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ABSTRACT In literature, proposed approaches mostly focused on household appliances scheduling for
reducing consumers’ electricity bills, peak-to-average ratio, electricity usage in peak load hours, and
enhancing user comfort level. The scheduling of smart home deployed energy resources recently became
a critical issue on demand side due to a higher share of renewable energy sources. In this paper, a new
hybrid genetic-based harmony search (HGHS) approach has been proposed for modeling the home energy
management system, which contributes to minimizing consumers’ electricity bills and electricity usage
during peak load hours by scheduling both household appliances and smart home deployed energy resources.
We have comparatively evaluated the optimization results obtained from the proposed HGHS and other
approaches. The experimental results confirmed the superiority of HGHS over genetic algorithm (GA) and
harmony search algorithm (HSA). The proposed HGHS scheduling approach outperformed more efficiently
than HSA and GA. The electricity usage cost for completing one-day operation of household appliances was
limited to 1305.7 cents, 953.65 cents, and 569.44 cents in the proposed scheduling approach for case I, case II,
and case III, respectively and was observed as lower than other approaches. The electricity consumption
cost was reduced upto 23.125%, 43.87% and 66.44% in case I, case II, and case III, respectively using
proposed scheduling approach as compared to an unscheduled load scenario. Moreover, the electrical peak
load was limited to 3.07 kW, 2.9478 kW, and 1.9 kW during the proposed HGHS scheduling approach and
was reported as lower than other approaches.

INDEX TERMS Demand side management, demand response program, home energy scheduling, smart
grid, metaheuristic algorithm.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
The traditional power utility or grid is one-way or unidirec-
tional in nature and utilities have no real-time information
of electricity demand from consumers [1]. Therefore, infor-
mation and communication technologies (ICT) implementa-
tion and advancement in technologies (e.g. Sensors, control

The associate editor coordinating the review of this manuscript and

approving it for publication was Moussa Boukhnifer .

systems, and instruments) enable transforming the traditional
electric power grid into the next-generation electric power
grid is also called a ‘‘smart grid’’ [2]. The European Com-
mission defines a smart grid as: ‘‘A smart grid is an electricity
network that can intelligently integrate the actions of all users
connected to it – generators, consumers and those that do
both in order to efficiently deliver sustainable, economic,
and secure electricity supplies’’ [3]. Over the last decade,
the integration of environment friendly and clean renew-
able energy sources (RESs) in power systems have become
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necessary due to rising demand for electricity and global
warming issues. The smart power grid introduces several new
ideas, concepts, and technologies that enable the integration
of RESs electricity generation in the power system. The most
significant feature of smart power system technologies is
mutual communication between utilities and consumers that
helps to improve the reliability and efficiency of the smart
power grid [4].

In order to meet consumers’ electricity demand, a demand
response (DR) program is applied to enhance the power sys-
tem’s operational efficiency and minimize electricity usage
during peak load hours in residential areas. In the last
decade, researchers have focused on demand side manage-
ment (DSM) problems by making load demand sensitive to
the electricity tariff in smart grid [5], [6]. Being engaged
with environment friendly concerns and increasing demand
for electricity, in the last decade, residential consumers have
focused on the integration of RESs in their premises. The inte-
gration of the RESs on demand side can help the consumer
to minimize the electricity bill by purchasing less electricity
from the electric utility. Solar energy is one of the most
popular RESs and electricity generation from it is available
during the daytime and it does not assist to minimize the
peak load demand without installation of an energy storage
system (ESS) such as batteries [7], [8].

The residential sector usually contains three variant types
of energy resources: utility, RESs energy output (mainly
solar), and electric storage batteries. The proper management
of available energy resources in the power system, both on the
demand side and generation or supply side allows expanding
the efficient use of electricity. In the context, a higher share
of RESs energy generation in a smart home, the manage-
ment of demand side integrated energy resources is recently
becoming a critical issue. In recent decades, DSM prob-
lems (e.g. home energy scheduling) have attracted growing
attention among the smart grid research community; more
than 2000 research studies have been documented since the
1980s [9]. In literature, monetary incentive based various
forms of DSM systems are being deployed by the utility for
flexible electricity load flattening amongst residential con-
sumers. The DSM system is a prominent component in the
smart grid that encourages residential consumers to control
electricity usage in their premises, through DR programs.
In European countries and the United Kingdom, the DR
programs have been explored since the 1970s [10], to enhance
the power system operational efficiency and minimize elec-
tricity usage in residential areas during peak load hours.

The DR program utilizes an advanced metering infras-
tructure (AMI) based smart meter for two-way informa-
tion flow amongst consumers and utility. The AMI based
smart meters also facilitate utilities to control and change
customers’ electricity demands, and to achieve their main
goals such as revenue protection and efficient electricity load
management. Based on features DR programs are classified
into two types such as price-based programs and incentive-
based programs. Consumers gladly schedule the operation of

household appliances on their premises based on electricity
tariffs in price-based programs. A grid utility can directly
access and schedule the usage of household appliances by
giving monetary benefits to consumers for controlling elec-
tricity usage during peak load hours [11], in case of the
incentive-based DR programs. Both DR programs play a key
role to enhance the operational efficiency of power systems
as well as offer financial benefits to consumers by making
load demand sensitive to electricity price signals.

B. LITERATURE REVIEW
In recent literature, numerous studies [12]–[28] have been
documented, in which various forms of home energy man-
agement (HEM) system proposed for solving the home
energy scheduling problem with attention to minimize con-
sumer’s electricity bill by utilizing DSM system features.
In study [12], authors proposed aHEMsystem based on graph
search algorithm - Dijkstra, in which to reduce a consumer’s
electricity bill during peak hours and computational efforts
are considered as objective functions. In study [13], opera-
tions of household appliances have been optimally scheduled
by considering the objective to reduce consumers’ electric-
ity bills and electricity usage during peak hours. In the
above study, authors proposed a scheduling controller for the
HEM system based on binary backtracking search algorithm
(BBSA), under the user’s priority and user’s comfort con-
straints. In [14], HEM system architecture has been proposed
for reducing peak-to-average ratio (PAR) and consumer’s
electricity bill based on genetic algorithm (GA). In [15],
authors applied an approach for constructing a HEM system
based on the fusion algorithm of particle swarm optimiza-
tion (PSO) and harmony search algorithm (HSA) to schedule
household appliances. In which objectives such as to mini-
mize consumers’ electricity bills and to meet user’s comfort
are considered. In [16], authors employed a hybrid of teacher
learning based optimization (TLBO) and GA for modeling
HEM systems to schedule household appliances with objec-
tives such as reducing consumers’ electricity bills and user
discomfort. In study [17], Ozkan developed a real-time HEM
system based on an appliance-based rolling wave planning
(Ab-RWP) method. In real-time HEM system household
appliances are scheduled based on user-defined priority order,
for achieving the goals of reducing consumers’ electricity
bills and improving energy efficiency.

In [18], authors proposed an optimization approach using
bat algorithm and flower pollination algorithm for modeling
the HEM system with attention to reduce consumers’ elec-
tricity bills and enhance user’s comfort. Besides, authors also
proposed fuzzy controllers to optimize the illumination sys-
tem and electricity usage in heating/cooling. In [19], a meta-
heuristic based model of the HEM system has been proposed
by utilizing enhanced differential evolution (DE) and HSA to
optimize the electricity consumption, enhance user comfort
and reduce consumer’s electricity bill and PAR under real-
time pricing (RTP) electricity tariff. In [20], authors proposed
a two-tier HEM system model using earthworm algorithm
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and cuckoo search (CS) algorithm to optimize electricity
consumption, enhance user’s comfort, and reduce consumer’s
electricity bill and PAR in load demand. The first-tier sched-
uled household appliances and second-tier uncertainties dur-
ing task execution are incorporated by the rescheduling of
household appliances in the proposed HEM system. In [21],
authors proposed four metaheuristic scheduling algorithms
for modeling the HEM system to analyze cost efficiency of
electricity consumption under critical peak pricing (CPP),
day-ahead RTP, and inclined block rate (IBR) tariffs. In [22],
the authors applied a hybrid of bird swarm algorithm (BSA)
and CS algorithm and a multi-objective binary BSA for mod-
eling the HEM system. In which objectives such as to reduce
user discomfort, PAR in load demand, and consumer’s elec-
tricity bill are considered. Besides, authors applied dynamic
programming for coordination between household appliances
to achieve real-time scheduling on user’s demand. In [23],
the HEM controller based on five metaheuristic algorithms is
modeled to schedule the household appliances by enhancing
user comfort and reducing consumer’s electricity bill and
PAR in load demand. In the above paper, metaheuristic algo-
rithms such as GA, binary PSO, bacteria foraging algorithm
(BFA), and a hybrid of wind driven optimization and GA
have been evaluated under RTP electricity tariff to analyze
objectives. In [24], authors proposed dynamic programming
and two metaheuristic approaches GA and binary PSO for
modeling the HEM system to schedule household appliances.
Besides, authors also proposed a hybrid of PSO and GA to
model the HEM system for smart home load scheduling.
In the above paper, proposed approaches have been evalu-
ated under day-ahead RTP and CPP electricity tariffs with
attention to reduce electricity consumption in peak hours,
consumer’s electricity bills, and user’s discomfort.

In [25], authors utilized the mixed integer linear program-
ming (MILP) method to develop an energy management
framework to facilitate the utility of a residential area for bet-
ter managing demand and supply. In [26], authors proposed
an approach for modeling HEM systems based on mixed
integer nonlinear programming (MINLP), considering resi-
dential consumer’s needs and ToU pricing. In the proposed
model, a graphical user interface is provided for adjustments
of day-ahead residential consumer’s desired tasks, and house-
hold appliances are categorized based on task classification,
i.e. environmental controlling tasks, energy-based tasks, and
time-based tasks. In [27], authors applied MILP for modeling
the HEM system by incorporating the value of lost load based
operational priority in scheduling the household appliances.
In the proposed model, authors considered operation con-
straints, electricity tariff model (e.g. IBR), and value of lost
load based operational priority from a consumer perspective
to schedule household appliances. In study [28], authors
introduced an approach based on residential DR programs
for modeling HEM systems to schedule appliances of various
categories with attention to reduce consumers’ electricity
bills under the budget limit. In whichMINLP and generalized
benders decomposition (GBD) techniques and time-of-use

TABLE 1. Abbreviations.

(ToU) tariff are utilized. The abbreviations of different terms
and methods are specified in Table 1.

In the recent decade, various studies [29]–[42] also have
been documented to solve home energy scheduling problems
for the smart home with only RESs integration, or both RESs
and ESS integration. In study [29], authors proposed a hybrid
of stochastic programming and robust optimization model for
the HEM system by incorporating the uncertainties of solar
photovoltaic (PV) electricity output and electricity tariffs.
In the proposed model, the smart home is considered as a
prosumer that participates in the real-time and day-ahead
energy market to achieve maximum profit under consumer’s
comfort constraints. In study [30], an effective HEM system
has been modeled based on a stochastic MILP framework
to reduce consumers’ electricity bills and the computational
burden of the home energy scheduling problem. In the pro-
posed model, the home is furnished with a solar PV module
and ESS batteries, and various dynamic electricity pricing
models such as ToU, RTP, and IBR are considered to alle-
viate consumers’ electricity bills. In [31], authors proposed
a mathematical model based on stochastic MILP to develop a
HEM system for the smart home in which RESs and storage
devices are integrated. A scenario-based stochastic modeling
methodology is applied in the proposed model to reduce
energy cost by considering the stochastic RESs electricity
output, time-varying electricity tariffs, weather conditions,
household appliances energy usage pattern, ESS capacity, and
real-time electric sales prices. The work presented in [32]
proposes a HEM system model based on PSO to sched-
ule the household appliances and ESS usage for reducing

VOLUME 9, 2021 160147



M. Ahmad et al.: Cost-Effective Optimization for Scheduling of Household Appliances

consumers’ electricity bills in a microgrid-connected smart
home. In [33], authors developed HEM controllers based
on ant colony optimization (ACO), binary PSO, and GA
with considering objectives to reduce user’s discomfort, con-
sumer’s electricity bill, and PAR of load demand. In [34],
authors developed a hybrid method using GA and binary PSO
to design a HEM controller. In study [35], authors designed
a hybrid approach using GA and PSO for modeling HEM
system by integrating RESs and ESS. In both studies, house-
hold appliances are scheduled by considering objectives to
reduce PAR of load demand and consumer’s electricity bill.
In [36], authors applied a decomposed-weighted-sum PSO
approach for modeling the HEM system by integrating RESs
and ESS in smart homes. The proposed approach’s ultimate
objectives are to minimize net cost of energy, electricity
usage during peak hours, and time-based user’s discomfort.
Besides, the authors also proposed an innovative approach for
performance analysis of the applied metaheuristic algorithm.
In [37], authors modeled the HEM system for scheduling
household appliances under RTP and IBR electricity tariffs
by integrating RESs and balancing demand and supply. The
HEM system is based on the GA, binary PSO, and genetic
wind-driven optimization to schedule household appliances
with ultimate objectives such as reducing consumer’s elec-
tricity bill and PAR in load demand.

In [38], authors proposed a three-step simulation method
based on a heuristic approach to design the HEM system
for eco-efficient operations of the household appliances in a
smart home by utilizing deployed RESs and ESS at home.
In the proposed approach, household appliances have been
scheduled to achieve objectives such as reduce the total cost
of electricity, emission, and time-based user’s discomfort.
In [39], authors proposed the HEM system by considering the
integration of RESs and ESS to reduce consumer’s electricity
bill in response to the ToU and CPP electricity tariffs by
the scheduling of appliances. The proposed HEM system
was designed using the earliglow algorithm with attention
to reduce consumer’s electricity bills, user waiting time, and
PAR in load demand. In [40], authors developed an efficient
HEM system based on MILP for scheduling the household
appliances and optimally utilizing the electric vehicles to
reduce energy cost. In the proposed HEM system, RESs
including wind turbine and solar PV module and ESS are
deployed at home for balancing demand and supply with
attention to reduce electricity load burden on utility, PAR
in load demand, and consumer’s electricity bill in response
to the RTP electricity tariff. In [41], authors applied three
metaheuristic algorithms including binary PSO, GA, and CS
to design a HEM system for efficient scheduling of household
appliances by considering RESs integration. In the above
study objectives such as to reduce electricity consumption
in peak hours and consumers’ electricity bills in response
to the ToU tariff are considered. In [42], authors developed
various DSM models based on metaheuristic algorithms for
managing electricity consumption and user comfort to human
preferences. In the proposed model, authors aim to handle the

uncertainty of RESs electricity output and efficient utilization
of ESS. The ultimate objectives of the proposed model are to
handle the integration of RESs and reduce carbon emission,
PAR in load demand, user discomfort, and consumer’s elec-
tricity bill.

In the research literature, proposed approachesmostly have
focused on scheduling of household appliances for mod-
eling HEM systems with the primary objective to reduce
consumer’s electricity bills. Although home energy schedul-
ing problems have been addressed in literature, there are still
research gaps in the power system field (e.g., the scheduling
of smart home deployed energy sources). In studies [34], [35],
authors have focused on scheduling of household appliances
with objectives such as to reduce consumers electricity bill
and PAR of load demand. However, to reduce electricity
usage during peak load hours and scheduling of smart home
deployed energy resources are ignored in these studies.

C. CONTRIBUTIONS AND STRUCTURE OF PAPER
The metaheuristic algorithm at the core of the HEM system
plays a significant role to exploit flexibility for the scheduling
of household appliances. In the context of the residential
sector demand side problems (e.g., home energy scheduling
problem), to propose an efficient metaheuristic approach for
modeling the HEM system is still needed, which contributes
to minimizing the residential consumers’ electricity bills.
Moreover, the HEM system should be capable of exploiting
flexibility for scheduling the operations of household appli-
ances and deployed energy resources such as utility power,
RESs power output, and ESS batteries. This work is an exten-
sion of [43], our conference paper already published and has
the following knowledge contributions in academic research.

• We have designed a new hybrid genetic-based harmony
search (HGHS) approach, in which the local search
capability of HSA is improved by integrating it with GA.

• We have proposed the HGHS approach for modeling the
HEM system to reduce consumer’s electricity bill and
electricity usage in peak load hours through scheduling
the operation of household appliances and deployed
energy resources in consumers’ premises with maxi-
mum utilization of RESs power output.

The rest of this paper is structured as follows: The proposed
system formulation is given in section II. In section III,
we have briefly explained the proposed approach. Section IV
presents simulation results obtained from the proposed
approach and finally, concluding remarks are written in the
last section.

II. PROPOSED SYSTEM FORMULATION
The proposed HEM system is for a typical home fur-
nished with n household electrical appliances. It assumed
that A = {a1, a2, . . . , an} represents a set of household
appliances, which are classified into inflexible appliances
and flexible appliances. In the research literature, inflexible
appliances (e.g., interior lighting) are referred to as baseline
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TABLE 2. Nomenclature.

loads or real-time appliances. In a smart home, the flexible
household appliances can be scheduled based on the proposed
approach. The RESs including wind turbines and a solar PV
module are integrated at home. The ESS is also installed
in a home to reduce the peak load demand. The electricity
is supplied from three energy resources such as a utility,
RESs electricity generation, and ESS batteries to complete
the operations of household appliances.

In the proposed HEM system model, the electricity con-
sumption cost minimization is the main objective to reduce
electrical peak load and minimum electricity purchase from
the utility. On the other hand, to maximize the utilization of
RESs power output is our goal. The RESs installation cost
is not considered and RESs power output is free of cost.
The subsections contain the mathematical formulation and
description of RESs, ESS, proposed HEM system, household
electrical load, and objective function. Moreover, we have
considered RTP tariff signals for consumer’s electricity cost
calculation in this work.

A. RENEWABLE ENERGY SOURCES
We assumed that a standard wind turbine and solar PV
module with an open rack array are installed in a smart
home. For the 15th June, we obtained half-hour base solar
PVmodule performance such as data solar irradiance (W/m2)

and ambient temperature(◦C) and wind speed (m/s) for city
Houston, Texas, U.S. from PVWatts R© calculator designed by
national renewable energy laboratory (NREL). The half-hour
base solar irradiance, ambient temperature, and wind speed
graphically are plotted in Figures 1, 2, and 3 respectively. The
solar PV power output with area Apv(m2) calculated by [44]:

EPpvt = η
pv.Apv.It .(1− 0.005(T outt − 25)), (1)

where, EPpvt is maximum electrical power (kW) generation
of solar PV module at timeslot t, ηpv is power coefficient
of solar PV module, Apv is solar PV module area(m2), It
is solar irradiance on a tilted surface (W/m2) and T outt is
outdoor temperature (oC) at timeslot t. The description of
nomenclatures are specified in Table 2. Solar irradiance on
a tilted surface I measured as [45]:

I = Ib.Rb + Id .Rd + (Ib + Id )Rr , (2)

where, Ib and Id represent direct normal solar irradiance and
diffuse solar irradiance. Rb, Rd , and Rr represent a tilt factor
for direct normal solar radiation, diffuse, and reflected solar
radiation, respectively. The solar PV module efficiency ηpv

defined as follows [45]:

ηpv = ηm.ηpc[1− β(Tc − Tr )], (3)

where ηm represents module efficiency, ηpc represents power
conditioning equipment efficiency, β represents array effi-
ciency temperature coefficient, Tc represents cell tempera-
ture, and Tr is reference temperature for cell efficiency.

Wind turbine power output for a location depends on wind
speed (velocity), wind turbine’s rotor swept area, and air
density. The total electrical power available in timeslot t from
the wind turbine calculated as [46]:

EPwtt = 0.5.ηwt .Awt .ρ.v3t , (4)

where EPwtt is maximum electrical power output of wind
turbine (kW) at timeslot t, ηwt is power coefficient of wind
turbine, Awt is rotor swept area of wind turbine (m2), ρ
represents air density (Kg/m3), and vt represents average
wind velocity (m/s) at timeslot t.

The power output and performance curve of a wind turbine
highly depends on the model. Therefore, wind turbine system
equation modeling is strongly inclined by the wind turbine’s
electrical power curve. The electrical power output of wind
turbine is based on both cut-in speed vin and cut-out speed
vout in the model [45]:

EPwtt =


0.5.ρ.ηwt .Awt .min(vt , vnom)3,
∀t : vin ≤ vt ≤ vout ,
0,
∀t : vt ≤ vin and vt ≥ vout .

(5)

In our proposed model, the electrical power generation
from RESs (EPrest ) is the sum of electrical power generation
from a solar PV module and wind turbine at timeslot t. The
electrical power generation from RESs (EPrest ) defined as:

EPrest = EPpvt + EP
wt
t ∀ t = 1 : T . (6)
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FIGURE 1. Forecasted solar irradiance.

Similarly, total electrical power generation from RESs for a
day (EPrestotal) calculated by the following formula:

EPrestotal =
T∑
t=1

(EPpvt + EP
wt
t ). (7)

It is assumed that EPresmax is the maximum electrical power
generation capacity of RESs. The electrical power generation
from RESs (EPrest ) at timeslot t must be in the following
range:

0 ≤ EPrest ≤ EP
res
max ∀ t = 1 : T . (8)

B. ENERGY STORAGE SYSTEM
In the ESS, electrical energy stored during timeslot t based
upon the rate of charging and discharged the batteries. Turn-
around efficiency of ESS is considered to overcome the loss
of electrical energy during the process of charging and dis-
charging. The electrical energy storage level in ESS batteries
at each timeslot t can be calculated as [44]:

EEesst = EEesst−1 + δ.η
ess.EPcht −

δ.EPdcht

ηess
, (9)

where EEesst is electrical energy storage level in ESS at times-
lot t (kWh) and EEesst−1 is electrical energy storage level in
ESS at timeslot t-1 (kWh), δ is time interval duration (h), ηess

is charge/discharge efficiency, EPcht represents charge rate
of electrical power (kW) at timeslot t, and EPdcht represents
discharge rate (kW) at timeslot t.

Here, we assume that EEessmin and EE
ess
max are boundary limits

of energy storage level in ESS batteries, respectively and
EEesst indicates the electrical energy storage level in ESS
batteries at timeslot t (t ∈ T ). The ESS batteries charging
and discharging limits are defined by the manufacturer and
model as [44]:

EPcht ≤ EPchlimit , (10)

EPdcht ≤ EPdchlimit , (11)

EEessmin ≤ EEesst ≤ EE
ess
max , (12)

FIGURE 2. Forecasted ambient temperature.

FIGURE 3. Forecasted wind speed.

where EPchlimit and EP
dch
limit are maximum limits of ESS charge

rate and discharge rate. These ESS batteries limit support
to maintain the storage and prevent damage and reduce the
capacity of batteries. Let EEessini be the electrical energy stor-
age level of ESS batteries at the beginning. SoEEesst electrical
energy storage level limit in ESS batteries can be defined as
EEessini ≤ EEesst ≤ EEessmax . The initial EE

ess
ini electrical energy

storage level is measured as EEessini = EEessmin at the start of day.
Furthermore, ESS batteries electrical energy storage level
cannot exceed their capacity and should always be positive.

C. HOME ENERGY MANAGEMENT SYSTEM
We have assumed that the smart home mainly comprises
HEM system, AMI based smart meter, household appliances,
and main display panel. A wired home area network is uti-
lized for two-way communication purposes between them.
The predominant component is the HEM system, which is
responsible to schedule the operations of household appli-
ances following RTP tariff. It also controls the electrical
power output of RESs and the condition of ESS in a smart
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FIGURE 4. HEM system architecture.

TABLE 3. Power Rating of Household Appliances [47].

home to achieve the objective. To obtain feasible time for
executing the operations of household appliances from the
defined operation time window of individual appliances and
shifting electrical load between power grid, RESs power
output, and ESS based on a strategy to minimize the power
usage cost are goals of the proposed HEM system. The pro-
posed HEM system also offered features such as transmitting
household appliances power consumption data to utility and
receiving price-based DR signals for RTP tariff from utility
through AMI based smart meter. It assumed that one day-
ahead, a smart meter communicated RTP tariff-based DR
signals from the utility to the HEM system. The Figure 4
contains a complete conceptual architecture of the proposed
HEM system.

D. HOUSEHOLD ELECTRICAL LOAD
We have assumed that the one-day scheduling time period
is divided into 48 half-hour time intervals (timeslots) t ∈
T ,∀,T = {t1, t2, . . . , t48}. The description of household
appliances, their constant power ratings, operation time win-
dow, and usage hours per day are taken from [47] and shown
in Table 3. It is assumed that εa represents the power rating
of a household appliance and αt = [0, 1] shows the ON/OFF
status of household appliances. The smart home load demand
per timeslot t (EPloadt ) for all household appliances defined
as:

EPloadt =

∑
a∈A

εa.αt ∀ t = 1 : T . (13)

Similarly, total smart home load demand per day (EPloadtotal) for
all household appliances defined as:

EPloadtotal =

T∑
t=1

(∑
a∈A

εa.αt

)
. (14)

In the smart home, ESS batteries and RESs including a solar
PV module and wind turbine are deployed as mentioned
above. In case RESs electricity generation and electrical
energy in ESS batteries are not enough to fulfill electrical
load demand of a smart home, electricity is purchased from
the utility to complete operations of household appliances.
Therefore, the electrical energy purchased from utility in
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timeslot t (EPgridt ) to complete operations of household appli-
ances is calculated as:

EPgridt = EPloadt − EPrest ± EE
ess
t ∀t = 1 : T . (15)

Similarly, total electrical energy purchased from utility per
day (EPgridtotal) to complete the operations of household appli-
ances can be calculated as:

EPgridtotal =

T∑
t=1

(
EPloadt − EPrest ± EE

ess
t

)
, (16)

where EPloadt is smart home load demand, EPrest is electrical
power generation from RESs, and EEesst is the electrical
energy storage status in ESS batteries at timeslot t. EEesst
positive sign represents batteries charging and EEesst negative
sign means batteries are discharging. It assumed that λt repre-
sents electricity RTP tariff (cent/kWh) at timeslot t. The smart
home electricity cost based on electrical energy purchased
from utility in timeslot t (EPCgrid

t ) can be calculated as:

EPCgrid
t = EPgridt .λt ∀ t = 1 : T . (17)

Similarly, the smart home consumer’s electricity bill for elec-
trical energy purchased from power grid per day (EPCgrid

total)
can be measured as:

EPCgrid
total =

T∑
t=1

(
EPgridt .λt

)
. (18)

E. OBJECTIVE FUNCTION
In our proposed optimization scheduling approach, the objec-
tive function is expressed as:

minf =
T∑
t=1

(∑
a∈A

εa.λt .αt

)
, (19)

subject to;

EPgridt ≤ EPloadt ≤ (kWg) ∀ t = 1 : T , (20a)
T∑
t=1

EPgridt ≤

T∑
t=1

EPloadt , (20b)

Tmin ≤ t ≤ Tmax , (20c)

εa.αt ≥ 0 ∀ t = 1 : T , (20d)
T∑
t=1

εa.αt = ERa ∀ a ∈ A. (20e)

The objective of our home energy scheduling problem is
to reduce the cost of consumed electricity from the power
utility, subject to constraints (20a-20e). The electrical power
consumed from the power grid in timeslot t should be smaller
than or equal to load demand for all household appliances
at each timeslot, as described by constraint (20a). The total
electrical energy consumed from the power grid per day
should be smaller than or equal to load demand for all house-
hold appliances per day, as described by constraint (20b).
According to the constraint (20c), timeslot t should be greater

than or equal to the minimum timeslot of T and smaller than
or equal to the maximum timeslot of T. According to the
constraint (20d), electricity usage of any household appliance
in a particular timeslot t must be a non-negative value. Con-
straint (20e) imposed to make sure that household appliances
can fulfill their one-day electrical needs.

III. PROPOSED APPROACH
In this section, first, we have shortly explained the original
GA. Secondly, we have described the original HSA. Lastly,
we have explained the proposed approach for modeling a
HEM system to schedule the operations of household appli-
ances and smart home deployed energy resources.

A. GENETIC ALGORITHM
The GA is an evolutionary programming based universal
metaheuristic approach. In literature, the GA applied in
numerous fields such as machine learning, pattern recog-
nition, combinatorial optimization, functional optimization,
scheduler, and optimization controller. The GA is influenced
by mutation and crossover operators for finding a feasible
solution to the optimization problem from the search space or
available solutions. In the process of generating a new popu-
lation, chromosomes (strings [0, 1]) are proficient to produce
a new offspring (child) chromosome, and the crossover oper-
ator is applied on chromosomes to generate a new offspring
chromosome. Generally, two parent’s binary substrings are
swapped based on selection of a one-point crossover operator
for generating offspring (child). The mutation operator in GA
randomly turns over bits based on a very small probabil-
ity in chromosomes (strings [0, 1]). The mutation operator
plays an important role in stabilizing the genetic diversity
in the newly generated population. However, due to some
deficiencies such as prematurity, high calculation time, and
slow convergence speed, the GA may only promise to pro-
vide a local optimum solution to the optimization problem.
In study [48], it perceived that merging the GA with EA
considerably enhanced the efficiency of the hybrid approach.

B. HARMONY SEARCH ALGORITHM
The HSA is also an evolutionary programming approach and
it is based on musician’s behaviours such as memory-based
or experience-based play, pitch adjusted play, and random
play for finding the best harmony [49]. The initially pro-
duced harmony memory (HM) consists of some arbitrarily
generated solutions and a harmony memory size (HMS) for
under consideration optimization problems. At the initial
stage, HM consists of a uniform distribution of upper and
lower bounds of the optimization problem [49]. The search
space gives a basis to arbitrarily produce the elements of new
harmony. Mathematical it is formulated as follows:

xi,j = lj + rand().(uj − lj) j = 1, 2, . . . ,HMS, (21)

where xi,j is the jth element of harmony xi ∈ {x1, x2, . . . , xN };
lj is lower limit and uj is upper limit of the ith search dimen-
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sion. rand() generates uniformly distributed of real numbers
in [0, 1] randomly.

In the next step, the improvisation process is started after
the generation of the initial HM. On the basis of harmony
memory consideration rate (HMCR) and pitch adjustment
rate (PA-rate), a new harmony is generated by applying a
random selection technique. The HMCR value is formulated
as follows: [50]:

vi,j =

{
xrnd,j rand() < HMCR,
lj + rand(0, 1).(uj − lj) else,

(22)

where xrnd,j represents the randomly selected harmony xrnd
of jth element.

On the basis of PA-rate, the newly obtained elements of
harmony in the above operation are changed with neighbors.
It is defined as follows:

vi,j =

{
vi,j ± rand(0, 1).bwj rand() < PA− rate,
vi,j else,

(23)

where bwj represents bandwidth of jth element.
In the above step, the value of the harmony vector vi,j

is determined and assigned to the harmony vector xnew as
follows: xnew = vi,j. A comparison is conducted between
harmony vector xnew and harmony vector xworst . If harmony
vector xnew is better than old harmony vector xworst , in that
case, harmony vector xnew is added in HM and old harmony
vector xworst is removed from HM.

C. PROPOSED APPROACH TO MODEL HOME ENERGY
MANAGEMENT SYSTEM
A hybrid approach is one of the well-known and efficient
strategy for improving the optimization performance of algo-
rithms, in which good features of an algorithm are combined
with other optimization methods. In recent literature, vari-
ous studies have been documented for improving optimiza-
tion performance of algorithms based on hybrid approaches.
In study [51], authors have proposed a hybrid approach for
household appliances electric load forecasting using a convo-
lutional neural network (CNN) and long short-term memory
(LSTM). The similar hybrid approach is applied in study [52]
for forecasting the electricity tariff and household appliances
electric load.

In the original HSA, the new harmony is randomly gener-
ated based on HMCR and PA-rate by considering an avail-
able solution vector (set of solutions) instead of only two
parents as in GA. However, sometimes the random approach
does not guarantee efficacious new solutions, and in that
case, HSA may not generate convenient harmony. The algo-
rithm’s efficiency can be enhanced by tuning its parameters
and/or hybridizing it with features of another optimization
algorithm. Chromosomes in GA and Harmony in HSA and
populations in GA and HM in HSA have similar behaviors
for finding a feasible solution to the optimization problem.

In this research work, we proposed HGHS through appro-
priate integration of harmony in HSA with chromosomes

Algorithm 1 HGHS

1 Parameters initialization: problem size (dimension) or
number of control variables (N), HMCR HMS, PA-rate
and bandwidth bw distance;
/* HM initialization */

2 for j = 1:HMS do
3 for i = 1:N do
4 xi,j = lj + rand(0, 1).(uj − lj);
5 end
6 end
7 while Criteria is not met do
8 for j = 1:HMS do
9 Fitness evaluation of individual harmony in HM;
10 end
11 Find the worst vector xworst ∈ HM ;
12 for i = 1:N do

/* memory consideration */
13 if rand() < HMCR then
14 vi,j = xrnd,j, where j ∈ (1, 2, . . . ,HMS);

/* pitch adjustment */
15 if rand() < PA− rate then
16 vi,j = vi,j ± rand(0, 1).bwj;
17 end
18 else

/* random selection */
19 vi,j = lj + rand(0, 1).(uj − lj);
20 end
21 end
22 xnew = vi,j;

/* Update HM */
23 if f (xnew) < f (xworst ) then
24 xnew included in HM;
25 xworst excluded from HM;
26 end

/* GA crossover operator and
mutation operator */

27 Select harmonies as parents for GA from HM;
28 Generate new (population) HM via Crossover and

mutation;
29 end

of GA and HM of HSA with the population of GA. The
proposed approach is applied for modeling the HEM system
to schedule operations of household appliances and integrated
energy resources. The main procedure of the new algorithm
begins with parameter initialization including population
size, HMS, generations, number of iterations (NI), random
bandwidth (bw) distance, and probability of mutating HM,
crossover, HMCR, and PA-rate. In the next step, the fitness
of each harmony in HM is evaluated and the worst vector
xworst is identified in HM. The optimization performance
and convergence speed of the HSA are controlled by HMCR
and PA-rate. Based on HMCR and PA-rate values, the new
harmony vector xnew elements are selected randomly in the
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FIGURE 5. A strategy to choose energy resource.

new generation of HSA. A comparison is made between the
minimum harmony vector (worst harmony vector xworst ) and
harmony vector xnew in HM. If xnew is better than xworst ,
in that case, xnew is included in HM by replacing xworst . The
process is continuous until stopping criteria are not met.

In the next step, to evaluate the fitness of the population, the
fitness of individuals is measured as explained in algorithm 1.
The new population generated on the basis of GA features
such as selection, mutation, and crossover, is measured as
HM and chromosomes in the population are measured as
harmony. In the next step, the features of HSA are utilized
to generate new harmony. The fitness of individuals in har-
mony (population) is measured again for evaluating the fit-
ness of the population. The above process is repeated until
satisfying results are obtained.

A strategy is developed to choose an energy resource from
smart home deployed energy resources such as grid power,
the power output of RESs, and ESS batteries, for executing
the operations of scheduled household appliances. The power
output of RESs EPrest includes power output of both solar PV
module EPpvt and wind turbine EPwtt at timeslot t. At initial
step, power output EPrest of RESs, scheduled load EPloadt of
household appliances, ESS energy status EEesst , RTP tariff λt
are obtained for timeslot t. If the generated power EPrest from
RESs is more than scheduled load EPloadt of household appli-
ances, the operations of household appliances are fulfilled
using the electricity output of RESs. The remaining power
output of RESs is either utilized to charge batteries of ESS
when EEesst < EEessmax or power EPwaste is dumped.

If EPrest < EPloadt , the power output of RESs is not
enough to execute the operations of scheduled household
appliances. We used the power output of RESs and ESS
batteries to complete the operations of scheduled household
appliances when EEesst > EEessmin and RTP tariff λt is greater

FIGURE 6. Electricity price signal.

than threshold value λset . We considered the mean of the
whole-day electricity RTP tariff as the threshold value λset
in this study. Only in case, if EEesst is less than or equal to
EEessmin or RTP tariff λt is less than or equal to threshold value
λset , electricity is purchased from the power utility to execute
the operations of scheduled household appliances and charge
the ESS batteries. The proposed strategy to choose an energy
resource for operations of scheduled household appliances is
explained in Figure 5.

IV. SIMULATIONS RESULTS
The simulation based experimental results are explained by
making comparisons of results obtained from GA, HSA,
proposed HGHS scheduling approach and unscheduled load
in this section. In the proposed HEM system model, the
effects of smart home deployed energy resources (i.e., RESs
and ESS) on electricity consumption patterns, electricity cost,
and electrical peak load are also discussed in this section.
Initially, we described a system setting; in the proposedmodel
one-day scheduling operation of the HEM system is divided
into 48 half-hour timeslots. Electricity price signals for these
timeslots followed RTP tariff and its profile is plotted in
Figure 6.

In this paper, the RTP electricity tariff is used for enabling
consumers to make beneficial decisions for reducing elec-
tricity usage cost and electrical peak load. In the residen-
tial sector, a single home is considered in which RESs
and ESS batteries are deployed and also furnished with
12 electrical household appliances for evaluation of the
proposed approach. Household appliances are categorized
into flexible appliances and inflexible appliances. Based on
power rating, operation time window and length of oper-
ational time of individual flexible household appliances
specified in Table 3, the flexible household appliances are
scheduled.

It expected that forecasted information about electrical
power output from RESs such as wind turbines and a solar
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FIGURE 7. Smart home energy cost profile.

PV module are accurate. The wind turbine and solar PV
module electrical power output tolerate a mean absolute
error of 10% of the estimated power output in any timeslot
t of the installed capacity for power production. One-third
of the remaining 90% electricity is consumed for charging
ESS batteries, which are utilized during peak load hours to
minimize electricity consumption cost and electrical peak
load. Two-third of the remaining 90% electricity is instantly
consumed to complete scheduled operations of household
appliances. The electricity from the utility is available as
a backup all the time to complete operations of household
appliances if the smart home estimated load demand did not
fulfill from RESs electrical power output and ESS batteries.
In the ESS, most advanced technology based deep-cycle and
lead-acid batteries are used because of their efficiency, high
reliability, and low cost. Although, these batteries have a
relatively small volume of energy storage as compared to
other types of batteries [53].

In this work HEM system is modeled by implementing the
proposed HGHS load scheduling algorithm, GA and HSA in
MATLAB R2017a. The simulation results are obtained by
executing proposed HGHS, GA, and HSA on Intel Core-i5
CPU and 8GB memory-based computer. The following cases
are considered to measure the performance and effectiveness
of the proposed hybrid approach:

• Case I, home without RESs and ESS deployment
• Case II, home with only RESs deployment
• Case III, home with both RESs and ESS deployment

A. ELECTRICITY CONSUMPTION COST
The simulation results about electricity usage cost for the
above mentioned three cases are described here. In case I,
the electricity consumption cost profiles of scheduled loads
based on the proposed HGHS, GA, and HSA load scheduling
algorithms and unscheduled load are plotted in Figure 7a.
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FIGURE 8. Total electricity cost.

The unscheduled electricity consumption cost during times-
lots 37 and 38 was 261.1906 cents, whereas the GA based
scheduled cost was obtained 170.1381 cents in the same
timeslots. During timeslots 37 and 38, the electricity con-
sumption cost was limited to 159.7321 cents in both HSA and
HGHS based scheduling approaches. For case II, the electric-
ity consumption cost profiles of scheduled loads based on the
proposed HGHS, GA, and HSA load scheduling algorithms
and unscheduled load are plotted in Figure 7b. During times-
lots 37 and 38, the electricity consumption cost for unsched-
uled load was limited to 254.8318 cents and for scheduled
load based on GA is limited to 163.7793 cents, respectively.
The maximum electricity cost was 153.3733 cents during
timeslots 37 and 38 for both HSA and HGHS based schedul-
ing approaches. For case III, the electricity consumption cost
profiles of scheduled loads based on the proposed HGHS,
GA, and HSA load scheduling algorithms and unscheduled
load are plotted in Figure 7c. In this case, electricity con-
sumption cost was reduced during many timeslots. During
timeslots 37 and 38 costs are reduced and the maximum
electricity consumption cost was reported during timeslots
39 and 40 for the unscheduled load.

To complete operations of household appliances, the elec-
tricity cost during timeslots 39 and 40 was limited to
158.8048 cents for the unscheduled load. The maximum
62.9346 cents electricity consumption cost of HSA based
scheduled load was reported during 43 and 44 timeslots and
59.0856 cents was reported during 43 and 44 timeslots for GA
based scheduled load. Similarly, during timeslots 17 and 18,
the electricity consumption cost was limited to 48.5055 cents
in HGHS based scheduling approach.

For early described three cases, the total power con-
sumption cost for one-day scheduling operations of house-
hold appliances using GA, HSA, and HGHS approaches
and an unscheduled scenario are shown in Figure 8. In
case I, the power consumption cost of one-day scheduling
was 1699 cents for an unscheduled scenario. The electricity
consumption cost was reduced and limited to 1401.4 cents,
1366 cents, and 1305.7 cents for GA, HSA, and HGHS
scheduling approaches, respectively. In case I, electricity con-

FIGURE 9. Electrical peak load.

sumption cost was 23.125% reduced for one-day scheduling
operations of household appliances using the proposed load
scheduling algorithm HGHS. Simulation results indicate that
in case II, total electricity consumption cost for one-day
scheduling operations of household appliances was reduced
and limited to 1409.8 cents for an unscheduled load sce-
nario. Electricity purchase cost from the utility was limited to
1112.2 cents,998 cents, and 953.65 cents for GA, HSA, and
HGHS based scheduling approaches, respectively. In case II,
by integrating RESs electrical power output in the HEM
system model up to 43.87% electricity consumption cost was
reduced using the proposed hybrid approach.

In case III, by integrating both RESs electrical power
output and ESS batteries in the HEM system total elec-
tricity cost for one-day scheduling operations of household
appliances was significantly reduced. In this case, electricity
consumption cost was limited to 900.14 cents, 633.65 cents,
641.44 cents, and 569.44 cents for an unscheduled scenario
and GA, HSA, and HGHS approaches, respectively. The pro-
posed hybrid approach HGHS outperforms more efficiently
than GA and HSA by purchasing minimum power from the
utility and reducing electrical peak load. The power con-
sumption cost was 66.44% reduced using the proposed load
scheduling approach.

B. ELECTRICAL PEAK LOAD
In the proposed HEM system model, the electrical peak load
in an unscheduled scenario and scheduling of smart home
household appliances using GA, HSA, and HGHS is shown
in Figure 9. In case I, the electrical peak load was reported
as 5.02 kW in an unscheduled scenario. In this case, the
electrical peak load during home energy scheduling based on
GA, HSA, and proposed HGHS approaches was limited to
3.27 kW, 3.07 kW, and 3.07 kW, respectively.

In case II, the electrical peak load values were reduced
due to RESs electrical power output integration in the smart
home. The electrical peak load during scheduled load sce-
narios based on GA, HSA, and the proposed HGHS schedul-
ing approach was limited to 3.1478 kW, 2.9478 kW, and
2.9478 kW, respectively. In an unscheduled load scenario it
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FIGURE 10. Smart home energy profile.

was 4.8978 kW. In case III, by integrating both RESs and
ESS in the proposed HEM system electrical peak load is
significantly reduced and it was limited to 2.4817 kW in
an unscheduled load scenario. In scheduled load scenarios
based on GA, HSA, and the proposed HGHS approach, the
electrical peak load was limited to 2.3026 kW, 2.7726 kW,
and 1.9 kW, respectively.

C. GRID ELECTRICITY USAGE
The grid electricity usage profiles of scheduled loads based
on GA, HSA, and proposed HGHS approach and unsched-
uled load scenario are shown in Figure 10a, for case I. In this
case, maximum energy 5.0200 kWh consumed in timeslots
37 and 38 to complete operations of household appliances
based on the unscheduled scenario. During timeslots 37 and
38, electricity consumption was limited to 3.2700 kWh for
the GA-based scheduling approach, and electricity consump-
tion was limited to 3.0700 kWh for both HSA and HGHS
approaches. By integrating RESs electrical power genera-

tion in the proposed HEM system, electricity usage from
the grid was reduced in case II. The grid electricity usage
profiles of scheduled loads based on the proposed HGHS,
GA, and HSA load scheduling algorithms and unscheduled
load are plotted in Figure 10b. In this case, to complete
the operation of household appliances based on an unsched-
uled scenario, 4.8978 kWh energy was used during timeslots
37 and 38. Similarly, during timeslots 37 and 38 maximum of
3.1478 kWh energy was consumed for a GA-based schedul-
ing approach, whereas maximum energy consumption was
limited to 2.9478 kWh for HSA and HGHS scheduling
approaches.

For case III, Figure 10c, represents the utility electricity
usage (purchase) profiles of scheduled loads based on the
proposed HGHS, GA, and HSA load scheduling algorithms
and unscheduled load. By integrating RESs electrical power
generation and ESS batteries in the HEM system, the electric-
ity usage from the utility significantly reduced during specific
timeslots for scheduling the operation of household appli-
ances. In this case, utility electricity consumption is limited
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FIGURE 11. Total energy consumption.

to 2.4817 kWh during 39 and 40 timeslots in unscheduled
load. Using the HSA approach, utility energy consumption is
limited to 2.4997 kWh during timeslots 45 and 46 to schedule
the operation of household appliances. Similarly, electricity
purchase from the utility is limited to 2.3026 kWh during
timeslots 43 and 44 in the GA based scheduling approach.
In experimental results based on the proposed HGHS load
scheduling approach, electricity purchase from the power
utility is limited to 1.9000 kWh during timeslots 5 and 6 to
complete the operations of household appliances.

For three cases as earlier described, the graphical sim-
ulation results of electricity purchased from the utility for
one-day under unscheduled load scenario and GA, HSA,
and HGHS scheduling approaches presented in Figure 11.
In case I, in which RESs electrical power generation and ESS
batteries did not integrate into the HEM system model, total
electricity consumed from the grid in one-day was limited to
46.34 kWh for the unscheduled load as well as for GA, HSA,
and HGHS scheduling approaches. By integrating RESs elec-
trical power generation in the proposed HEM system model,
the electricity consumption from the grid was reduced in
an unscheduled load scenario and under load scheduling
approaches. In case II, aggregate electricity usage from the
grid for one-day was limited to 32.712 kWh, 32.079 kWh,
35.248 kWh, and 35.248 kWh for scheduled loads based on
the proposed HGHS, HSA, and GA load scheduling algo-
rithms and unscheduled load, respectively. In case III, simula-
tion results indicate that electricity usage (purchase) from the
grid significantly reduced for scheduling operation of house-
hold appliances by integrating both RESs electrical power
output and ESS batteries into the HEM system model. In this
case, the electricity usage from the grid for one-day during
load scheduling scenarios based on GA, HSA, and proposed
HGHS approach was limited to 26.079 kWh, 25.264 kWh,
and 25.201 kWh, respectively. In unscheduled load scenario
it was 25.452 kWh. The proposed load scheduling algorithm
HGHS outperforms and significantly reduces electricity con-
sumption from the power grid.

TABLE 4. Possible cases based on load and tariff - without integration of
RESs and ESS in smart home.

TABLE 5. Possible cases based on load and tariff - with only RESs
integration in smart home.

TABLE 6. Possible cases based on load and tariff - with both RESs and
ESS integration in smart home.

The electricity consumption patterns during one-day
scheduling in a single home based on GA, HSA, and HGHS
scheduling approaches indicate that household appliances are
scheduled within a defined operational time window and
without creating a peak in any hour of the day. Moreover,
experimental results represent that the electrical peak load in
the case of the proposed load scheduling algorithm HGHS
reduced significantly.

D. FEASIBLE REGION
The area represents a set of points that are not eliminated
by any constraint of the problem is a feasible region. The
scheduling of household appliances based on the RTP elec-
tricity tariff ranges from 17.5200 to 63.9900 cents/kWh at
timeslot in the proposed HEM system. The objective func-
tion is subject to the constraints like operational time win-
dows and to reduce electrical peak load and electricity usage
from the power grid. In this section, we have considered
four different scenarios to simulate the feasible region of
the objective function for the early described three cases.
In which, the points P1 and P2 represent electricity cost for
two scenarios such as min load demand (kWh) with min price
(cents/kWh) and min load demand (kWh) with max price
(cents/kWh), respectively. The points P3 and P4 represent
electricity cost for the other two scenarios such as max load
demand (kWh) with min price (cents/kWh) and max load
demand (kWh) with max price (cents/kWh), respectively.
In case I, the feasible region for the cost minimization objec-
tive is plotted in Figure 12a, in which the unscheduled load
is in range [0.1500 5.0200] kWh. The possible scenarios
based on electrical load and RTP signal to calculate the
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FIGURE 12. Electricity cost feasible region.

electricity cost specified in Table 4. The electricity cost fea-
sible region (which includes eliminated and non-eliminated
points) contains the points P1(0.1500, 2.6280), P2(0.1500,
9.5985), P3(5.0200, 87.9504), and P4(5.0200, 321.2298).
The maximum energy cost at any timeslot in scheduling
based on GA, HSA, and HGHS approaches should be less
than the maximum electricity cost in an unscheduled load
scenario. The shaded area of a plotted graph in Figure 12a
surrounded by coordinates (P1, P2, P3, P5, and P6) repre-
sents the electricity cost feasible region. Point P5(2.6588,
170.1381) indicates that the scheduled load at timeslot is
limited to 2.6588 kWh, where electricity cost is highest.
Point P6(5.02, 170.1381) represents that load of 5.02 kWh
did not schedule at any timeslot, where the electricity cost
is more than 170.1381 cents. Figure 12b represents the fea-
sible region of objective function for case II. In this case,
by integrating RESs electrical power generation into the
HEM system model, unscheduled load reduces and ranges

from 0 to 4.8978 kWh. For case II, Table 5 represents the
possible scenarios on the basis of electrical load and cost of
electricity purchased from the power utility. Points P1(0, 0),
P2(0, 0), P3(4.8978, 85.8092) and P4(4.8978, 313.4093)
represent the electricity cost region. The shaded area of a
plotted graph in Figure 12b surrounded by coordinates (P1,
P2, P3, P5, and P6) indicates the electricity cost feasible
region for case II. In the feasible electricity cost region,
point P5(2.5595, 163.7793) indicates that at any timeslot
where the electricity cost is maximum, the scheduled load
did not exceed 2.5595 kWh. The point P6(4.8978, 163.7793)
represents the load of 4.8978 kWh scheduled at any timeslot
where the electricity cost is less than 163.7793 cents. For case
III, Table 6 represents the possible scenarios for calculating
the cost of electricity consumed from utility based on elec-
tricity tariff and electrical load in any timeslot. In this case,
the unscheduled electrical load further reduces and ranges
from 0 to 2.4817 kWh by integrating RESs electrical power

VOLUME 9, 2021 160159



M. Ahmad et al.: Cost-Effective Optimization for Scheduling of Household Appliances

generation and ESS batteries into the HEM system model.
In Figure 12c, points P1(0, 0), P2(0, 0), P3(2.8417, 43.4796)
and P4(2.8417, 158.8048) represent the possible region of
objective function for case III. The coordinates of P1, P2,
P3, P5, and P6 points form a shaded area that indicates
the electricity cost feasible region for case III. In this case,
P5(1.0178, 65.1277) and P6(2.4817, 65.1277) define two
limits. The first limit based on P5(1.0178, 65.1277) is defined
as the scheduled load is limited to 1.0178 kWh at any timeslot
where electricity cost is a maximum of 65.1277 cents. The
second limit based on P6(2.4817, 65.1277) is defined as the
load of 2.4817 kWh scheduled at a timeslot where the price
is less than 65.1277 cents.

V. CONCLUSION
In this study, we have proposed the HGHS approach for
modeling the HEM system. The purpose of this HEM system
model is to schedule the operations of household appliances,
maximum utilization of RESs power output, optimally charg-
ing/discharging of ESS batteries, and reducing electricity
purchase from the power grid or utility. The minimization of
electricity consumption cost is the main objective subject to
reduce electrical peak load and minimum electricity purchase
from the power utility. In the proposed HEM system model,
a day-ahead electricity RTP tariff is used for the schedul-
ing of household appliances under the defined operational
time window constraints for each household appliance. The
performance and effectiveness of the proposed HEM system
model are measured on the basis of three case studies for
the scheduling of household appliances. The experimental
results indicate that the performance of the proposed HGHS
scheduling approach significantly increased by integrating
RESs and installing ESS batteries into the proposed HEM
system model. The proposed HGHS scheduling approach
optimally scheduled the household appliances and deployed
energy resources, which helped to reduce electricity con-
sumption cost. The electricity consumption cost for complet-
ing one-day operation of household appliances was limited to
1305.7 cents, 953.65 cents, and 569.44 cents in the proposed
scheduling approach for case I, case II, and case III, respec-
tively and was observed as lower than other approaches.
The electricity consumption cost was reduced upto 23.125%,
43.87% and 66.44% in case I, case II, and case III, respec-
tively using proposed scheduling approach as compared to
an unscheduled load scenario. Moreover, the electrical peak
load was limited to 3.07 kW, 2.9478 kW, and 1.9 kW during
the proposed HGHS scheduling approach and was reported
as lower than other approaches.

Although the proposed HGHS scheduling approach has the
flexibility to explore a search space in an equitable amount
of time. However, the proposed approach takes a long time as
compared to other algorithms for scheduling the operations of
household appliances. It may be a challenging task to obtain
significant results in the case of applying a proposed approach
for scheduling the household appliances at community level.
The experimental results encourage further study in future

work for long-term optimization scheduling of a set of smart
homes and modeling the stochastic nature of electricity gen-
eration from RESs.
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