrix, and
our metric accelerated method depends on the norm in the
dynamic metric. Therefore, this section discusses the impact
of edge points in clusters on clustering speed and accuracy.

In this part, the sample pairs far away from the main points
are analyzed by using iris experiment. Readers can obtain the
preprocessed image datasets here.4

Fig 10a is one of the projection of iris dataset in a three-
dimensional space. Fig 10b and Fig 10c add ten edge samples
which far away from the main point in one cluster of the
iris dataset, and the edge sample points added in Fig 10c are
farther away from the main point.

Table 6 shows the influence of edge samples on the accel-
eration algorithm. In terms of the maximum distance, the
change of edge samples changes the maximum distance,
while in terms of clustering purity and iteration speed, the
change of edge samples do not affect the accuracy and speed
of the algorithm.

VIII. EXPERIMENT
This section investigates the acceleration effect and perfor-
mance of the dynamic-metric acceleration method applied to
different algorithms in real datasets to verify its effectiveness.

4https://github.com/ChoiNgai/paper_DynamicMetricClustering/tree
/main/data/edge points/
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TABLE 6. FCM-M algorithm performance.

TABLE 7. The details of the datasets.

A. EXPERIMENTAL SETUP
The experiment was conducted on a series of real datasets.
These datasets include data with clusters that are not linearly
separable, with noise, with numerous features andwith partial
redundancy [55]. In addition, image data classification [56] is
also included. The statistical data of all datasets are summa-
rized in Table 7. The image datasets have been preprocessed
in the experiment, which can obtain the preprocessed image
dataset here.5

To evaluate the effectiveness of the methods presented in
this paper, the dynamic metric method is used to improve
the fuzzy clustering algorithm based on Euclidean distance,
Mahalanobis distance and entropy. In the experiment, we ana-
lyze the effect of the dynamic metric method by comparing
the performance before and after the improvement.

B. ALGORITHM IMPROVEMENT
We choose the fuzzy clustering algorithm based on the
Euclidean distance, Mahalanobis distance and entropy to

5https://github.com/ChoiNgai/paper_DynamicMetricClustering/tree/
main/data/

verify the acceleration effect of the dynamic metric method
and we choose FCM as the unsupervised fuzzy cluster-
ing method based on the Euclidean distance, SFCM as
the semi-supervised fuzzy clustering method based on the
Euclidean distance, eSFCM as the unsupervised fuzzy clus-
teringmethod based on theMahalanobis distance, and SMUC
as the semi-supervised clustering algorithm based on the
Mahalanobis distance and entropy. the FCM, KFCM, SFCM,
eSFCM and SMUC algorithms to replace the static metric
of the original algorithm. The algorithms that introduced
dynamic metrics are called FCM-M, KFCM-M, SFCM-M,
eSFCM-M and SMUC-M.

The calculation flow of the improved algorithm is as
follows:

1) FUZZY C-MEANS CLUSTERING OF METRIC ACCELERATED
(FCM-M)
The membership matrix and the iterative formula of the clus-
tering center of FCM are as follows (three iterative formulas):

vi =

n∑
j=1

(uij)mxj

n∑
j=1

(uij)m
(37)

A = diag(m1, . . . ,md ) (38)

uij =
[(xj − vi)TA(xj − vi)]

2
m−1

c∑
h=1

[(xj − vi)TA(xj − vi)]
2

m−1

(39)

Algorithm 1. FCM-M
Input: n: the number of samples; d: samples dimensions;
c: cluster number;ε: a small enough error; X: dataset; T:
maximum iteration times. V : random initialized clustering
centroid. Ũ : prior membership degree. α: trade-off param-
eter
Output: V : clustering centroid matrix; U : membership
degree matrix
Initialize metric matrix A by (38);
Initialize membership degree matrix U = [uij] by (39).
Repeat
Update the cluster prototype matrix V = [vi] by (37);
Update the Metric matrix A by (38);
Update the membership degree U matrix by (38);
Calculate the objective function value J (t) by (2);
Iteration time t ++;
Until
J (t + 1)− J (t) < ε or t = T

2) KERNEL-BASED FUZZY C-MEANS CLUSTERING OF
METRIC-ACCELERATED (KFCM-M)
The membership matrix and the iterative formula of
the clustering center of KFCM are as follows (three
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iterative formulas):

vi =

n∑
j=1

(uij)mκ(xj, vi)xj

n∑
j=1

(uij)mκ(xj, vi)
(40)

A = diag(m1, . . . ,md ) (41)

uij =
(1− e

|xj−vi)
T A(xj−vi)

−2σ2 )
−1
m−1

c∑
k=1

(1− e
(xj−vi)

T A(xj−vi)

−2σ2 )
−1
m−1

(42)

Algorithm 2. KFCM-M
Input: n: the number of samples; d: samples dimensions;
c: cluster number;ε: a small enough error; X: dataset; T:
maximum iteration times. V : random initialized clustering
centroid. Ũ : prior membership degree. α: trade-off param-
eter
Output: V : clustering centroid matrix; U :
Initialize Metric matrix by (41);
Initialize membership degree matrix by (42).
Repeat
Update the cluster prototype matrix by (40);
Update the Metric matrix by (41);
Update the membership degree matrix by (42);
Calculate the objective function value by (6);
Iteration time;
Until
J (t + 1)− J (t) < ε or t = T

3) SEMI-SUPERVISED FUZZY C-MEANS CLUSTERING OF
METRIC-ACCELERATED (SFCM-M)
The membership matrix and the iterative formula of the
clustering center of SFCM are as follows (three iterative
formulas):

vi =

n∑
j=1

(uij)mxj

n∑
j=1

(uij)m
(43)

A = diag(m1, . . . ,md ) (44)

uij =
1

1+ α


1+ α(1−

c∑
i=1

ũij)m−1

[(xj−vi)TA(xj−vi)]2

[
c∑

h=1
(xj−vh)TA(xj−vh)]2

+ αũij

 (45)

4) ENTROPY SEMI-SUPERVISED FUZZY C-MEANS
CLUSTERING OF METRIC-ACCELERATED (eSFCM-M)
The membership matrix and the iterative formula of
the clustering center of KFCM are as follows (three

Algorithm 3. SFCM-M
Input: n: the number of samples; d: samples dimensions;
c: cluster number;ε: a small enough error; X: dataset; T:
maximum iteration times. V : random initialized clustering
centroid. Ũ : prior membership degree. α: trade-off param-
eter
Output: V : clustering centroid matrix; U : membership
degree matrix
Initialize Metric matrix A by (44);
Initialize membership degree matrix U = [uij] by (45).
Repeat
Update the cluster prototype matrix V = [vi] by (43);
Update the Metric matrix A by (44);
Update the membership degree U matrix by (45);
Calculate the objective function value J (t) by (10);

Iteration time t ++;
Until
J (t + 1)− J (t) < ε or t = T

iterative formulas):

vi =

n∑
j=1

(uij)mxj

n∑
j=1

(uij)m
(46)

A = diag(m1, . . . ,md ) (47)

uij = ũij +
e−λ(xj−vi)

TA(xj−vi)

c∑
h=1

e−λ(xj−vh)
TA(xj−vh)

(1−
c∑
i=1

ũij) (48)

Algorithm 4. eSFCM-M
Input: n: the number of samples; d: samples dimensions;
c: cluster number;ε: a small enough error; X: dataset; T:
maximum iteration times. V : random initialized clustering
centroid. Ũ : prior membership degree. α: trade-off param-
eter
Output: V : clustering centroid matrix; U : membership
degree matrix
Initialize metric matrix A by (47);
Initialize membership degree matrix U = [uij] by (48).
Repeat
Update the cluster prototype matrix V = [vi] by (46);
Update the Metric matrix A by (47);
Iteration time t ++;
Until
J (t + 1)− J (t) < ε or t = T

5) SEMI-SUPERVISED METRIC-BASED FUZZY CLUSTERING
OF METRIC-ACCELERATED (SMUC-M)
The membership matrix and the iterative formula of
the clustering center of SMUC-M are as follows (three
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FIGURE 11. Schematic diagram of the change process of sample distance difference.

iterative formulas):

vi =

n∑
j=1

(uij)mxj

n∑
j=1

(uij)m
(49)

A = diag(m1, . . . ,md ) (50)

uij = ũij +
e−λ(xj−vi)

TMA(xj−vi)

c∑
h=1

e−λ(xj−vh)TMA(xj−vh)
(1−

c∑
i=1

ũij) (51)

C. EVALUATION INDEX
Experiments compare the clustering accuracy and running
time before and after the improvement of the algorithm. The
internal evaluation index data reconstruction error rate, the
external evaluation index purity, and the number of iterations
are used to evaluate the optimization effect of the iterative
process.

In the following experimental appendix Fig 3, Fig 4 and
Fig 5, the dynamic metric acceleration method is repre-
sented by the L-∞ metric speedup. Moreover, we make
α = 5, e = 10−5, the maximum number of iterations
is 100, λ =10, and randomly initialize cluster centers in
experiments.

D. EXTERNAL EVALUATION INDEX
Purity reflects the similarity between clustering results
and reality. We propose an internal evaluation index

Algorithm 5. SMUC-M
Input: n: the number of samples; d: samples dimensions;
c: cluster number;ε: a small enough error; X: dataset; T:
maximum iteration times. V (0): random initialized clus-
tering centroid. Ũ : prior membership degree. α: trade-off
parameter
Output: V : clustering centroid matrix; U : membership
degree matrix
Initialize Metric matrix A by (50);
Initialize membership degree matrix U = [uij] by (51).
Repeat
Update the cluster prototype matrix V = [vi] by (49);
Update the Metric matrix A by (50);
Update the membership degree U matrix by (51);
Calculate the objective function value J (t) by (17);
Iteration time t ++;
Until
J (t + 1)− J (t) < ε or t = T

Purity(�,C)/iter to evaluate the improvement level of the
clustering accuracy of the algorithm:

Purity(�,C)/iter =
1
n

∑
k

max
j
|ωc ∩ yj|/t (52)

where iter represents the number of iterations of the
algorithm
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FIGURE 12. Schematic diagram of the change process of the sample distance difference.

E. INTERNAL EVALUATION INDEX
VRE analyzes the difference between reconstructed data and
the original data after clustering. It reconstructs data by using
the membership matrix and clustering center obtained by
clustering. The reconstructed data should be as similar to the
original data as possible. A small VRE value means that the
algorithm created a well-clustered effect.

Fewer iterations mean a faster search speed. The experi-
ments on real data sets show that the variance of VRE and
iteration times is small and stable.

By combining the characteristics of these two evaluation
indicators, we propose an internal evaluation index VRE∗
iter to evaluate the improvement effect of the algorithm on
iterative performance:

VRE · iter =
1
n

n∑
i=1

||I ′(i)− I (i)||2 · t (53)

where t is the number of iterations of the algorithm. Iter
represents the number of current iterations

F. EXPERIMENTAL RESULTS ANALYSIS
From the experimental results in appendix Fig 3, except
for the KFCM algorithm, the algorithms have better effects
after using the metric accelerated iteration method, which

shows that this method is not suitable for the fuzzy clustering
algorithm of the kernel function.

From the experimental results in appendix Fig 4, the metric
acceleration method still has a poor effect on the KFCM
algorithm. Some datasets will not be improved on eSFCM
and SMUC, and the effect is the same as that of the unim-
proved method, indicating that this method still has room for
improvement in the nonlinear metrics.

From the experimental results in appendix Fig 5, the met-
ric acceleration method performs well in algorithms other
than KFCM.From the comparison of SMUC algorithm with
SFCM and eSFCM, it can be seen that our acceleration
method is weaker than the algorithm based on Mahalanobis
distance in the optimization effect of the algorithm based
on Euclidean distance. The experiments of FCM and SFCM
show that the optimization effect of unsupervised algorithm
is lower than that of semi supervised algorithm.

From the above experimental results, it can be seen that
the metric acceleration method in this paper achieves high-
quality results in the Euclidean distance and Mahalanobis
distance metrics. However, for some nonlinear metric meth-
ods, the effect is not improved (such as KFCM and metrics
with the kernel method), which indicates that this method
is not suitable for nonlinear metrics, such as the kernel
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FIGURE 13. Comparison of the number of iterations required to run various algorithms.

function. In the experiment, while combining the external
evaluation index and iteration speed, the acceleration effect of

dynamic metric is not substantial when dealing with linearly
inseparable data. The optimization effect of our acceleration
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FIGURE 14. Iterative/purity level complete with the dynamic metric accelerated method and traditional method.

method based on Euclidean distance is weaker than that
based on Markov distance, and the optimization effect of

unsupervised algorithm is lower than that of semi supervised
algorithm.
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FIGURE 15. Metric accelerates the iterative VRE ∗ iter promotion level.
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IX. CONCLUSION
While focusing on the problem of non-standardized distance
in clustering algorithms, we develop a fuzzy clustering accel-
eration method based on dynamic metrics. This method stan-
dardizes the distance between instances to improve the search
efficiency of the iteration process. We prove its stability in
metric normalization, and verify that its optimization perfor-
mance is not affected by the change of edge points in clus-
ters. The method is applied to five common fuzzy clustering
algorithms, and the experimental results on eight real datasets
show that the method has an effective acceleration, while
maintaining the stability of clustering accuracy. Furthermore,
the algorithm uses the Chebyshev distance to standardize
between features, which keeps the time complexity of the
algorithm constant during metric iterations. In addition, the
experimental results show that the dynamic metric accelera-
tion method is less effective in the algorithm with the Gauss
kernel function.

APPENDIX
See Figs. 11–15.
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