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ABSTRACT Accurate vertebrae segmentation from medical images plays an important role in clinical
tasks of surgical planning, diagnosis, kyphosis, scoliosis, degenerative disc disease, spondylolisthesis,
and post-operative assessment. Although the structures of bone have high contrast in medical images,
vertebrae segmentation is a challenging task due to its complex structure, abnormal spine curves, and
unclear boundaries. In recent years, deep learning has been widely applied in the segmentation of vertebrae
images. In this paper, towards a robust and automatic segmentation system, we present an overlapping
patch-based convNet (OP-convNet) model for automatic vertebrae CT images segmentation. Due to the
greater memory and processing costs associated with 3D convolutional neural networks, as well as the risk
of over-fitting, we employ overlapping patches in segmentation tasks using 2D convNet. In the proposed
vertebrae segmentationmethod, OP-convNet effectively keeps the local information contained in CT images.
We divide CT image slices into equal-sized square overlapping patches and applied the RUS-function
on these patches for class balancing to minimize computational requirements. Then, these patches are
input into the model along with their corresponding ground truth patches. This method has been evaluated
on publicly available CT images from the MICCAI CSI workshop challenge. The results indicate that
OP-convNet has precision (PRE) of 90.1%, specificity (SPE) of 99.4%, accuracy (ACC) of 98.8%, F-score
of 90.1% in terms of the patch-based classification accuracy, and BF-score of 90.2%, sensitivity (SEN) of
90.3%, Jaccard index (JAC) of 82.3%, dice similarity score (DSC) of 89.9% in terms of the segmentation
accuracy that outperform previous methods across all metrics.

INDEX TERMS Vertebrae segmentation, deep learning, convolutional neural networks, CT image,
OP-convNet.

I. INTRODUCTION
Image segmentation is a process that converts raw medical
image data into meaningful, spatially structured information,
which is necessary for scientific discovery [1]. Vertebrae seg-
mentation is a prerequisite step for automatic spine analysis.
Vertebral fracture detection, spine deformities assessment,
and computer-assisted surgery of the spine [2] are facilitated
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by accurate vertebrae segmentation. Automated analysis of
spine faces positive diversity among different tomographic
scans, including dedicated spine scanning and the abdomen,
chest, and neck scans. Therefore, it needs a generic vertebrae
segmentation robust to a range of image resolutions and spine
coverage. This requires that the vertebrae are visible clearly
with their anatomical structure and show which spine section
they belong to.

The goal of vertebra segmentation in a computed tomog-
raphy (CT) volume is to diagnose, quantitatively analyze,
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and plan surgical/therapy for various spine diseases and
disorders such as spine trauma, scoliosis, and other spinal
pathologies. Like many other image-guided diagnoses in
medical images, the vertebrae segmentation procedure can
be accelerated and enhanced by computer-aided diagno-
sis (CAD) systems because manual segmenting of vertebrae
in 3D medical images can be time-consuming and labori-
ous, with the unpredictability of personal subjectivity. In the
process of diagnostic radiology, computer-aided diagnosis
(CAD) plays a significant role. Patients’ images are processed
faster because CAD systems shorten the time it takes for
routine tasks to be completed, resulting in fewer mistakes
caused by fatigue physicians. This is because CAD is rela-
tively sensitive, as well as repeated and robust. Low com-
puting time is required for healthcare purposes [3]. One of
the biggest challenges of CAD application is the segmen-
tation and detection of vertebrae from computed tomogra-
phy (CT) images. CT images allow the evaluation of bone
in details because it has high contrast and spatial resolution.
Its availability is higher, and the overall low cost of the
patient examination makes it the most widespread imaging
technique.

It isn’t easy to perform vertebrae segmentation because of
anatomical variations. Such variations go to spinal variable
coverage and structure that guides anatomy cues for vertebrae
segmentation, especially the sacrum and ribs. Furthermore,
neighboring vertebra often has similarity in appearance and
shape too. Many methods focused on such challenges for
automatic segmentation have been published in [4]–[7]. The
model-fitting has remained a challenge in the vertebrae seg-
mentation technique, which has often relied on statistical
shape modeling, as well as shape constrained deformable
and active shape modeling [8]–[10]. Some approaches pro-
posed are based on atlas [11], active contours [12], and level
sets with shape prior [13]. Due to the registration process,
these atlas-based approaches have a high computational cost.
While the accuracy of most of these deformable models is
promising, they are sensitive to initialization, performedman-
ually or automatically. Intervertebral discs bounding boxes
were found using an interactive variant of marginal space
learning used for segmentation of vertebrae based on graph
cut and Markov random field in [14]. The work in [15]
applied the Adaboost-based object detection framework to
find out the vertebral bodies bounding boxes that were used
to segment each vertebral body by inflating a mesh from
the center. The work in [5] described the vertebral bodies
center detection by using random forest regression and this
framework is utilized to highlight the ROIs where verte-
brae were segmented. A method in [16] regress the distance
to the vertebral body’s nearest center by using multilayer
perceptron (MLP) and then vertebral bodies are segmented
to initialize an adaptive shape modeling by using detected
locations. The work in [17] used probabilistic boosting-tree
classifier to detect the vertebral boundary by combining shape
modeling and machine learning, that applied a surface mesh
adaptation to a vertebra with combination of statistical shape

model (SSM). This SSM was used for mesh initialization to
impose shape constraints.

Deep learning is a gateway in the development of medical
image analysis in various clinical and research fields, e.g.,
brain tumors detection [18], supervised segmentation meth-
ods on volumetric medical images by 3D fully convolutional
network [19], liver segmentation [20]–[22], prostate cancer
segmentation from MRIs [23], and lung nodules segmenta-
tion using multi-scale 2D+3D features. Other methods based
on CNN for CT lungs airways segmentation is used for leak
detection [24], breast cancer classification [25], deep learning
with level sets left were proposed in work [26] for heart ven-
tricle segmentation and detection. Deep learning techniques
are also applied in vertebrae segmentation and localization,
e.g., vertebrae pathology grading [27], vertebrae localization
for lumbar surgery in ultrasound images [28], and vertebrae
segmentation [7], [29]–[32].

Deep learning is gaining popularity in CAD for ver-
tebra segmentation, and several convolutional neural net-
works (CNNs)-based approaches have been proposed. Most
recently published methods focus on vertebrae segmentation
that replaced the explicit vertebral appearance and shapes
modeling with convolutional neural networks (CNNs).
A method in [33] used multiclass CNN for pixel labeling
for lumbar vertebrae segmentation from 2D sagittal slices,
and the lumbar region bounding box is estimated by a sim-
ple multilayer perceptron (MLP) for identifying the image’s
region of interest. In the subsequent work [34], a network for
voxel classification was developed in the entire image from
a 3D patch model, and a 2D frame was used to predict low
resolutionmasks on the vertebral column that effectively han-
dled the false-positive outside the vertebral region. A similar
work was presented in [35] for spine segmentation. In that
work, firstly, the lumbar region bounding box is estimated
using regression CNN. Secondly, a classification CNN is
used to do voxel labeling within the bounding box to achieve
segmentation. A two-stage methodology [36] with interactive
strategy is used to segment the vertebrae in downsampled
images, and images were analyzed one after the other by
a CNN for vertebrae segmentation. Fully-resolution images
were analyzed in the second framework for refining the low
resolution of vertebrae segmentation. Vertebrae localization
and identification method in CT images are proposed in [37]
by combining short and long-range contextual information in
a supervised manner to develop a multi-task 3D FCN. A two-
stage multi-class segmentation architecture based on a 3D
graph convolutional segmentation network (GCSN) for 3D
coarse segmentation and a 2D residual U-Net (ResUNet) for
2D segmentation refinement model is presented in [31], but
several limitations exist in these works. Inferior segmentation
is produced due to the blurry boundary, and it came at a high
computational cost due to its complex network model.

While the aforementioned studies could segment the ver-
tebrae CT image, they required high computational oper-
ations due to a large number of trainable parameters and
were also low in segmentation accuracy. The consistent
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FIGURE 1. Flowchart of the proposed method for vertebrae segmentation.

problem of automatically, accurately, and rapidly segment-
ing the vertebrae persists. As a solution to these prob-
lems, we propose a vertebrae segmentation model from CT
images that integrates patch-based deep learningwith pre-and
post-processing. As the spine CT images in the dataset are
grayscale and the size of the vertebra is very small in image
slices, a convolutional neural network [38], [39] is selected
as an appropriate design to solve the two-class classification
problem. The training and validation images are input as over-
lapping patches containing vertebrae and background. The
proposed OP-convNet is a simple, patch-based architecture
that requires low computational cost due to the small number
of trainable parameters and gives high classification accuracy.
Vertebrae image patches contain such gradients that can be
exposed through convolutional neural networks.

The following are the main contributions of this paper.
• We propose an OP-convNet model to segment vertebrae
CT images. The slices from CT images are divided
into equal size square overlapping patches enhancing
localization, so the trained network can emphasize local
characteristics within each patch.

• The proposed patch-based convnet model avoids the dif-
ficulties associated with reduced feature map resolution
and semantic feature loss.

• Class balancing of overlapping patches is achieved by
the RUS-function.

• The results on publically available MICCAI CSI dataset
indicate that OP-convNet achieved outstanding pre-
cision, specificity, accuracy, F-score in terms of the
patch-based classification accuracy, and BF-score, sen-
sitivity, Jaccard index, dice similarity score in terms of
the segmentation accuracy without adding to the com-
putational load.

II. METHODOLOGY
Similar to other deep learning-based methods, our proposed
method is also divided into training and testing phases. The
proposed method further comprises the preprocessing (HU,
Gaussian filter, data augmentation), overlapping patch gener-
ation, RUS-function for class balancing, OP-convNet frame-
work and testing phase. Figure 1 shows the flowchart of the
proposed methodology for vertebrae segmentation.

A. DATA PREPROCESSING
The primary aim of the preprocessing phase is to iden-
tify bone pixels and improve differentiation between verte-
brae and other tissues. We removed the noise artifacts from
the entire CT images by applying a threshold technique in
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this study. Then, outside the bone intensity range of 100HU
(Hounsfield unit) and 1500HU, the intensity is set to 0 to
minimize noise, imaging artifacts, and influence from the
tissues surrounding the vertebral column. Our input spine CT
data are volumetric data, so they need to be processed slice by
slice. The applied threshold distinguishes the vertebrae from
other soft tissues because they have higher pixel intensities
in CT images than other tissues. But vertebrae have similar
intensities to other bones like ribs, so we train our deep
learning model to distinguish the vertebrae from the different
bony structures in the CT images. We apply the Gaussian
filter to control the smoothness of CT images with a fixed
kernel size to enhance the spine’s segmentation accuracy and
antiquate the noisy pixels’ effeteness. Large deformation is
correlated with a large value of Gaussian kernel, and the
estimated transformation is used as a small kernel input of
smoothness. Figure 2 shows 512 × 512 pixels original CT
slice images with respective ground truths from dataset.

FIGURE 2. Examples of 512 × 512 pixels images from dataset (a) Original
CT slice image and (b) respective ground truth.

1) DATA AUGMENTATION
ConvNet’s accuracy increases with data augmentation, and
overfitting is reduced [40]. Since the input images are rota-
tionally invariant, we rotate each image (θ degrees) to max-
imize the number of image samples. It should be noted that
while rotating an image may degrade its high-frequency con-
tent slightly, it should have no effect on the background or
foreground of the image. Following that, we randomly trans-
late each image to increase the number of training samples for
the network. The augmentation step based on image rotation
is essential to the network’s performance [41] because of the
limited number of images in the spine dataset. In the next step,
the data are normalized to the range [0,1].

B. OVERLAPPING PATCH GENERATION
The input CT images are divided into overlapped patches with
size of n×n. We take certain stride pixels to create the over-
lapping patches as shown in figure 3. 32×32 pixel size patch
having a total of 1024 pixels, if the total pixels inside a patch
is equal or more than 513, then the patch is labeled as 1 (ver-
tebra or foreground patch) otherwise, it is labeled as 0 (non-
vertebra or background). We used a certain pixel stride for
the sliding window to create overlapping patches for training.

FIGURE 3. Overlapping patches of size 32 × 32 pixels generation.

Testing images are also divided to generate n×n pixel size
overlapped patches to check the model’s accuracy and then
segment the vertebrae from CT images. Figure 4 shows the
randomly selected input patches with size of 32 × 32 pixels.

FIGURE 4. Randomly selected input patches with size of 32 × 32 pixels.

C. RUS-FUNCTION
We used two classes for classification, and there was an
imbalance size of numbers of training patches, as shown
in the class distribution in figure 5. Because the vertebrae
spatial area in the images is much smaller than the back-
ground area, most of training patches are labeled as 0, so the
classifier can lead biasness in the background. From a med-
ical perspective [42], a high recall rate (correct vertebra
patch classification) is desirable, but a high false-negative
rate (vertebra misclassified as background) is inappropriate
on a practical level. The proportions of positive and neg-
ative training samples are to be balanced to address this
dilemma [43]. We applied the random under-sampling func-
tion (RUS-function) for negative samples and generated a

FIGURE 5. Class distribution in training overlapping patches, gray,
background and green shows foreground (vertebrae) patches. This class
distribution shows heavy imbalance samples.
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FIGURE 6. RUS-function is applied to CT image patches for class
balancing, to remove patches from the majority class (background).

balanced training set to deal with this issue. As a result, this
increases the accuracy and convergence rate of the network
during the training process [40], [41]. Figure 6 indicates
the RUS-function is applied to CT image patches to remove
majority class patches (background patches) for making bal-
ance classes before training stage.

D. OP-convNet FRAMEWORK
When combined with suitable selected local features, the
overlapping patch-based technique appears to be an effective
solution for the vertebrae segmentation problem. However,
due to a lack of precise definitions for the vertebra to be
classified, determining the appropriate features in the treated
problem is challenging. Furthermore, choosing the most
important and mutually independent features from a huge
number of potentially available characteristics need a com-
plicated statistical analysis based on large volumes of image
data. This is why the OP-convNet is employed to implement
the automatic feature extraction in this study. Figure 7 shows
general proposed OP-convNet structure (overlapping patches
as input, convolutions, non-linearities and pooling layers),
followed by more convolutionary and fully connected layers.
AlexNet [40], VGG net [44], GoogLeNet [45], ResNet [46],
and other standard CNN architectures are designed to classify
RGB images but all of these networks require an exact size
of 224 × 224 pixels of input, which is too large to meet
our problem. Some strategies (zero-padding, re-sampling,
etc.) can help overcome this drawback, but they require an
excessive amount of processing effort. In addition, the above
classification networks contain a large number of trainable
parameters and require a large number of computational oper-
ations during a single forward pass. Another possibility was
to use fully convolutional nets specifically designed for image
segmentation, such as U-Net [47], SegNet [48], which can
segment an entire two-dimensional image in a single forward
pass.When using low-resolution featuremaps for up-pooling,
SegNet frequently loses neighboring information. Addition-
ally, it focused more on central slices. Furthermore, when it
comes to maintaining local features for image segmentation,
U-net also has some drawbacks.

To address the aforementioned shortcomings, we pro-
pose a method for vertebrae CT segmentation that utilizes
an overlapping patch-based convolutional neural network

architecture. It achieves a higher level of segmentation accu-
racy when applying overlapping patches, while maintaining
the same degree of complexity as the standard CNN architec-
ture. In this work, we proposed a specific convNet architec-
ture for segmentation of vertebrae from square patch images.
A convNet is a multi-stage deep learning framework (convo-
lutions, non-linearities and pooling layers), followed by more
convolutionary and fully connected layers. The raw pixel
intensity image is given as input by convNet. Every class of
data is represented by a unique neuron in the output layer (in
our case, convNet is chosen as a suitable architecture to solve
the two-class classification problem). The weights (W) in the
ConvNet are optimized using the backpropagation algorithm
to minimize the classification error on the training.

1) CONVOLUTIONAL LAYER
The convolutional layer (the first layer) takes square patches
from the input image (using a stride value and padding, if nec-
essary) or feature maps (for subsequent layers) and performs
2D convolution with a filter. A rectified linear unit (ReLU) is
used to accelerate training by feeding the sum of the resulting
convolutions into a non-linearity function [40]. The same
filter is used for all feature maps in a given layer, but different
filters are used for other feature maps. This filter sharing
property of the conv. layer enables the detection of the same
pattern in multiple locations across the feature map.

2) POOLING LAYER
The feature map is down-sampled using the pooling layer,
which frequently sums up the feature responses in each over-
lapping patch by computing the maximum activations (max-
pooling). These results in features that are invariant to minor
data translations.

3) FULLY CONNECTED LAYER
Convolution and pooling create small dimension feature
maps than the input image, which are then processed through
numerous fully connected (FC) layers. The initial few FC lay-
ers combine these feature maps to construct a feature vector.
The final FC layer contains two neurons that use softmax
regression to calculate the probability of classification for
each class. To avoid overfitting, the fully connected layers
are constrained using dropout [49].

E. TESTING
ConvNets’ weights are initialized with Gaussian distribution.
These weights are changed iteratively during training with
the gradients of the loss function, which are computed using
stochastic gradient descent (SGD) over a mini-batch of train-
ing data. After a given number of epochs, the learning rate
slows down. To accelerate learning and reduce overfitting,
momentum and weight decay are applied. After a set number
of epochs, the training process is completed. The final model
with the lowest validation loss value is selected.

The test spine CT image receives the same preprocessing.
Test patches of 32× 32 pixels with a stride of 1 are fed to the
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FIGURE 7. General proposed OP-convNet structure (overlapping patches as input, convolutions, non-linearities, and pooling layers),
followed by more convolutionary and fully connected layers to solve the two-class classification problem.

trained model from unseen spine images. Each test patch will
get a label through a trained model. In our case, OP-convNet
predicts the two-class patch-classification problem (vertebra
or background). A higher rate of false-positive (FP) was
detected due to pixel-based segmentation. Because of most
segmentation problems, background pixels are more than
foreground pixels, so a systematic false negative (FN) error
is more favorable than a systematic false positive (FP) error.
For this reason, post-processing analysis was implemented.
Then, the obtained binary predicted image is processed by
applying simple morphological operations [50] to achieve
fine segmentation.

III. EVALUATION
A. DATASET
Our model’s performance is evaluated using a publicly avail-
able MICCAI CSI dataset [51] gathered at a trauma hospital
during routine medical examinations. The CT scan covers all
thoracic and lumbar vertebrae which an in-plane resolution
of 0.31mm to 0.45mm. These datasets were compiled from
patients ranging in age from 16 to 35 years. Each slice is
approximately 512 × 512 pixels in size. There are between
520 and 600 slices in each case. This includes fifteen cases
in total, ten cases for training, and five cases for testing.
The dataset was received from the University of California,
Irvine’s medical center (Orange, CA, USA). Scan and recon-
struction settings include a voltage of 120 kVp, intravenous
contrast, and a 0.7 to 1.0 mm slice thickness. The scans were
performed at a high spatial resolution as a continuous CT data
set. Additionally, the challenge organizers provided reference
segmentations that were generated semi-automatically and
manually corrected.

B. EVALUATION MEASURES
Evaluation measures [52] used to evaluate the patch-based
classification and vertebrae segmentation performance with

other existing methods. The evaluation measures are consid-
ered well-known and widely used in medical image analysis.

1) CLASSIFICATION METRICS
The performance of patch-based classification is evaluated
by precision (PRE), specificity (SPE), accuracy (ACC), and
F-score for quantitative assessment. We draw the confusion
matrix to perform the quantitative evaluation. Recall mea-
sures the ratio of positive patches in the ground truth that
is also detected as positive by the proposed method. Speci-
ficity is used to measure the negative patches evaluated by
the method that is negative in ground truth too. It identifies
how sensitive the method is to detect the correct background
patches. It is obtained by an equation as:

Specificity =
TN

TN+ FP
(1)

Precision is achieved as:

Precision =
TP

TP+ FP
(2)

The overall accuracy is obtained as:

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(3)

F-score is calculated as follows:

F-score =
2× TP

(2× TP)+ FP+ FN
(4)

2) SEGMENTATION METRICS
Vertebrae segmentation performance is evaluated by bound-
ary F1 score (BF-score), sensitivity (SEN), Jaccard index
(JAC) [53], and Dice similarity coefficient (DSC) [54] for
quantitative assessment. BF-score determines how closely an
object’s predicted boundary corresponds to its ground truth
boundary.

BF− score =
2× (PRE× SEN)
(PRE+ SEN)

(5)
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FIGURE 8. Architecture of OP-convNet.

Sensitivity (SEN) measures the proportion of correctly clas-
sified positive patterns.

Sensitivity =
TP

TP+ FN
(6)

The Jaccard index JAC is used to measure the intersection
spatial overlap divided by the union size of two label sets as:

JAC =
|A ∩ B|
|A ∪ B|

=
TP

TP+ FP+ FN
(7)

Dice similarity coefficient (DSC) measures the spatial over-
lapping between two binary images, its values range from
zero (non-overlap) and one (perfect overlapped). The seg-
mentation result and the ground truth, the DSC values are
achieved by an equation as:

DSC =
2 |A ∩ B|
|A| + |B|

=
2TP

2TP+ FP+ FN
(8)

IV. EXPERIMENTS AND RESULTS
The proposed OP-convNet was trained by the techniques
of mini-batch descent gradient and the momentum back-
propagation. All biases were initialized to zero. The optimal
convNet hyper-parameters (initial learning rate, momentum,
weight decay, and mini-batch size) were found utilizing a
pyramidal approach by doing a random search within the
constrained space parametry [55]. Stochastic gradient descent
(SGD) is used to train the network for 30 epochs with a mini-
batch size of 128. The initial learning rate is 0.01 and, learning
rate drop factor is 0.1 on each 10th epochs. The momentum
and rate of weight decay L2 regularization are set to 0.9 and
0.0001, respectively. The fc4 and fc5 layers are constrained

using a dropout ratio of 0.5. The experiments are conducted
using MATLAB 2018a on a 1.80 GHz i7 CPU, 32GB RAM,
and an NVIDIA GeForce MX250 GPU.

A. PATCH-BASED CLASSIFICATION
Figure 8 illustrates the architecture of OP-convNet. Three
convolutional-pooling layers were used in the convNet. For
the three layers, the number of feature maps is 64, 128, and
256 based on study [38]. The filter sizes for all three layers
are 3 × 3, whereas the max-pooling sizes are 3 × 3, 3 × 3,
and 2 × 2 respectively. After preprocessing, input patches of
32×32 pixels are fed to the model. The first 2D convolutional
layer outputs a convolutional feature map with 64 neurons
and has a kernel size of 3× 3.

Zero paddings are applied to boundary pixels during con-
volution so that each layer’s feature map is the same size as
the input patch. This layer is followed by a rectified linear
unit (ReLU) activation layer, which handles element-wise
non-linearity. A 3 × 3 maxpool layer subsamples the input
patch image and output size is 7 × 7 × 64 at this stage.
Subsequently, convolutional layers two and three have the
same size of kernel (3× 3), and ReLU layers extract 128 and
256 features maps, respectively. These layers are followed by
3 × 3 and 2 × 2 maxpooling, resulting in 3 × 3 × 128 and
2 × 2 × 256 size output. In OP-convNet, the three FC
layers have 1024-256-2 neurons, respectively. The values of
1024 and 256 were chosen based on our empirical findings,
and the number 2 was chosen to accommodate the number
of object categories in our two-class (vertebrae/background)
classification problem. The proposed architecture is most
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TABLE 1. Parameters of the proposed OP-convNet model.

suitable for optimizing performance of classification-based
vertebrae segmentation.

The flattened output was sent into a fully connected
layer (FC) with 1024 nodes and a dropout layer.With a proba-
bility of 0.5, the dropout layer removes different sets of nodes
every time. Drop out layer maintained the regularization and,
during training, avoids over-fitting of the convNet. In the first
(FC) layer, a vector of 1024 features is created, while in the
second (FC) layer, a vector of 256 features is produced, and
dropout layers being applied. Finally, there is a softmax layer
with two nodes that computes a probabilistic prediction for
two classes. The softmax layer as output layer calculates L2
regularization cross-entropy loss. Table 1 listed the detailed
configurations of OP-convNet model parameters. In total,
895019 patches were generated to train the model, in which
716019 patches (80%) were used for training and 179000
(20%) were used for validation.

Figure 9 illustrates the learned filters for convNet’s first,
second, and third convolutional layers. These automatically
trained filters compute gradients primarily with varying fre-
quencies and orientations and color blobs necessary for
classification. In addition to these learned filters, figure
10 shows the activations feature maps of pooling layers (max-
pool1, maxpool2, and maxpool3). In the proposed method,

FIGURE 9. Filters size of 64, 128, and 256 visualizations with size of
3 × 3 × 1, 3 × 3 × 64 and 3 × 3 × 128 in the first, second, and third
convolutional layers.

overlapping patches of the same size (a stride of 12 pixels)
are used. The reason for the adoption of a 12-pixel stride is
that when its size decreases, the number of patches grows,
resulting in increased computational complexity. As a result,
we determined a stride size of 12 pixels as the ideal value
for our experimental study. Figure 11 depicts an OP-convNet
fine-tuning process over 120 training epochs. As illustrated
in the figure, the validation loss reaches its smallest value
(0.106) after eight epochs, corresponding to a validation accu-
racy of 0.987. The training of OP-convNet requires 27 hours
under our experimental setup.
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FIGURE 10. Activations’s visualization of three pooling layers: Pool1
(64@7 × 7), Pool2 (128@3 × 3), and Pool3 (256@2 × 2).

FIGURE 11. The validation graph shows (a) the average accuracy and
(b) the average loss of each epoch (iterations).

TABLE 2. Patch-based classification performance comparison against
existing algorithms.

The results in table 2 quantitatively verify the patch-
based classification advantages of OP-convNet framework.
Classical networks (like VGG net, ResNet, DenseNet)
have been compared in order to show the benefits of
our proposed method. From table 2, we can see that
among the existing methods, our method has the best PRE
(90.1%), SPE (99.4%), ACC (98.8%), and F-score (90.1%).
OP-convNet outperforms on classical backbones in terms
of PRE, SPE, ACC, and F-score. Compared with the VGG
net [42], ResNet [44], DenseNet [52], our proposed method
is significantly better by (20%, 0.8%, 0.2%, 8.3%), (13.9%,
0.5%, 0.1%, 5.7%), and (8%, 0.3%, 0.2%, 2.7%) average in
(PRE, SPE, ACC, F-score) respectively. Therefore, it can be
concluded that our proposed OP-convNet framework is supe-
rior in terms of its patch-based classification performance.
Figure 12 shows patch-based classification performance
comparison.

FIGURE 12. Patch-based classification performance comparison, chart
shows OP-convNet achieved highest PRE, SPE, ACC, and F-score.

FIGURE 13. Confusion matrices of proposed OP-convNet model;
(a) confusion matrix of balanced training data and (b–d) confusion
matrices of randomly test cases 1–3.

B. SEGMENTATION PERFORMANCE
After presenting the patch-based classification performance
using training images, we now used five test cases containing
3418 slices to access the segmentation performance of our
approach. Figure 13 shows the confusionmatrices of training,
and test cases separately. Figure 14 shows the segmentation
results for the axial plane, where the original images and
ground truth segmentation maps for each slice, are illustrated
in first and second rows respectively. The third row shows the
proposed approach’s predicted segmentation map, and it can
be seen that the proposed method produces well-segmented
results. In comparison to related studies, table 3 shows the
segmentation results outperforms previous methods in terms
of BF-score, sensitivity (SEN), Jaccard index (JAC) and
Dice similarity coefficient (DSC). OP-convNet achieved the
best vertebrae segmentation performance, with BF-score of
90.2%, SEN of 90.3%, JAC of 82.3%, and DSC of 89.9%
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FIGURE 14. Qualitative results of segmentation (a) input images, (b) ground truth, and (c) predicted mask.

among other methods. In comparison to related studies, the
reported results are considered to be excellent. It can be
observed that OP-convNet outperformed both segmentation
and classification-based segmentation networks. The exper-
imental findings demonstrate the superiority of our method
over other vertebra segmentation algorithms. Moreover, the
promising results also show that proposed OP-convNet has
exceptional generalization ability.

V. DISCUSSION
The results comparison in table 3 quantitatively verify the
advantages of OP-convNet framework over existing meth-
ods. For example, U-Net [47] takes as input a whole image,
whereas the proposed method utilizes overlapping patches
based on the convNet architecture as input. The experimental
results demonstrated that the U-Net did not perform well in
segmentation due to a lack of local information and achieved
83.7% of Dice similarity coefficient (DSC), whereas the
proposed OP-convNet performed significantly better (89.9%
DSC). The local information may be kept more efficiently
in the proposed method than the U-Net, where the slices
are divided into overlapping patches, and the predictions are
made independently for each patch. As a result, segmentation
performance has improved. Another method D-TVNet [57]
based on U-Net obtained a mean DSC of 86.17%. The exper-
iment’s findings demonstrate that D-TVNet cannot identify
the essential spots for measuring the angle of the spine curve

TABLE 3. Segmentation performance comparison against existing
algorithms in term of SEN, BF-score, JAC, and DSC.

when segmented bones are used. Furthermore, this method
is unsuccessful at recognizing them when the bones are not
sharp, and image noises are larger. Though D-TVNet method
can to filter out some noise from images, in some cases, it can
also eliminate essential bone pixels by mistake.

SAU-Net [58], a spatial attention-based densely con-
nected U-Net, is proposed to illustrate the efficiency of
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inter-slice information extraction for vertebrae segmenta-
tion. This approach makes a spine segmentation performance
comparison with and without the interslice attention (ISA)
module. However, the segmentation results (89.8% DSC) are
not impressive, indicating that the ISA approach is likely to
be misclassified. SpineParseNet [31] achieved a mean DSC
of 87.3%, but several limitations exist in this work. First,
it performed inferior segmentation due to the blurry bound-
ary. Second, if the additional structures excluded from the
spinal structures exist in the test data, the proposed approach
failed to segment the additional structures. In this case, the
output of the SpineParseNet should contain the additional
structures, and more annotated data that contains the addi-
tional structures should be used to train the model. Third,
the SpineParseNet failed to segment the top structures of the
image due to the limited receptive field for the top of the
image. Fourth, the dataset was collected from a single hospi-
tal. The robustness of the proposed method needs to be eval-
uated by multi-center datasets. While outperforming most
U-Net variants, it can be observed that OP-convNet shows
an improvement of 5% DSC on MultiuNet [59]. A classifi-
cation based PaDBN segmentation model [7] is proposed for
automatic CT vertebra segmentation and achieved an 86.1%
DSC. This approach indicates that the initial thoracic verte-
brae have a lower DSC due to the influence of the ribs and
intervertebral discs; therefore, it wrongly segmented certain
bones that were not visible in the label annotations, resulting
in misclassification and a poor DSC. OP-convNet frame-
work also outperformed other classical backbones in terms
of DSC. Compared with the VGG net [44], ResNet [46], and
DenseNet [56] proposed framework is significantly better by
8%, 5.4%, and 2.5% average in DSC respectively. Therefore,
proposed model has strong predictive performance and appli-
cation ability to assist planning and biomechanical analysis
for vertebrae CT images segmentation. Figure 15 shows OP-
convNet outperforms previous methods across all metrics in
segmentation performance.

FIGURE 15. Segmentation performance comparison, chart shows
OP-convNet outperforms previous methods across all metrics in
segmentation performance.

There are several patterns of vertebrae, with certain pat-
terns found at various spinal levels. For example, significant

FIGURE 16. Poor segmentation results (a) input images, (b) ground truth,
and (c) poor predicted mask.

morphologic differences can be seen between two vertebrae
with a large spatial separation within the spinal column, such
as a lower lumbar vertebra and upper thoracic vertebra. Thus,
proper segmentation of all vertebrae would be a difficult
process. In order to achieve a robust segmentation, vertebra
specific models require anatomical knowledge of the mod-
eling process. The limitation of our proposed approach is
found in some vertebra T6-T8, where poor segmentation has
been observed due to the presence of rib structure. Also,
vertebra T1 typically receives lower DICE scores than the
other vertebrae. Figure 16 shows poor segmentation visual-
ization results. This is probably because the T1 top vertebra
is seen in certain datasets, whereas in other datasets, some
cervical vertebrae are included. This sometimes causes the
procedure to stretch the T1 vertebra to the C7 vertebra. This
issue does not exist at the other end of the spinal column,
specifically for the L5 vertebra, because all data sets include
the sacrum, and L5 is not aligned with S5 in the sacrum.
It is also possible to address these circumstances by obtaining
more CNNs that are specifically trained to identify the C7/T1
transitions, as well as more 2D images or 3D image volumes
datasets could be required. More datasets from more patients
and other institutions will need to be corroborated in order to
demonstrate the consistency, transferability, and robustness
of the model.

VI. CONCLUSION
This paper investigated the use of the deep learning OP-
convNet framework for CT vertebrae segmentation. The
results indicated that our proposed approach achieved out-
standing precision, specificity, accuracy, F-score in terms of
the patch-based classification accuracy, and BF-score, sen-
sitivity (SEN), Jaccard index, dice similarity score (DSC)
in terms of the segmentation accuracy on publically avail-
able MICCAI CSI dataset. Our research has demonstrated
that by dividing the input slices into overlapping patches,
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RUS-function for class balancing, and training the convNet
framework on these overlapping patches, one can achieve
superior segmentation performance over previous methods.
The proposed OP-convNet architecture produces predictions
for each input patch independently, retaining more local spa-
tial information. Additionally, our framework outperforms
prior methods in terms of all evaluation metrics with an
overall DSC score of 89.9% for vertebral CT image seg-
mentation. In a clinical application, segmented vertebrae can
be used to prepare for subsequent automatic planning and
positioning. The risk of deviation in a patient who undergoes
an increased amount of bone biting can be minimized when
pedicle screw implantation is employed. Additionally, single
vertebra printing enables doctors to gain a better understand-
ing of the tissue structure, which is especially beneficial
for patients with scoliosis and enables surgeons to complete
planning prior to surgery. Thus, our method improves the
practicality and the accuracy of segmentation results in order
to support clinical treatment without the complicated network
architecture. Our future work will include a more extensive
validation, improvement, and the possibility of implement-
ing our proposed OP-convNet for additional tasks, such as
multi-class classification and segmentation using 3Dmedical
images. Additionally, future generations of GPUs with larger
internal memory will enable the proposed model to examine
different pathologies on a large dataset.
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