
Received November 13, 2021, accepted November 24, 2021, date of publication November 29, 2021,
date of current version December 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3131163

Robust Charging Schedule for Autonomous
Electric Vehicles With Uncertain Covariates
YONGSHENG CAO 1,2,3 AND YONGQUAN WANG1,2
1Department of Information Science and Technology, East China University of Political Science and Law, Shanghai 200042, China
2Computer, Audio and Video Data Appraisal Laboratory, ECUPL Center of Forensic Expertise, Shanghai 200042, China
3College of Information Science and Technology, Donghua University, Shanghai 201620, China

Corresponding author: Yongquan Wang (wangyongquan@ecupl.edu.cn)

This work was supported in part by the Fundamental Research Funds for the Central Universities under Grant CUSF-DH-D-2018093,
in part by the China Scholarship Council under Grant 201906630026, in part by the National Social Science Foundation of China under
Grant 20&ZD199, in part by the Key Interdisciplinary Project for the Central Universities under Grant 223201800084, and in part by the
Humanities and Social Science Research Project of Ministry of Education under Grant 20YJC820030.

ABSTRACT Autonomous electric vehicles (AEVs) will become an inevitable trend in the future trans-
portation network and have an important impact on the power grid. It is difficult to find the optimal
distributed charging solution for AEVs to minimize the system cost with some uncertainties. In this paper,
we investigate an AEVs charging and discharging problem with vehicle-to-grid (V2G) services. We aim
to minimize the total electricity cost and battery degradation cost of AEVs and charging station batteries
with V2G services, which takes the random arrival and departure of AEVs into account. We first propose a
distributed charging framework of AEVs and charging stations by clustering method with the constraint of
limited AEVs for each charging station in a region and formulate a distributed offline optimization problem.
Then we formulate a distributed online charging optimization problem and propose a distributed online
AEV charging scheduling (DOAS) algorithm to get an optimal charging solution. To study a more practical
case, we reformulate the distributed online optimization problem with the uncertainties from base loads,
renewable energy and charging demands. Furthermore, to improve the time efficiency of DOAS algorithm,
we reduce the dimension of the distributed problem and design a dimension-reduction DOAS (DDOAS)
algorithm. To seek a robust solution with some uncertainties, we propose a DDOAS algorithm with DRO
based on Wasserstein distance (DDODW). Simulation results show that DOAS and DDOAS algorithms
can have a close-to-optimal charging cost and a significantly less battery degradation cost of charging
stations, compared with centralized online charging scheduling algorithm and DDOAS algorithm is more
time-efficient than DOAS algorithm. The proposed DDODW algorithm can provide a robust solution for the
energy schedule.

INDEX TERMS Optimal charging scheduling, battery degradation, online distributed solution, distribution-
ally robust optimization, Wasserstein distance, autonomous electric vehicle.

I. INTRODUCTION
With the development of self-driving technology and intel-
ligent charging technology, autonomous electric vehicles
(AEVs) have attracted increasing attention in the industrial
and academic community [1]. AEVs will become a cleaner
and efficient transportation mode in the future. AEVs have
more controllability than electric vehicles (EVs). EVs have
been extensively utilized and developed in the past several
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years [2] because EVs are more environmentally friendly
than traditional fuel vehicles. The penetration rate of EVs
is expected to 25% by 2025 [3] and there will be a large
number of AEVs in major cities [4]. AEVs can store redun-
dant energy in their batteries and feed the electricity back
to power grid with the vehicle-to-grid (V2G) service [5].
Price signals are used to guide AEVs to charge and discharge
to support V2G service [6]. Large numbers of AEVs will
be integrated into the power grid, which may increase the
pressure on the grid. The potential impacts contain voltage
fluctuation and frequency regulation. The charging station
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can be an aggregator to shift the AEV charging schedule
to alleviate the energy pressure on the power grid [7]. The
AEV charging schedule is optimized to reduce the charging
costs and obtain the profits by discharging energy to the
power grid according to time-varying electricity prices [8].

Price signals are utilized to guide EVs to charge in charging
stations tomeet the predefined electricity demand. The charg-
ing station can incorporate renewable energy into the power
system [9]. The charging station decides EV charging amount
and brings the arbitrage to electricity market with regulation
service as an aggregator [10]. We aim to minimize the charg-
ing cost of AEVs and the degradation cost of charging stations
and AEVs, with the constraint of AEVs’ electricity demands.
There are some uncertainties about the renewable generation
and the arrival and departure time of AEVs. We might evalu-
ate the electricity cost for making an observation, along with
a cost of the uncertainties about renewable energy and AEVs’
profile [11].

In this paper, we propose an offline optimization problem,
where the profile of AEVs, the renewable energy and base
load are known ahead. We aim to minimize the total AEV
electricity cost and the degradation cost of charging stations
and AEVs, considering V2G service. It is complicated and
impractical to solve the optimization problem from a global
perspective. Then we divide the whole region into smaller
regions by clustering method, which restricts the number of
AEVs in the current time slot to a certain amount. In prac-
tice, the offline optimization problem in a region should be
reformulated as a distributed online optimization charging
problem, considering the uncertainty of renewable energy
and AEVs’ profile. To study a more practical case, we refor-
mulate a distributed online optimization problem with the
uncertainties from base loads, renewable energy and charging
demands. In this paper, we use the scenario-wise ambiguity
sets based on Wasserstein distance to capture these uncer-
tainties. Wasserstein distance can characterize the moment
and distance information of these uncertainties. Then we
design a distributed online algorithm to minimize the elec-
tricity cost of AEVs and the degradation cost of charging
stations and AEVs, with V2G service. Finally, we propose
a robust distributed online algorithm based on distribution-
ally robust optimization to seek a robust solution of energy
schedule.

We summarize the contributions of our paper as follows.
• We propose a distributed charging framework of AEVs
and charging stations by clustering method with the
constraint of limited AEVs for each charging station
in a region. Then we reformulate the offline charging
scheduling problem as a distributed online optimization
problem by the rolling window method, which is practi-
cal and feasible.

• We propose a distributed online AEV charging schedul-
ing (DOAS) algorithm to get the optimal charging solu-
tion to minimize the electricity cost of AEVs and the
degradation cost of charging stations and AEVs, with
V2G service.

• To improve the time efficiency, we propose a
dimension-reduction DOAS (DDOAS) algorithm by
measuring the data similarity between different charging
stations. To seek a robust solution with some uncertain-
ties, we propose a DDOAS algorithm with DRO based
on Wasserstein distance (DDODW).

• Simulation results show that DOAS and DDOAS algo-
rithms can have a close-to-optimal charging cost and
a significantly less battery degradation cost of charg-
ing stations, compared with centralized online charg-
ing scheduling algorithm and DDOAS algorithm is
more time-efficient than DOAS algorithm. The pro-
posed DDODW algorithm can provide a robust solution
for the energy schedule.

The remainder of this paper includes these five sections.
Section II shows the related work of our research. Section III
formulates AEV charging problem, which contains system
architecture, offline optimization problem, distributed online
AEV charging scheduling problem. Then DOAS, DDOAS,
DDODW algorithms are proposed to handle the online dis-
tributed optimization problem in Section IV. Simulation
results and the related performance analysis are shown in
Section V. Finally, Section VI concludes the paper. The nota-
tions used in this paper are explained in Table 1.

TABLE 1. Notations.

II. RELATED WORK
There are a large number of literatures about the charging and
discharging scheduling problem. The control center aims to
optimize the bidirectional energy flows between the power
grid and the EV battery. Li et al. proposed a model-free
approach based on safe deep reinforcement learning to get
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the constrained optimal charging and discharging schedules
with a deep neural network [12]. He et al. [13] presented a
smart EV park model where the power flows among EVs
and power grid. Leou et al. [14] aimed to reduce opera-
tion costs and achieve the optimal charging and discharging
control of EVs with the constraints of EVs and power grid.
Kikusato et al. [15] proposed an EV charging and discharging
management framework for the effective utilization of solar
energy by coordinating the information exchange between the
energy management systems of home and power grid. These
works provide good theoretical basis for the charging and
discharging problem formulation in this paper.

V2G service is an important method to balance the electric-
ity demand in power grid and reduce some costs of electricity
systems with the help of EVs to balance the peaks of momen-
tary electricity consumption. Turker et al. [16] studied the
charging cost problems of the Plug-in EVs with the concepts
of V2G and Vehicle-to-Home. The charging stations and EVs
are distributed and how to study the charging scheduling in
a distributed method is also the concern. Wang et al. [17]
utilized rolling optimization for charging and discharging
plans of the EVs and control center with the constraint
of the guiding load curve. Tang et al. [18] formulated a
joint routing and charging scheduling problem of an Inter-
net of EVs network from the system operator’s perspective.
Wang et al. [19] proposed a partial augmented Lagrangian
method to handle the coupling constraints of charging
behaviours by introducing a penalty term. Mehrabi et al. [20]
proposed an online distributed algorithm to schedule EVs
in a geographically energy distribution system where
EVs are flexible to charge and discharge at deployed charging
stations. The charging stations play an important role in
the charging and discharging scheduling problem of vehi-
cles. We can use the charging station battery as an aggre-
gator to help support V2G service. We need to consider the
degradation cost of both AEVs and charging station batter-
ies. Ahmadian et al. [21] presented a stochastic method for
EVs’ charging with considering the associated uncertainties
and proposed a comprehensive model to study the impact
of EVs’ charging and discharging strategies on the battery
degradation. Richard et al. [22] proposed a fast charging
station model including grid services and studied the battery
degradation cost under different conditions. Tan et al. [23]
studied a charging scheduling problem of charging station
batteries to minimize electricity cost with the constraint of
fully charged EV batteries.

Due to the intermittent of renewable energy and electric
vehicles, many uncertainties are brought into the power sys-
tem. There are two dominant approaches: stochastic opti-
mization (SO) [24] and robust optimization (RO) [25]. SO can
improve the expected objective of market participants with
the uncertainties where probability distribution is exactly
known. However, it is still a challenging problem for SO
to handle the scenarios with different probability distribu-
tion. RO constructs energy schedules that are immune to
realizations of the uncertain parameters in a deterministic

uncertainty set. However, RO has a pessimistic view of uncer-
tainties in the evaluation of objective. To handle the uncer-
tainties modestly in power system, we design an ambiguity
set which includes possible probability distributions to apply
the distributionally robust optimization (DRO). DRO was
utilized in [26] at the first time and was applied in some
power system studies [27], [28]. To the best of our knowledge,
we are the first one to study a distributed onlineAEV charging
scheduling problem withWasserstein ambiguity set to get the
near-optimal charging solution, which aims to minimize the
electricity cost of AEVs and the degradation cost of charging
station batteries and AEVs with some uncertainties.

III. PROBLEM FORMULATION
In this section, we investigate a charging scheduling prob-
lem for AEVs’ charging and discharging with V2G services.
A global optimal solution to this optimization problem based
on a real-time pricing model is provided to minimize the total
electricity cost and battery degradation cost.

A. SYSTEM ARCHITECTURE
As shown in Fig. 1, we investigate the charging and dis-
charging problem of AEVs in a period T , which can be
evenly discretized into some time slots. The time slot is set
as t ∈ T = {1, 2, . . . ,T }. We assume that the charging and
discharging rate in a time slot are unchangeable.

FIGURE 1. The AEV charging and discharging model with renewable
energy in the community.

The set of AEVs is denoted by K. The charging and
discharging electricity of AEV k in time slot t is denoted by
bk (t) where bk (t) > 0 and bk (t) < 0 means that AEV k
charges and discharges in time slot t , respectively. When
AEV k holds on, bk (t) = 0 means that this AEV does not
charge or discharge. bk (t) may be positive, zero, or negative
in time slot t ∈ T because there is bidirectional energy
flows between AEV battery and power grid. bk (t) has a range
[−bmax

k , bmax
k ], where bmax

k is the maximum charging rate.
We define the arrival time of AEV k as tarrk when AEV k
reaches the charging station and the departure time of AEV k
as tdepk when AEV k leaves the charging station. Then the
charging and discharging time frame of AEV k is tdepk − t

arr
k .

The battery capacity of AEV k is denoted by Bmax
k . We denote
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the final battery level of AEV k as Bdepk when it leaves at the
time slot tdepk . We define the battery level of AEV k as Bk (t),
which has the following constraint,

Bk (t + 1) = Bk (t)+ bk (t), (1)

0 ≤ Bk (t) ≤ Bmax
k , (2)

where Bmax
k is the maximum capacity of the AEV k battery.

WhenAEV k comes to the charging station, the control center
will detect the arrival time, departure time and battery level
of AEV k immediately. We schedule the AEV charging and
discharging in the community and we don’t consider the
energy loss of power lines. We model the electricity price as
a linear function of the total load as follows,

p(t) = K0 + K1l(t), (3)

where K0 and K1 are the parameters, l is the total load in
the time slot t . We define the electricity cost of the charging
station n as Cn(t) in the following expression,

Cn(t) =
∫ ln(t)

lbn (t)
K0 + K1ln(t))dln(t)

= K0[ln(t)− lbn (t)]+
K1

2
[(ln(t))2 + (lbn (t))

2] (4)

From [29], we define the solar energy as,

rs(t) =
∫
t
ζ sAI (t)dt, (5)

where ζ s represents the efficiency of solar energy to electric-
ity, A is solar panel area and I (t) is the illumination intensity.
There is an upper bound rs,max for solar energy with the
illumination intensity. We define the energy generated from
the wind turbine as,

rw(t) =
∫
t
ζw

1
2
Wρwv3(t)dt, (6)

where ζw represents the efficiency of wind energy to elec-
tricity, W is rotor blade area of wind turbine, ρw stands for
the density of the air, v(t) is wind speed. Obviously, there
is an upper bound rw,max for wind energy. In time slot t ,
the energy converting from renewable energy generators into
battery in the charging station n in time slot t is rn(t). We have
rn(t) = rsn(t)+ r

w
n (t), which has a range restriction [0,R

max
n ].

We set the AEV charging amount of the charging station n
as len(t) as,

len(t) =
∑

k∈Kn(t)

bk (t), (7)

where Kn(t) is the set of AEVs in the charging station n at
time slot t . The charging demand of each AEV k should be
satisfied as follows,

tdepk∑
t=tarrk

bk (t) = Dk , k ∈ [1,K ] (8)

where tarrk , tdepk are the arrival time and departure time of
AEV k , Dk is the charging demand of AEV k , and K is the

total number of AEV k . The total load ln(t) can be expressed
as follows,

ln(t) = lbn (t)+ l
e
n(t)− rn(t), (9)

where lbn (t) is the base load, l
e
n(t) is the AEV charging load,

rn(t) is the renewable energy, and there are some uncertainty
in the renewable energy in practice. We consider the battery
degradation cost of AEV k as follows according to [30],

f dk (t) = Pb · Vm · h(bk (t)), (10)

where Vm is the normal charging voltage, Pb is the price for
a single energy unit of AEV battery, and h(·) is the energy
capacity degradation of a cell unit per time slot for AEV k ,
which is shown as,

h(x) = αx2 + βx + γ, (11)

where α = ξ4/V 2
m, β = ξ2/Vm and γ = ξ1+ ξ3Vm+ ξ5V 2

m+

ξ7V 3
m. Parameter ξi can be obtained from [31]. The battery

degradation cost of charging station n is denoted as follows,

f dn (t) = Pb · Vm · h(len(t)− rn(t)), (12)

We assume that AEVs can move to the charging station by
the remaining electricity. There are limited charging piles in
the charging station and at the time slot t , that is, there is a
capacity Nc of AEVs in the charging station n. The number of
Kn(t) in the time slot denoted as |Kn(t)| satisfies the following
constraint,

0 ≤ |Kn(t)| ≤ Nc (13)

Then our objective function can be expressed as follows,

f (bk (t)) =
N∑
n=1

[Cn(t)+
∑

k∈Kn(t)

f dk (t)+ f
d
n (t)]

=

N∑
n=1

{K0[len(t)− rn(t)]+
K1

2
[len(t)− rn(t)]

2

+K1lbn (t)[l
e
n(t)− rn(t)]

+

∑
k∈Kn(t)

Pb · Vm · (α[bk (t)]2 + βbk (t)+ γ )

+Pb · Vm ·
N∑
n=1

h(len(t)− rn(t))} (14)

B. OFFLINE OPTIMIZATION PROBLEM FORMULATION
We first formulate the offline optimization problem, where
the profile of AEV, the base load and the renewable energy
are known ahead. We aim to minimize the total electricity
cost and the degradation cost of charging station n andAEV k ,
with offering the V2G service. We can formulate the offline
optimization problem as follows,

min
N∑
n=1

{K0[len(t)− rn(t)]+
K1

2
[len(t)− rn(t)]

2

+ K1lbn (t)[l
e
n(t)− rn(t)]
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+

∑
k∈Kn(t)

Pb · Vm · (α[bk (t)]2 + βbk (t)+ γ )

+ Pb · Vm ·
N∑
n=1

h(len(t)− rn(t))} (15)

s.t.
tdepk∑
t=tarrk

bk (t) = Dk , k ∈ [1,K ] (15a)

− bmax
k ≤ bk (t) ≤ bmax

k , k ∈ [1,K ] (15b)

0 ≤ rn(t) ≤ Rmax, n ∈ [1,N ] (15c)

0 ≤ |Kn(t)| ≤ Nc, n ∈ [1,N ], (15d)

where the constraint (15aa) means that the charging demand
of each AEV k should be satisfied, the constraint (15ab)
means the charging rate of AEV k has a range limit, the
constraint (15ac) means that the renewable energy has a upper
bound Rmax, and the constraint (15ad) means that there are
limited Nc charging piles in the charging station and at the
time slot t . We can get the optimal offline solution by solve
the problem (15a), which is convex optimization problem.
However, the offline problem (15a) is not impractical. The
profile of AEVs, such as the arrival time, the departure time
and the charging demand is unknown ahead. The base load
is also not known ahead. Besides, it is very difficult and
impractical to schedule a large number of AEVs by a central-
ized method. A centralized offline scheduling method is not
scalable and not efficient when there are a lot of AEVs. There-
fore, we design a distributed online AEV charging scheduling
problem.

C. DISTRIBUTED ONLINE CLUSTERED AEV CHARGING
PROBLEM
In a region, there are some charging stations and each charg-
ing station has limited charging pole. We can reformulate the
centralized offline scheduling problem as a distributed online
AEV charging scheduling problem. We can divide the whole
region into some smaller regions by clustering method [32],
which restricts the number of AEVs in the current time slot to
a certain amount Nc. The star is the location of the charging
station and the circle is the AEV. The offline optimization
problem needs to be reformulated as an online optimization
charging problem. We denote Hn(t) as the set of AEVs that
are parked in the charging station n at time slot t .Wn(t) is the
set of the rolling window from the current time slot t to t ′,
where t ′ is the maximum departure time of AEVs in Hn(t),
when AEVs are parked in the charging station, that is,

Wn(t) = {t ′|t ′ ≥ t & t ′ ≤ max{ti|i ∈ Hn(t)}}. (16)

Fig. 2 shows an example to explain the concept of Hn(t)
and Wn(t). There are five AEVs at the charging station 1
in this example. In time slot 3, there are two AEVs in this
charging station 1, that is,H1(3) = {2, 3} and in this time slot,
the maximum service time of AEVs parking in this charging
station is from 3 to 8, that is, W1(3) = {3, 4, 5, 6, 7, 8} and
EV 3 is the last one that leaves charging station 1 in time

FIGURE 2. Illustration of Hn(t) and Wn(t).

slot 8. In the same way, we have H1(4) = {2, 3, 4, 5} and
W1(4) = {4, 5, 6, 7, 8, 9}. We aim to minimize the total
electricity cost and the degradation cost of charging station
n and AEV k , with offering the V2G service by the current
AEVs Hn(t) during the current rolling service time Wn(t)
subject to the constraints in the offline problem (15a). Then
the distributed online problem is formulated as follows,

min
∑

n∈Hn(t)

{K0[len(t)− rn(t)]+
K1

2
[len(t)− rn(t)]

2

+ K1lbn (t)[l
e
n(t)− rn(t)]

+

∑
k∈Kn(t)

Pb · Vm · (α[bk (t)]2 + βbk (t)+ γ )

+ Pb · Vm · h(len(t)− rn(t))} (17)

s.t.
tdepk∑
t=tarrk

bk (t) = D̄k , k ∈ Hn(t) (17a)

− bmax
k ≤ bk (t) ≤ bmax

k , k ∈ Hn(t) (17b)

0 ≤ rn(t) ≤ Rmax, n ∈Wn(t) (17c)

0 ≤ |Kn(t)| ≤ Nc, n ∈ [1,N ], (17d)

The online scheduling optimization problem (17a) in the
rolling window Wn(t) is a convex optimization problem
for the charging station n, where we consider some uncer-
tainty of AEV profile and renewable energy. The uncertainty
of AEV profile and renewable energy has a range limit,
which follows some distribution. We need to seek a robust
solution to the scheduling optimization problem with some
uncertainties.

D. UNCERTAINTY CHARACTERIZATION
To study a more practical case, we reformulate a distributed
online optimization problem with the uncertainties from base
loads, renewable energy and charging demands. We give the
uncertainties from base loads, renewable energy and charging
demands in the following expression,

rn,ω(t) = r̄n + r̃n,ω(t), (18)

lbn,ω(t) = l̄bn + l̃
b
n,ω(t), (19)

Dk,ω = D̄k + D̃k,ω, (20)
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where r̄n, l̄bn , D̄k are expected value of renewable energy,
base loads, and electricity demand of AEVs, respectively.
We define the random variables of renewable energy, base
loads, and electricity demand ofAEVs as r̃n,ω(t), l̃bn,ω(t), D̃k,ω.
We don’t know the probability distributions of renewable
energy, base loads, and AEVs’ electricity demand exactly.
The expected value of renewable energy, base loads, and
electricity demand of AEVs can be known exactly. In this
paper, we use the scenario wise ambiguity sets based on
Wasserstein distance to capture these uncertainties. Wasser-
stein distance can characterize themoment and distance infor-
mation of these uncertainties.We denote the randomvariables
of renewable energy, base loads, and electricity demand of
AEVs as x̃ = {r̃n,ω(t), l̃bn,ω(t), D̃k,ω} ∈ X . To characterize
the probabilities distribution of different scenarios, we first
define the distance metric ρ : R|S|×R|S|→ [0,+∞), where
S is the scenario wise ambiguity set and |S| is the number
of scenarios. Then the Wasserstein distance is denoted as
follows,

d(P,P+) = infEP̃[ρ(x̃, x̃
+
s )], (21)

s.t. (x̃, x̃+s ) ∼ P̃, (22)∏
x̃

P̃ = P, (23)

∏
x̃+s

P̃ = P+, (24)

where P̃ is probability distribution and P̃+ = 1
N

∑N
n=1 δx̃

is empirical distribution, which is an estimation of the true
distribution P. δx̃ is the Dirac measure on x̃. Then theWasser-
stein ambiguity set can be written as follow,

F =


x̃ ∼ P

P EP[ρ(x̃, x̃s̃+ )|s̃ ∈ S] ≤ θ
P[x̃ ∈ X |s̃ = s] = 1,∀s ∈ S
P[s̃ = s] = 1/S,∀s ∈ S

 , (25)

where S = |S| is the number of scenarios and θ is the limit
of Wasserstein distance.

IV. DISTRIBUTED ONLINE AEV CHARGING SCHEDULING
ALGORITHM WITH DRO
According to the problem (17a), we can design distributed
online AEV scheduling (DOAS) algorithm. First, we divide
the whole region into some smaller regions by clustering
method and restrict the number of AEVs in the current time
slot to Nc. Then we solve the problem (26a) for the charging
station n by primal dual interior point method [33] based on
rolling window method.

min
∑

n∈Hn(t)

{K0[len(t)− rn(t)]+
K1

2
[len(t)− rn(t)]

2

+ K1lbn (t)[l
e
n(t)− rn(t)]

+

∑
k∈Kn(t)

Pb · Vm · (α[bk (t)]2 + βbk (t)+ γ )

+ Pb · Vm · h(len(t)− rn(t))} (26)

s.t.
tdepk∑
t=tarrk

bk (t) = Dk , k ∈ Hn(t) (26a)

bk (t)− bmax
k ≤ 0, k ∈ Hn(t) (26b)

− bk (t)− bmax
k ≤ 0, k ∈ Hn(t) (26c)

We define the Lagrangian function Ln(bk (t), λk , µk , γk ) of
the charging station n as follows,

Ln(bk (t), λk , µk , γk )

= f (bk (t))+
∑

k∈Kn(t)

{λk (
tdepk∑
t=tarrk

bk (t)− Dk )

+µk (bk (t)− bmax
k )+ γk (−bk (t)− bmax

k )}, (27)

Then we have the KKT conditions as follows,

∇f (bk (t))+
∑

k∈Kn(t)

µk∇(bk (t)− bmax
k )

+ γk∇(−bk (t)− bmax
k )+ λkI = 0, k ∈ Hn(t), (28)

tdepk∑
t=tarrk

bk (t) = Dk , k ∈ Hn(t), (29)

where I is a vector where the element I (k, t) can be expressed
as follows,

I (k, t) =

{
1 t ∈ [tarrk , tdepk ]
0 otherwise.

(30)

Then the distributed online AEV charging schedul-
ing (DOAS) algorithm is shown in Algorithm 1. From the
equation (28), we can see that the optimal solution b̂k (t) is
related to the arrival and departure time and the charging
demand. The optimal solution b̂k (t) is scalable and we reduce
the dimension of the problem when the profile of AEV k
is proportional to the other one. We use the Euclidean dis-
tance to measure the data similarity function sim(On1 ,On2 )

Algorithm 1 Distributed Online AEV Charging Scheduling
(DOAS) Algorithm
1: Generate a regional map. The control center can get the

real-time information about tarrk , tdepk ,Dk of AEVs.
2: Divide the whole region into smaller regions by clus-

tering method and restricts the number of AEVs in the
current time slot to Nc.

3: For the charging station n1, solve the problem (26a) by
primal dual interior point method.
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of charging station n1 and n2, which is expressed
as follows,

sim(On1 ,On2 )

=

√√√√√ 3∑
j=1

(On1j − On2j)2, (31)

where Onj =


tarrk j = 1,

tdepk j = 2,
Dk j = 3.

(32)

When sim(On1 ,On2 ) < α, there is small gap of |tdepk −

tarrk | and Dk . Then the charging station n2 can use the
optimal charging solution of the charging station n1. Then
the dimension-reduction distributed online AEV charging
scheduling (DDOAS) algorithm is shown in Algorithm 2.
There is K AEVs’ route plans and N (α) similar route plans,
the time efficiency of our DDOAS algorithm is K−N (α)

K of
the time efficiency of DOAS algorithm. Then we study the
DDOAS algorithm with DRO based on Wasserstein distance
to seek a robust solution of the distributed online optimization
problem with some uncertainties from base loads, renewable
energy and charging demands. We can introduce an auxiliary
random variable z̃ in Eqn. (25) to rewrite F as the following
lifted expression,

F =


x̃, z̃ ∼ P

P EP[z̃|s̃ ∈ S] ≤ θ
P[x̃ ∈ X , ρ(x̃, x̃s̃+ ) ≤ z̃|s̃ = s] = 1,

P[s̃ = s] = 1/S,∀s ∈ S

 , (33)

where z̃ can characterize the limit of ρ(x̃, x̃s̃+ ) in each
scenario s. According to the ambiguity set in Eqn. (33), each
empirical distribution of random variables is related with
the scenario s. The expectation of the auxiliary variable z̃
over all scenarios has a upper bound θ in the third line in
Eqn. (33). The last line in Eqn (33) shows that each scenario
has the same probability 1/S. We give the DDOAS algorithm

Algorithm 2 Dimension-Reduction Distributed Online AEV
Charging Scheduling (DDOAS) Algorithm
1: Initialization:Generate a regional map. The control cen-

ter can get the real-time information about tarrk , tdepk ,Dk
of AEVs.

2: Divide the whole region into smaller regions by clus-
tering method and restricts the number of AEVs in the
current time slot to Nc.

3: For the charging station n1, solve the problem (26a) by
primal dual interior point method.

4: If sim(On1 ,On2 ) < α Then
5: The optimal charging solution b̂k (t) of charging station
n2 is same as that of charging station n1.

6: Else
7: Do step 3
8: end

with DRObased onWasserstein distance (DDODW) to seek a
robust solution of the distributed online optimization problem
with some uncertainties in Algorithm 3.

Algorithm 3 Dimension-Reduction Distributed Online
AEV Charging Scheduling Algorithm With DRO Based on
Wasserstein Distance
1: Initialization: Generate a regional map. The control

center can get the real-time information about tarrk , tdepk
of AEVs. Denote the random variables of renewable
energy, base loads, and electricity demand of AEVs as
x̃ = {r̃n,ω(t), l̃bn,ω(t), D̃k,ω}.

2: Divide the whole region into smaller regions by clus-
tering method and restricts the number of AEVs in the
current time slot to Nc. Denote the scenarios S where
some have data similarity.

3: For the charging station n1, solve the problem (26a) by
primal dual interior point method.

4: If sim(On1 ,On2 ) < α Then
5: The optimal charging solution b̂k (t) of charging station
n2 is same as that of charging station n1.

6: Else
7: Do step 3
8: Set the ambiguity set F to estimate the distribution.
9: Calculate the robust energy schedule solution bk (t) in

Eqn. (26a) with the ambiguity set in Eqn. (33) based on
Wasserstein distance.

10: end

V. SIMULATION
The simulation setting and performance evaluation of DOAS,
DDOAS, DDODW algorithms are presented in this section.

A. SIMULATION SETTING
We adopt the base load profile in South California Edsion
from [34]. We divide a day into 24 time slot and the starting
time is 00 : 00 AM in the morning. The capacity of AEV
battery is 35 kWh based on Jianghuai iEV7L [35]. In the
electricity price function (3), we set the parameters K0 =

10−3, K1 = 0.6 × 10−3 and α = 0.1. We assume that
AEVs have the same type and we charge each AEV to 90%
at least. The maximum charging rate of each AEV is 6 kW.
The arrival time, the departure time and the initial state of
charge (SOC) of AEVs follow some certain distribution and
we set three types of distribution according to the different
probability of SOC at the arrival. The arrival of AEVs is
obtained from the statistical data in an EPRI report [36]. The
distribution of the AEV arrival time and the state of charge of
AEVs are shown in Fig. 3 and Fig. 4. We do the simulation
in the IEEE-118 bus with 10 charging stations. We set the
number of scenarios as |S| = 73 and the radius ofWasserstein
distance θ = 0.1. The base loads in 73 scenarios are shown in
Fig. 5 and the blue bold line is the mean value of base loads.
We simulate the optimization problem with RSOME [37],
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FIGURE 3. Probability of EV Start Charging Time.

FIGURE 4. Probability of SOC at the arrival time.

FIGURE 5. Base loads in 73 scenarios.

a Matlab toolbox for DRO on a laptop with Intel Core i7 CPU
and 16GB RAM.

B. PERFORMANCE EVALUATION
We compare the DDOAS algorithm with DOAS algo-
rithm and the centralized AEV charging scheduling (CACS)
method based on the reference [6]. The CACS method is
a charging online scheduling method which considers the
charging and discharging of AEVs in thewhole region.We set
the number of the total AEVs as 200 and the total AEVs are
divided into 10 groups, where each group has 20 AEVs. It can
satisfy the charging demand with limited charging piles in the
charging stations.

FIGURE 6. The total load with three algorithms in each time slot.

FIGURE 7. The AEV charging load with three algorithms in each time slot.

The total loadswith CACS,DOAS andDDOAS algorithms
are shown in Fig. 6.We can see that DOAS and DDOAS algo-
rithm have a close-to-optimal performance compared with
centralized online charging scheduling algorithm and the total
load of DDOAS algorithm is smoother thanDOAS algorithm.
Then maximum total loads of CACS, DOAS and DDOAS
algorithms are 640.12kW, 629.74kW and 570.80kW. The
AEV charging loads with CACS, DOAS and DDOAS are
shown in Fig. 7. We can see that DOAS algorithm can have
a close-to-optimal performance compared with centralized
online charging scheduling algorithm and AEV charging of
DDOAS algorithm is smoother than DOAS algorithm. Then
AEV charging loads of CACS, DOAS and DDOAS algo-
rithms are 232.71kW, 231.75kW and 255.78kW. The AEV
charging costs and degradation costs with CACS, DOAS
and DDOAS algorithms are shown in Fig. 8. The electricity
costs of CACS, DOAS and DDOAS algorithms are 934.09$,
865.29$ and 805.12$. The AEV battery degradation costs of
CACS, DOAS and DDOAS algorithms are 537.17$, 500.66$
and 475.65$. The electricity costs of DOAS and DDOAS
is 13.8% and 7.37% lower than CACS. The AEV battery
degradation costs of DOAS and DDOAS is 11.45% and
6.80% lower than CACS. The total loads of DOAS algorithm
under different group size AEV 20, 40, 50, 100 are shown
in Fig. 9. The peak total loads of DOAS algorithm under
different group size of AEV 20, 40, 50, 100 are 640.26kW,
560.99kW, 540.99kW, 536.04kW, respectively. We can see
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FIGURE 8. The AEV charging cost and degradation cost with three
algorithms.

FIGURE 9. The total load of DOAS algorithm under different group size.

FIGURE 10. The AEV charging cost of three algorithms under different
group size.

that with the increase of the group size, there is a lower
peak total load and the load will be smoother. The AEV
charging costs of CACS, DOAS and DDOAS algorithms
under different number of AEVs 100, 200, 300, 400 are
shown in Fig. 10, where the group size of AEVs in DDOAS
algorithm is set as 20. The AEV charging costs of CACS,
DOAS and DDOAS algorithms are 449.2$, 441.8$, 415.3$
where the number of AEVs is 100. The AEV charging
costs of CACS, DOAS and DDOAS algorithms are 934.1$,
927.9$, 863.0$ where the number of AEVs is 200. The AEV
charging costs of CACS, DOAS and DDOAS algorithms are
1074.5$, 1065.9$, 853.7$ where the number of AEVs is 300.

FIGURE 11. The degradation cost of charging station battery in three
algorithms under different group size.

FIGURE 12. The electricity costs of AEV charging with SO, DO and DRO.

The AEV charging costs of CACS, DOAS and DDOAS
algorithms are 1642.4$, 1630.1$, 1532.3$ where the number
of AEVs is 400. The AEV charging cost of DOAS algorithm
is close to CACS algorithm and the AEV charging cost of
DDOAS algorithm is 7.55%, 7.61%, 20.55%, 6.70% lower
than CACS algorithm. The degradation costs of charging
station battery in CACS, DOAS and DDOAS algorithms
under different number of AEVs are shown in Fig. 11. The
degradation costs of charging station battery in CACS algo-
rithm under different number of AEVs 20, 40, 50, 100 are
all 279.31$. The degradation costs of charging station battery
in DOAS algorithm under different number of AEVs 20,
40, 50, 100 are 51.31$, 101.71$, 126.69$, 251.61$, respec-
tively. The degradation costs of charging station battery in
DDOAS algorithm under different number of AEVs 20, 40,
50, 100 are 41.05$, 89.51$, 108.95$, 213.87$, which are
less 20%, 12%, 14%, 15% than DOAS algorithm. We can
see that with the increase of group size, the degradation
cost of charging station battery increases and if there are
larger number of AEVs charging in the charging station
at the same time, it will bring more degradation cost of
charging station battery. We show the electricity costs of
AEV charging with SO, DO and DRO in Fig. 12. DODW
algorithm is DOAS algorithm with Wasserstein ambigu-
ity set. The electricity costs of AEV charging with SO,
DO and DRO by DODW are 85.81$, 147.27$, 121.51$ and
the electricity costs of AEV charging with SO, DO and DRO
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FIGURE 13. Sensitivity analysis for AEV charging cost with different
Wasserstein distances.

FIGURE 14. The running time of DOAS and DDOAS algorithms under
different number of AEVs.

by DDODW are 80.67$, 138.43$, 114.22$. A sensitivity
analysis for the AEV charging cost with different Wasser-
stein distances is presented in Fig. 13. The AEV charg-
ing cost comes to convergence when Wasserstein distance
reaches 30%. We compare the time efficiency of DOAS
and DDOAS algorithms under different number of AEVs.
The running times of DOAS and DDOAS algorithms under
different numbers of AEVs are shown in Fig. 14. The running
times of AEVs 100, 200, 300, 400 with DOAS algorithm are
64.30s, 102.79s, 139.07s, 191.35s, respectively. The running
time of AEVs 100, 200, 300, 400 with DDOAS algorithm are
19.93s, 32.89s, 45.89s, 65.06s, respectively. DDOAS algo-
rithm is more time-efficient than DOAS algorithm.

VI. CONCLUSION
In this paper, we investigate a scheduling problem for AEVs
charging and discharging with V2G services. We aim to
minimize the total electricity cost and battery degradation
cost of AEVs with V2G service, which takes the random
arrival and departure of AEVs into account. We first formu-
late a centralized optimal online scheduling problem to get a
global solution. Then we reformulate the centralized charg-
ing scheduling problem as a distributed online optimization
problem. We propose the DOAS algorithm to get the optimal
charging solution. Furthermore, to improve the time effi-
ciency of DOAS algorithm, we design a dimension-reduction
DOAS algorithm to reduce the dimension of the distributed
charging scheduling problem.We further propose a DDODW

algorithm to seek a robust solution with some uncertainties
Simulation results show that DOAS and DDOAS algorithms
can have a close-to-optimal charging cost and a significantly
less battery degradation cost of charging stations, compared
with centralized online charging scheduling algorithm and
DDOAS algorithm is more time-efficient than DOAS algo-
rithm. Our proposed DDODW algorithm can provide a robust
solution for the energy schedule of AEV charging.
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