
Received November 1, 2021, accepted November 19, 2021, date of publication November 29, 2021,
date of current version December 7, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3131229

SCP-Tree: Finding Multiple Nearest Parking Spots
With Minimal Group Travel Cost
JINE TANG 1, YUPENG WANG2,3, WEIJING LIU4, XILING LUO 3,5,
AND ZHANGBING ZHOU 6,7
1School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
2School of Electronics and Information Engineering, Beihang University, Beijing 100191, China
3Comprehensive Transportation Big-Data Research Center, Hangzhou Innovation Research Institute of Beihang University, Hangzhou 310051, China
4Tianjin Key Laboratory of Aerospace Intelligent Equipment Technology, Tianjin Institute of Aerospace Mechanical and Electrical Equipment,
Tianjin 300458, China
5Research Institute for Frontier Science, Beihang University, Beijing 100191, China
6School of Information Engineering, China University of Geosciences, Beijing 100083, China
7Computer Science Department, TELECOM SudParis, 91000 Evry, France

Corresponding author: Yupeng Wang (wangyup@buaa.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB1601200, in part
by the Open Project Program of Tianjin Key Laboratory of Aerospace Intelligent Equipment Technology, Tianjin Institute of Aerospace
Mechanical and Electrical Equipment under Grant ZNZB-2021-01, and in part by the National Natural Science Foundation of China under
Grant 61702232.

ABSTRACT Finding the nearest parking location in road networks is one of the most commonly faced
challenges in everyday life of green transportation. A main challenge faced by the state-of-the-art existing
parking allocation methods is to optimally offer the nearest parking location for a group of m users at the
cost of minimal overall traveling time to ensure the traffic and environmental sustainability. In this article,
wemodel it as aMultiple Nearest Parking Location Allocation (MNPLA) problem, and devise a spatial index
tree, called SCP-tree, to accelerate the nearest parking location allocation within the users’ time constraints.
During the search process in SCP-tree, we build a pruning strategy relevant to the Geographical Preference
Estimation, travel time and parking capacity to determine which branch to visit so that the search accuracy
can be improved. Considering the users’ behaviors are often impacted by the geographical location and
some personalized attribute information, we set the user priority based on them to help the parking officer
determine the allocation sequence. We evaluate our allocation scheme using large real-world dataset with
on-street parking sensor data, and extensive experimental results reveal (i) a minimum improvement of
15.9%, 1.4%, 96.9%, 160% in parking allocation time, average traveling time, I/O cost and service utility
compared to the progressive methods, and (ii) a minimum improvement of 8.9%, 11.1%, 78.2%, 714% in
parking allocation time, average traveling time, I/O cost and service utility compared to the baselinemethods.

INDEX TERMS Green transportation, multiple nearest parking location allocation, minimal overall traveling
time, SCP-tree, geographical preference estimation, user priority, parking sensor data.

I. INTRODUCTION
In order to reduce energy uses and cut emissions that con-
tribute to the climate and environment change, parking alloca-
tion is an important aspect required to be considered in green
vehicular transportation, as search for parking by drivers is a
significant contributor to the congestion in cities and thus also
generates a lot of greenhouse gas emissions [1], [2]. Usually,
drivers spend a great deal of time on searching for parking
and on leaving sooner or later due to the anticipated parking

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Shamim Kaiser .

and congestion problems. Moreover, the unplanned parking
allocation can make the travellers, such as coming later,
be guided to an unsatisfactory parking location. It is not easy
to maximize the benefits of all the mobile users for finding
the available parking locations to ensure the sustainability
of urban environments [3], which is viewed as a change that
improves the quality of life and conserves the time and natural
resources.

In essence, vehicle parking can be viewed as a continu-
ous query submitted by mobile users to obtain the available
parking locations. Several existing works [4]–[7] compute
for parking locations with different costs, and propose some

158946 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-3707-069X
https://orcid.org/0000-0002-3443-6940
https://orcid.org/0000-0002-3195-2253
https://orcid.org/0000-0002-4604-5461

J. Tang et al.: SCP-Tree: Finding Multiple Nearest Parking Spots With Minimal Group Travel Cost

strategies to allocate, such as nash equilibrium, gravity based
game-theoretic framework [4]–[6], bipartite matching based
natural posted price mechanisms [7], exclusive closest pairs
join operation [8] and so on. Each user achieves the preferred
parking location by calculating and comparing the prices
for available parking locations based on a given selection
strategy. However, all these studies have not considered any
time and personalized attribute constraint to determine the
preference allocation order that (i) helps a centralized park-
ing allocation system to manage the parking locations, and
(ii) maximizes the benefits for all users.

In real mobile application scenarios, a mobile user usually
wants to know which parking location to visit in order to
minimize the time and overall travel distance, specifically the
driving distance from the departing location to the parking
spot and the walking distance from the parking to the desti-
nation. The parking locations are always selected as closer as
possible to the destinations sincewalkingmay consumemuch
time [9]. However, parking is competitive in nature because
after making a choice to visit a particular available parking
location, the success in obtaining that parking location will
depend on if any other vehicles having a preference for that
parking location also make the same choice. Considering this
problem, we assume that the centralized parking allocation
system has a preference order for each user with different
personalized attributes and departing locations, which are
deemed as two major factors in modeling users’ preferences
for selecting parking locations. Meanwhile, the distance from
the parking locations to the destinations should be as shorter
as possible, which also has an important impact on the trav-
eling time.

Generally, in this article, the objective of the system
designer is to set up the user priority in terms of personalized
attributes and departing locations, and model the geograph-
ical preference to prompt the most effective allocation for
available parking locations so that it can serve the maximum
number of users within some driving time constraint. At the
same time, it should reduce the walking distance from the
parking locations to the destination locations as much as
possible. Next, we present an example to demonstrate how to
allocate the parking locations according to the rules relevant
to distance, personalized attributes as well as destinations.
A comparison about the allocation result with vehicle-slot
(vs) pricing strategy is also given to motivate our work.
Example 1: Fig. 1 illustrates a motivating example

of analysis with 8 departing locations and destination
locations (see Fig. 1(a) and (c)) as well as 12 parking
locations (see Fig. 1(b)). Each user ui has a profile tuple
{ldi, age, occupation, driving age}, where ldi is the departing
location of ui. The attributes afore-mentioned (e.g., age,
occupation, driving age) are examples of some personal-
ized attributes of ui. Note that, this list is for illustration,
and any other attribute can be similarly accommodated
to our approach. The parking officer analyzes the four
dominated factors according to the following classification
mechanism:

FIGURE 1. An example of parking allocation.

(1) In this example, the destinations ls1, ls2, ls4, ls5, ls6
are nearer to parking locations lpi (i ∈ [1, 6]), while the
destinations ls3, ls7, ls8 are nearer to parking locations lpi
(i ∈ [7, 12]). The officer allocates the lpi (i ∈ [1, 6]) to
u1, u2, u4, u5, u6 and lpi (i ∈ [7, 12]) to u3, u7, u8, respec-
tively according to the users’ departing locations and person-
alized attributes.

(2) For the user whose age is over 50, and occupation is
time limit, as well as driving age is less than 6 years, he/she
can be allocated a near parking location, such as u7, u8.
(3) For the user whose age is below 30, and occupation is

time limit, as well as driving age is less than 6 years, he/she
can be allocated a near parking location, such as u5.

(4) For the user whose age is over 50, and occupation is
time free, as well as driving age is more than 10 years, he/she
can be allocated a farther parking location, such as u6.

(5) For the user whose age is below 30, and occupation is
time free, as well as driving age is more than 10 years, he/she
can be allocated a farther parking location, such as u1.

(6) If more than one user are in the above classifications,
they will be competitive in terms of the distance from the
departing location to the parking location. The other users,
such as u2, u3, and u4, can be allocated mainly considering
the departing locations.

Note that the above mentioned strategies are implicit per-
sonalization for the parking spot allocation. If there is an
explicit preference or constraint for a parking spot, it can
be easily accommodated in our approach. If we are to run
the above example with vs pricing strategy, assume that it
needs a total $-cost of 60 cents on average driving 1 mile.
At this case, the pricing authority can assign u1 a greatly large
quantity for lp2 and 0 for lp5. For u5, the pricing authority
will assign the prices as 0.5 miles for lp5 and a greatly
large quantity for lp2. The cost that u5 will have to pay for
traveling 0.5 miles converts to 20 cents. Thus, by setting vs
prices, the pricing authority stimulates u1 and u5 to choose lp2
and lp5 respectively according to the distance minimization
assignment. By paying this 20 cents price, u5 is not necessary
to pay the same amount of both $-cost and driving distance. u1
pays more due to the disadvantages brought, but the pricing
authority can compensate her from the money collected from
u5. The user cannot arbitrarily change her parking location
and improve her cost. Thus, it is worthwhile for the drivers to
travel a shorter distance in total by the pricing authority.

This paper is motivated by the fact that although there is
an authority to price on-street parking locations considering

VOLUME 9, 2021 158947

J. Tang et al.: SCP-Tree: Finding Multiple Nearest Parking Spots With Minimal Group Travel Cost

both the price and driving distance, the time and personalized
attribute constraints still have a large influence on the trav-
eling cost. Thus, we study the question: how to allocate the
parking locations to users by considering the dominated con-
straint factors that have an influence on the overall traveling
time? The answer is from the allocation result in Fig. 1(b),
where the officer allocates lp5, lp2 to u1, u5 respectively by
considering the users’ occupation and driving age. The whole
allocation is reasonable since these users belonging to (2) and
(3) tend to drive slowly within the limited time, while these
users belonging to (4) and (5) tend to drive faster without a
time limit. Meanwhile, the traveling time from the parking
slot to the users’ destinations is within the walking time
constraint.

In the following, we list the contributions of this article.

• Wepropose a new spatial index SCP-tree to represent the
parking locations for efficient real-time parking alloca-
tion. The branch node regions that are within the walking
time constraint to the users’ destinations are first posi-
tioned. Then, the Lower Bounding Driving Time and
parking capacity placed on each index node are used
to prune the nodes that cannot satisfy the driving time
constraint or have no available parking locations.

• We propose User Priority setting based on the personal-
ized attribute and distance, combinedwith the estimation
of geographical location proximity developed for each
user, to maximize the benefit of all users. As for a set
of users having the similar personalized attributes and
closer departing locations, they can be combined into
one group for further allocation, especially in peak hours
when a large number of users request for parking.

• We evaluate our proposedmethod by the allocation time,
traveling time, I/O cost and service utility metrics using
a large public dataset provided by the local city council.
The experimental results show our proposed method has
a significantly efficient allocation performance.

The remainder of this article is organized as follows.
In Section II, we present a review of related works.
In Section III, we present the motivation, and relevant prob-
lem definition. In the following, we present the construction
process of SCP-tree and parking location allocation scheme
in Section IV. Section V contains the evaluation results.
Section VI concludes this article.

II. RELATED WORK
A. PARKING ALLOCATION
The notable work, such as optimal system assignments, Nash
equilibrium, the price of anarchy, as well as ridesharing rele-
vant to the parking allocation has been studied in the field of
transportation applications. U et al. [10] propose a capacity
constrained assignment to identify the allocation with the
optimal overall quality by employing novel edge-pruning
strategies. Ayala et al. [4], [5] analyze the parking situa-
tions in competitive simulations through a game-theoretic

framework and present the relevant algorithms to choose ideal
parking locations. Ayala et al. [6] also propose a vehicle-slot
pricing mechanism considering algorithmic game theory,
where drivers may pay different prices for the same park-
ing location. Meir et al. [7] study MAXDISTANCE and
LINEARCOST valuation schemes for parking allocation
through setting up connections with the online bipartite
matching problem. In recent years, Tian et al. [11] propose
Noah to perform large scale real-time ridesharing. This sys-
tem accepts requests in real-time and assigns the request to a
taxi which is either roaming or having a pre-engaged route.
The assignment aims to guarantee the service constraints of
the request in terms of waiting time and detour percentage.
Cheng et al. [12] propose a utility-aware ridesharing on road
networks with the goal of providing optimal rider schedules
for vehicles to maximize the overall utility of riders. The
focus of it is to assign each rider to a suitable vehicle, subject
to the constraint of riders’ deadlines of pickup or delivery of
riders and the capacity of vehicles. Chen et al. [13] develop
a price-and-time-aware ridesharing system by offering more
options with different pick-up times and prices. The system
assumes that the destination of a vehicle is not limited and
that it can accommodate any number of rider groups during
a trip as long as it satisfies a capacity constraint. Although
these works on ridesharing and our work are both related
with the allocation problem, they cannot be directly applied
to solve our parking allocation problem. This is because
(i) these works on ridesharing may require one vehicle to
be allocated to multiple riders for completing its trip. The
vehicles’ number may be less than the riders’ number. How-
ever, our work requires only one parking location allocated
to one user to complete all the users’ trips. The parking
locations’ number requires to be bigger than or equal to the
users’ number; (ii) these works on ridesharing aim to max-
imize the riders’ utilities and minimize the vehicles’ travel
distances, while our work aims to minimize all the users’
travel time by allocating the reasonable parking locations to
users; (iii) these works on ridesharing suffer the constraints
of vehicles’ capacities, traveling time and riders’ deadlines,
while our work suffers the constraint of users’ departing-
destinations, geographical preference to parking location,
personalized attributes that may give different traveling time,
as well as parking slot’ capacity; (iv) these works on rideshar-
ing consider to satisfy the riders’ deadlines in the same trip
from one vehicle and the acceptable extra detour time from
the shortest possible trip duration, while our work considers
to satisfy all the users’ traveling time in different trips from
the departing locations to the parking locations. In general,
all these studies have not considered any time and personal-
ized attribute constraint to help the officer manage on-street
parking allocation. In our work, we investigate the parking
allocation problem in the context of a centralized model,
where a centralized parking officer assigns parking locations
by satisfying user priorities and maximizing the benefit of all
users.

158948 VOLUME 9, 2021

J. Tang et al.: SCP-Tree: Finding Multiple Nearest Parking Spots With Minimal Group Travel Cost

B. PAIR QUERIES IN SPATIAL DATABASE
The pair queries in spatial database aim to discover some pairs
of spatial objects with certain time or distance constraint.
Corral et al. [14] address the problem of finding the K pairs
of spatial objects formed from two data sets that have the K
smallest distances between them, where each set is stored in
a structure belonging to the R-tree family. However, due to
ties of distances, the result of K-Closest Pair of these two
point sets may not be unique for a specific pair. Unlike this
situation, our parking allocation is certain for the Closest Pair
relevant to each departing location. Zhou et al. [15] address
the problem of querying the historical and spatial range
close-pair moving objects, whose distance is closer than a
user-specified distance constraint during the time interval TI
and within the spatial range SR. Different from this query,
parking allocation considers two kinds of static data objects,
i.e., departing location and parking location, for the closet
pair matching. U et al. [8] exploit space partitioning method
to resolve the exclusive closest pairs problem, whose real
application is the computation of car and parking slot assign-
ments. In addition, joined data sets changing positions and
content, and having a capacity constraint are also considered
for parking allocation. U et al. [16] also propose an effi-
cient algorithm for optimal capacity constrained assignment.
Each customer is assigned to at most one provider. Every
provider serves no more customers than its capacity. Mean-
while, the sum of Euclidean distances within the assigned
provider-customer pairs is minimized. Different from the
problem resolved above, our parking allocation focuses on
point-to-point departing-parking location matching to maxi-
mize the service utility of all users. Chen et al. [17] retrieve
the pairs with top-k maximal probabilities of being the closest
pair given two uncertain datasets in which each spatial object
is modeled by a set of sample points. Unlike this dataset, our
parking allocation is schemed based on certain departing and
parking locations.

C. RELATED SPATIAL AND SPATIAL-TEXTUAL INDEX
Indexing as grid or tree structures is a popular and effective
method to answer many spatial queries like range search
or visit the k-nearest neighbors, often under some query
constraints. Li et al. [18] propose an efficient index called
IR-tree, which supports top-k document retrievals leverag-
ing the unified representation of textual and spatial rele-
vances. Choudhury et al. [19] extend IR-tree and construct
a text-first index structure SIF for batch processing top-k
spatial-textual queries with the help of block based inverted
file. Zhong et al. [20] present a height-balanced and scalable
index, namely G-tree, to efficiently support KNN queries and
keyword-based KNN queries based on the assembly-based
method. Kucuktunc et al. [21] introduce a diverse browsing
method for diverse k-nearest neighbor searches based on the
popular distance browsing feature of R-tree. Tao et al. [22]
design an inverted index, named SI-index, which extends the
conventional inverted index to deal with multidimensional
data and perform keyword-augmented nearest neighbor

search in time. Cao et al. [23] further propose to retrieve a
group of spatio-textual objects such that the group’s keywords
cover the query’s keywords, and such that the objects are
nearest to the query location and have the smallest inter-
object distances, with the help of an IR-tree. In order to pro-
vide users with more options, the authors also propose to find
the top-k groups covering all the query keywords and rank
according to their costs. As the advantages of spatial index in
coping with KNN query, we construct a new SCP-tree based
on R-tree [24], to represent the parking locations and answer
the MNPLA problem (see Definition 1).

III. PROBLEM FORMULATION
A. MOTIVATION AND SYSTEM OVERVIEW
The Melbourne Transportation Council sets up in-ground
sensor systems aroundMelbourne City Centre areas [25]. For
each car parking area, the sensor can detect parking space
availability and report it to the information centre periodi-
cally [26]. The system would send the message to the parking
officer who is in charge of the parking allocation in some
area [27], [28]. At a regular frequent time interval (e.g., 1
sec), the centralised system groups one or multiple new user
queries that are received. The parking officer preprocesses
some work in advance to analyze the users’ personalized
attributes and formulates the allocation priority for the users
offline. When the users are ready to start their journeys and
query for a parking spot, the parking officer will check the
parking space availability and assign the parking locations
according to the real-time departing locations, priority and
destinations. During peak hours, the number of such users is
likely to be more than 1, and the parking officer processing
such users at a frequent interval as a group will improve the
overall performance without any significant increase in the
waiting time for response. Table 1 lists the notations used in
this article.

B. PROBLEM DEFINITION
Definition 1 Multiple Nearest Parking Location Alloca-

tion (MNPLA): Given a set of parking locations lp =
(lp1 , lp2 , · · · , lpn), a set of users U = (u1, u2, · · · , um) with
their departing locations ld = (ld1 , ld2 , · · · , ldm) and des-
tination locations ls = (ls1 , ls2 , · · · , lsm) as well as a time
constraint specified for users to reach from the departing

TABLE 1. Notations and Their Descriptions.

VOLUME 9, 2021 158949

J. Tang et al.: SCP-Tree: Finding Multiple Nearest Parking Spots With Minimal Group Travel Cost

locations to the parking locations (driving time) and from the
parking locations to their final destinations (walking time),
the MNPLA problem is to retrieve a subset slp ⊆ lp and
assign the parking locations in slp to mobile users based on
(i) Geographical Preference Estimation (see Definition 6),
which is used to determine the nearest parking location,
(ii) user priority (see Definition 7), which is used to determine
the optimal allocation order for minimizing the traveling
time, and (iii) destinations, so that the allocation strategy
can serve the maximum number of users within the time
constraint and under the parking capacity constraint.

IV. PARKING LOCATION ALLOCATION SCHEME
A. OVERVIEW OF SCP-TREE
R-tree is a height-balanced index structure that has been
widely adopted to dispose different kinds of queries, such
as range query, KNN query etc., by pruning unpromising
branch nodes. Inspired by this, we aim to devise a similar
spatial index on parking locations. To this end, we recursively
partition the parking space into sub-regions and construct
a hierarchical index tree structure. However, R-tree allows
more overlap and coverage among sibling nodes. Thus it calls
for an effectivemethod that can provide a single traversal path
and less coverage for parking locations, to achieve high query
efficiency and low storage cost.

To address this issue, we exploit clustering techniques
such that parking locations in the same cluster are closely
located, and parking locations in different clusters are far
from each other as much as possible. Therefore, parking
locations in the dense regions should be put into the same
node region to avoid cascading overlap and large coverage,
whereas parking locations in the sparse regions can have a
simpler sub-tree structure and better operation performance.
The SCP-tree organizes parking locations according to such
clustering results. Each node of the tree corresponds to a clus-
ter. Each node is associated with a value called node capacity
which denotes the number of available parking locations in
that node region. As vehicles arrive and leave, the parking
space availability of the node region (i.e., the node capacity)
increases or decreases accordingly. In SCP-tree, the parent
node capacity is the summation of its child nodes’ capacity.
A single parking location capacity is ’’1’’ if it is available
while it is ’’0’’ if it is unavailable. During query time, a node
is visited only when its node capacity is greater than zero.
Generally, SCP-tree has less overlap among sibling nodes
than that of R-tree and its variants. In addition, due to the
adjacent characteristic among parking locations in the same
node, the coverage area of nodes is less than that of R-tree.
In the following, we formally give the properties of SCP-tree:
• The root node is the entire MBR region covering all the
parking locations.

• Each node stores a lower bounding driving time. It is
computed by the minimum value from the driving time
distances between all the departing locations of social-
life-work-related users who stop in the locations indexed
in its subtree and the parking locations of itself by the

end of the query time (see Definition 2 as detailed expla-
nation). This property is used to effectively do pruning
the subtrees not within the driving time constraint.

• Each node has a parking capacity. It is computed by
summarizing the parking availability of its child nodes.
This property is used to prune the subtrees that currently
do not have available parking locations.

• The interior nodes are the cluster regions where the
number of parking locations is larger than a threshold,
M0. Similar to the R-tree, the maximum number of the
child nodes of an interior node is set to this value,M0.

• The leaf nodes are the clusters where the number of
parking locations is between m0 andM0. We also set m0
as the minimum number of parking locations in a leaf
node similar to the R-tree.

• A parking location is contained in only one upper parent
node, thus the traversal path to a parking location during
the query time is unique. Additionally, the parking loca-
tion capacity is ‘‘1’’ if it is available while it is ‘‘0’’ if it
is unavailable.

• Unlike R-tree, SCP-tree is often an unbalanced tree.
Thus, the leaf nodes are generally not at the same level.

Fig. 3 gives an example of SCP-tree constructed from the
parking locations shown in Fig. 2 by setting M0 as 4. Each
non-leaf node corresponds to a sub-region of Ri (i ∈ [0, 8]).
For example, the node R4 corresponds to the upper-right
sub-region shown in Fig. 2, which includes parking locations
lp5 , lp6 , lp7 , lp8 .

FIGURE 2. An example of hierarchical parking cluster.

B. SCP-TREE CONSTRUCTION
In this article, we adopt the classic K -means [29] algorithm
for clustering parking locations. Roughly, this method selects
k parking locations as initial cluster centers. Then the dis-
tances between the parking locations and the cluster centers
are computed, and each parking location is assigned to a
cluster when the distance between this parking location and
the center of the corresponding cluster is minimum. Then the
center of the cluster is updated accordingly. The clustering
procedure terminates when no update occurs to the cluster
centers. Usually, the number of parking locations is quite
larger thanM0 (i.e., nlp � M0) before clustering. As a result,
the parking locations are divided into clusters.

Algorithm 1 presents the pseudo-code of our SCP-tree
construction procedure. We first select k (m0 ≤ k ≤ M0,
m0 = M0/2) parking locations as the initial cluster centers,

158950 VOLUME 9, 2021

J. Tang et al.: SCP-Tree: Finding Multiple Nearest Parking Spots With Minimal Group Travel Cost

FIGURE 3. The SCP-tree constructed corresponding to Fig. 2.

Algorithm 1 SCPTreeBuilt
Require: : Slp : the set of parking locations
Ensure: : ndrt : the root node of constructed SCP-tree
1: k1← the number of parking locations in Slp
2: if k1 > M0 then
3: Scls ← select k initial cluster centers (m0 ≤ k ≤ M0, m0 =

M0/2), and cluster parking locations using K-means method,
with each cluster containing k0 (k0 ≥ m0) parking locations

4: foreach ϑ ∈ Scls do
5: k1← the number of parking locations in ϑ
6: if m0 ≤ k1 ≤ M0 then
7: set ϑ as a leaf node of ndrt
8: ϑ.Tlo ← the minimum time value computed by

Definition 2
9: else

10: ndcld ← SCPTreeBuilt(parking locations in ϑ)
11: set ndcld as a child node of ndrt
12: ndcld .Tlo← the minimum time value computed by

Definition 2
13: end if
14: end for
15: end if

and apply the K -means method to group parking locations
into k clusters (line 3), with each cluster containing k0 (k0 ≥
m0) parking locations. If the number of parking locations
in a sub-cluster is within m0 and M0, this sub-cluster is set
as a leaf node of SCP-tree (lines 6-7). When a sub-cluster
covers parking locations in the dense regions, the number of
parking locations in that cluster is inevitably larger than the
maximum value (i.e., M0). We call such cluster as an over-
flow cluster, which needs to be re-clustered to form smaller
clusters (lines 10). Additionally, for each child, a node stores
a lower bounding driving time Tlo, constructed by selecting
the minimum value at each time point among all the parking
locations indexed therein (line 8, 12) (see Definition 2). For
each node, it also has a parking availability capacity, which
is defined in Definition 4.

Recall that the relevant users that stop in the parking
locations indexed in the subtree covering region Rst by the
end of the query time t0 are independent for different query
users with specific personalized attributes. To obtain a tight
lower bounding driving time, we need the users having the
similar social-life-work-related attributes with the query user
u as large as possible since (i) the social-life-work-related
users usually have a closer social connection, similar check-in
activities as well as similar travel routine recommenda-
tion [30]; (ii) the users who have a closer social connection
may have better trust in terms of their travel recommendation;
(iii) the users who show more similar check-in behaviors

should have more similar tastes with the active user, thus
suggestions from those users are more worthy.
Definition 2 (Lower Bounding Driving Time(LBDT)): Let

Ld = {ld1 , ld2 , · · · , ldm′ } be the departing locations of a set
of users U = {u1, u2, · · · , um′} who have a larger social-
life-work-related attributes similarity with the query user u
(see Definition 3) and stop in the parking locations indexed
in subtree Rst by the end of the query time t0. Let Lp =
{lp1 , lp2 , · · · , lpn′ } be the parking locations in the cluster
region of Rst . Then the lower bounding driving time Tlo for
Rst is defined as

Tlo = min
i∈[1,m′],j∈[1,n′]

TimeDistDrive(ldi , lpj) (1)

where TimeDistDrive(,) is the time required from ldi to lpj
by driving.
Definition 3 (User Similarity (USI)): Given two users ui

and uj, Ye et al. [30] present the technique to derive the sim-
ilarity between them based on both their social connections
and similarity of their check-in activities. We follow the same
similarity measure in this article, which can be calculated as
below.

USIi,j = α ·
Fi

⋂
Fj

Fi
⋃
Fj
+ (1− α) ·

Li
⋂
Lj

Li
⋃
Lj

(2)

where α corresponds to the tuning parameter within the
range of [0, 1]; F denotes the friend set, which refers to
the socially connected friends of a user according to the
location-based social networks; and L represents the interests
set, which refers to the set of point-of-interests a user has life-
work-related check-in activities.
Definition 4 (Node Capacity (NC)): Let Cnd be the park-

ing availability capacity of node nd , and Ccl =

{Ccl1 ,Ccl2 , · · · ,Cclz} be the parking availability capacity of
the z child nodes of nd . Then Cnd is defined as

Cnd =

1 if nd is an available location;
0 if nd is an unavailable location;
z∑
i=1

Ccli otherwise

1) SPACE COMPLEXITY OF SCP-TREE
The space requirement of SCP-tree includes: (i) parking
location information Spl , (ii) tree hierarchy Str , and (iii) time
and capacity constraint Stc. The overall storage for SCP-tree,
denoted as SSCP−tree, can be estimated as SSCP−tree = Spl +
Str + Stc. Specifically, Spl involves |L| parking locations,
in total having |W | parking location information. As SCP-tree
is not a balanced tree, for Lst = |L| − |L ′| + |u| nodes
in the first balance layer of SCP-tree, the height is logf Lst ,
where |L ′| is the number of parking locations not at the first
balance layer, and |u| is the number of parent nodes generated
at the first balance layer. Assume the root is at level 0, the
number of SCP-tree nodes in the layers higher than and equal
to the first balance layer is given as

∑logf Lst−1
h=0 f h. For each

parent node j ∈ u, it can be considered as the root node of

VOLUME 9, 2021 158951

J. Tang et al.: SCP-Tree: Finding Multiple Nearest Parking Spots With Minimal Group Travel Cost

another sub-index tree and a similar height can be computed
for j through finding the first balance layer. This iteration
computation process terminates until all the remaining leaf
nodes are in the same level. Given p as the reducing scale
of the number of nodes in the first balance layer in each
height computation process of the following sub-index trees,
the number of nodes in the first balance layer in the following
sub-index trees is approximately as Lst

pi (i = 0, 1, · · ·). Thus,

Str can be given as
∑

i≥0
∑logf

Lst
pi
−1

h=0 f h. Moreover, since each
node is associated with one lower bounding driving time
and a parking available capacity, the storage for all ’’lower
bounding driving time’’ and ’’parking availability capacity’’

is (1 + 1)
∑

i≥0
∑logf

Lst
pi
−1

h=0 f h = 2 ·
∑

i≥0
∑logf

Lst
pi
−1

h=0 f h.
Therefore, the overall size of SCP-tree can be given as below.

SSCP−tree = O(|W |)+ O(
∑
i≥0

logf
Lst
pi
−1∑

h=0

f h)

= O(|W |)+ O(
∑
i≥0

f
logf

Lst
pi
−1

f − 1
)

≈ O(|W |)+
∑
i≥0

O(
Lst
pi

)

≈ O(|W |)+ O(Lst) (3)

2) TIME COMPLEXITY OF SCP-TREE
Given p′ as the reducing scale of the number of parking loca-
tions in each clustering process, the number of parking loca-
tions in the following sub-cluster regions is approximately as
n
p′i (i = 0, 1, · · ·) from the high level to the low level, where n
is the total number of parking locations. The time complexity
of clustering parking locations is O(np′i × k × t), where k is
the number of clusters and t is the iterative times. Usually,
k � n and t � n. In our clustering algorithm, k is a constant
and t is typically quite small. Thus, the time complexity of
Algorithm 1 is O(n).

C. PARKING LOCATION ALLOCATION
In our parking location allocation scheme, the most com-
mon objective is to minimize the total distance of all the
vehicles’ allocation, that is also to maximize the total service
utility across all the users in descending of user priority.
Here, a kernel density estimation (KDE) [31], [32], which
can be used for arbitrary distribution estimation and without
the assumption that the form of the distance distribution is
known, is employed to personalize the geographical prefer-
ence for each user. The intuition is that a user’s parking behav-
ior is significantly affected by the geographical positions of
parking locations, which have been considered as a major
impact factor in minimizing his/her traveling time.
Definition 5 (Geographical Preference Model (GPM)):

Given a parking region composed of some parking locations,
let U = {u1, u2, · · · , um} be the set of m users that have

visited this parking region, and D be the set of distances
between each pair of user locations. For a new user ui,
we define dij = ||ui, uj|| as the Euclidean distance between
ui and uj (∈ U). The kernel density of dij is defined as:

F(dij) =
1
|D|b

∑
d ′∈D

k((dij − d ′)/b) (4)

b = (
4σ̂ 5

3n
)
1
5 ≈ 1.06σ̂n−

1
5 (5)

Definition 6 (Geographical Preference Estimation (GPE)):
The geographical preference of ui on parking region Rg,
denoted by GeoRating(ui, Rg), can be calculated by taking
the average of all its probability densities, i.e.,

GeoRating(ui,Rg) =
1
m

m∑
j=1

F(dij) (6)

Definition 7 (User Priority (PR)): Given a set of attributes
A = {a1, a2, · · · , an} that a user ui has, let Wui,aj be a
weighting factor of parking officer’s semantic importance
on aj of ui. Some possible semantic weights are extremely
important, very important, important, and somewhat impor-
tant. The overall personalized trade-off priority upri of ui
endowed by the parking officer can be described using the
individual personalized attribute a, the preference weight w
and the aggregation operator ⊗ given as

upri = (W1 · a1)⊗ (W2 · a2)⊗ · · · ⊗ (Wn · an) (7)

In our allocation scheme, we assume that a user provides a
profile before he or she starts moving. A profile should cover
all categorical attributes, such as the personalized attribute,
location, distance etc. And such preference order information
summarized from the profiles of different users is stored by
the officer for parking allocation. In the following, we give
an example for explanation.
Example 2 Suppose a user Alice has the following

preferences:
• The distant departing location regions are prefer-
able because it may require to spend more time
before parking the car. These preferences can be
expressed as an order between the semantic distances:
remote � medium � near. The weight order of these
preferences, for example, can be expressed asWremote =

0.8 > Wmedium = 0.5 > Wnear = 0.2.
• She prefers to drive slowly because of her senior age.
This means that there exist preference relationships
between the semantic attributes: old � middle-aged �
young. The weight order of these preferences, for exam-
ple, can be expressed as Wold = 0.8 > Wmiddle−aged =

0.5 > Wyoung = 0.2.
It is noteworthy that in peak hours, a lot of users will be

requesting for parking. To help parking allocation in peak
hour, some analysis and decision are required as soon as
possible by sharing and reducing computations. To achieve
this goal, we can divide the users into groups using their

158952 VOLUME 9, 2021

J. Tang et al.: SCP-Tree: Finding Multiple Nearest Parking Spots With Minimal Group Travel Cost

approximate priorities. Therefore, a decending queue can be
constructed based on both the users’ and groups’ priority.
In the following, we extend the Geographical Preference
Estimation of a single user to the Geographical Preference
Estimation for a group of users.
Definition 8 Group Geographical Preference Model

(GGPM): Similar to Definition 5, for a group of users ugi,

we define Adij =
∑

ui′ ∈ugi
||ui′ ,uj||

Nugi
as the average Euclidean

distance between each user in ugi and uj(∈ U), where Nugi
is the number of users in ugi. The kernel density of Adij is
defined as:

F(Adij) =
1
|D|b

∑
d ′∈D

k((Adij − d ′)/b) (8)

Definition 9 Group Geographical Preference Estimation
(GGPE): The geographical preference of ugi on parking
region Rg, denoted by GeoRating(ugi, Rg), can be calculated
by taking the average of all its probability densities, i.e.,

GeoRating(ugi,Rg) =
1
m

m∑
j=1

F(Adij) (9)

Algorithm 2 ParkingLocationAllocation
Require: Slp : the set of parking locations

Sur : a set of users
θtd : the driving time constraint
θtw: the walking time constraint

Ensure: Snpl : the set of nearest parking locations to each user
1: foreach ui ∈ Sur do
2: upri ← the priority computed from Eq. 7
3: end for
4: upq← the user priority group queue constructed from upri in descend-

ing order
5: SCP-tree← SCPTreeBuilt(Slp)
6: ndrt ← the root node of SCP-tree
7: Scl ← the child nodes of ndrt
8: upq(θtw)← ParkingLocationAllocationDestination(Slp , Scl , Sur , θtw)
9: foreach upq(ϕ ∈ Scl , θtw) ∈ upq(θtw) do

10: foreach ϕ ∈ upq(ϕ ∈ Scl , θtw) do
11: if ϑ = ui then
12: lnfi ← SingleUserParkingAllocation(ui, θtd , ϕ)
13: lnpi ← the nearest parking location in lnfi to the departing location

of ui
14: Snpl ← Snpl

⋃
lnpi

15: else
16: lnfi′ ← SingleGroupUserParkingAllocation(ugi, θtd , ϕ)
17: lnpi′ ← the nearest parking location in lnfi′ to the departing loca-

tion of each user in ugi
18: Snpl ← Snpl

⋃
lnpi′

19: end if
20: end for
21: end for

Algorithm 2 shows the details of parking location allo-
cation for a set of users. We first compute the priority for
each user (lines 1-3), which is used to serve the maximum
number of users in terms of distance. The priority queue is
maintained in descending order of the users’ or user groups’
priority value. For the users or user groups in this priority
queue, we re-divide them into several sub-priority queues by
computing the traveling time between their destinations and
the branch node parking regions (line 8). For the users or

user groups in each sub-priority queue, we search the nearest
leaf node according to Algorithm 4 (line 12) and 5 (line 16),
which introduce the parking location allocation mechanism
for a single user and a group of users, respectively. Sincemore
than one parking locationmay be allocated to a user, we select
the nearest one as the final allocation result. As the time
complexity of Algorithm 3 isO(nur), and the time complexity
of Algorithm 4 and Algorithm 5 is O(n) after-mentioned, the
time complexity of parking location allocation can be derived
as O(nur + nur × n), where nur is the total number of users
and user groups, and n is the number of parking locations.
Usually, nur is a constant and nur � n. Therefore, the time
complexity of Algorithm 2 can be derived as O(n).

Algorithm 3 ParkingLocationAllocationDestination
Require: Slp : the set of parking locations

Scl : the child nodes of the root node of SCP-tree
Sur : a set of users
θtw: the walking time constraint

Ensure: upq(θt) ← user priority group queue constructed with θtw
constraint

1: foreach ui ∈ Sur do
2: upri ← the priority computed from Eq. 7
3: end for
4: upq← the user priority group queue constructed from upri in descend-

ing order
5: foreach ϑ ∈ upq do
6: foreach ϕ ∈ Scl do
7: if TimeDistWalk(ϑ.destination, ϕ)< θtw then
8: upq(ϕ, θtw)← upq(ϕ)

⋃
ϑ

9: end if
10: end for
11: end for
12: foreach ϕ ∈ Scl do
13: upq(θtw)← upq(θtw)

⋃
upq(ϕ, θtw)

14: end for

The steps for re-dividing the users or user groups in
descending order in the priority queue are given in detail in
Algorithm 3, which aims to guarantee the walking time sat-
isfying the query requirement. Through computing the trav-
eling time between the users or user groups’ destinations and
the branch node parking region (line 7) according to Eq. 10,
each user or user group can be divided into a sub-priority
queue correlated with a child branch region of the root node
(line 8). The time complexity of Algorithm 3 isO(|upq|·|Scl |),
where |upq| represents the number of members in the priority
queue and |Scl | represents the child nodes’ number of the root
node. Since |upq| ≤ nur , |Scl | ≤ M0 (M0 is a constant), the
time complexity of Algorithm 3 in the worst case is O(nur),
where nur is the number of users.
Definition 10 (Walking Time (WT)): Let Rs be a destina-

tion region including S = {ls1, · · · , lsm} locations, Rp be a
parking region including P = {lp1, · · · , lpn} locations. The
walking time from Rs to Rp with a traveling speed v is defined
as:

TimeDistWalk(Rs,Rp) =
max

i∈[1,m],j∈[1,n]
||lsi, lpj||

v
(10)

The steps for processing the parking location allocation for
a single user are given in detail in Algorithm 4: (i) We first

VOLUME 9, 2021 158953

J. Tang et al.: SCP-Tree: Finding Multiple Nearest Parking Spots With Minimal Group Travel Cost

Algorithm 4 SingleUserParkingAllocation
Require: ui: a user ui

θtd : the driving time constraint
ndst : a subtree node in SCP-tree

Ensure: lnfi : the nearest leaf node to ui
1: Scld ← the child nodes of ndst
2: GeoRating← 0
3: foreach ci ∈ Scld do
4: Tloi← the lower bounding driving time of ci
5: Cci← the parking available capacity of ci
6: if Tloi < θtd and Cci 6= 0 then
7: GeoRating(ui, ci)← compute the geographical preference estima-

tion of ui to ci according to Eq. 6 along SCP-tree
8: if GeoRating(ui, ci) > GeoRating then
9: c0← ci

10: end if
11: GeoRating← GeoRating(ui, ci)
12: end if
13: end for
14: lnfi ← SingleUserParkingAllocation(ui, θtd , c0)

determine the lower bounding driving time of each node
(line 4), which is used to serve the users within the driving
time constraint. (ii) The Geographical Preference Estimation
to the nodes that satisfy the driving time constraint and park-
ing capacity constraint are computed for the user ui along
the SCP-tree (line 5-11) until the nearest leaf node to ui is
returned (line 13). The time complexity of Algorithm 4 is
O(n), where n is the number of parking locations.
The pseudocode for allocating the parking locations for a

group of users is shown inAlgorithm 5.Wefirst determine the
lower bounding driving time of each node (line 11), which is
used to serve the users within the driving time constraint. The
user group computes the Geographical Preference Estimation
to the nodes that satisfy the driving time constraint along the
SCP-tree (line 12-18) until the nearest leaf node to ugi is
returned (line 20). When one of the child nodes of a certain
non-leaf node cannot have more parking locations than that
required, the parking location allocation of a single user is
performed for each user in ugi (line 23) until the nearest leaf
node to each user in ugi is returned. As the time complexity
of Algorithm 4 is O(n) afore-mentioned, the time complexity
of Algorithm 5 can be derived as O(n), where n is the num-
ber of parking locations.
Example 3: Here we use an example to illustrate the

traversal process over SCP-tree shown in Fig. 2. When users’
priority is determined by Definition 7, we carry on traversing
SCP-tree to achieve the parking location of current user u
in Fig. 2. Supposed that the walking time from u′ destina-
tion to parking region R1 is within the time constraint θtw,
we carry on searching the parking location along R1 branch.
We assume that Tlo at each node Ri (i ∈ [0, 8]) is lower
than the driving time threshold θtd specified by the query
and all the parking locations are available currently. First,
we access R3 and R4, and compute GeoRating(u,R3) >
GeoRating(u,R4) based on u1, u2, u3 and u4, who have
already visited parking locations lp1 , lp3 , lp5 and lp7 . Finally,
we acquire the nearest parking location lp1 . When the parking

Algorithm 5 SingleGroupUserParkingAllocation
Require: ugi: a group of users having an approximate priority

θtd : the driving time constraint
ndst : a subtree node in SCP-tree

Ensure: lnfi′ : the nearest leaf node to each user in ugi
1: Scld ← the child nodes of ndst
2: GeoRating← 0
3: flag← 0
4: foreach ci ∈ Scld do
5: if Nci > Nugi then
6: flag = flag + 1
7: end if
8: end for
9: if flag = NScld then
10: foreach ci ∈ Scld do
11: Tloi← the lower bounding driving time of ci
12: Cci← the parking available capacity of ci
13: if Tloi < θtd and Cci 6= 0 then
14: GeoRating(ugi, ci)← compute the geographical preference esti-

mation of ugi to ci according to Eq. 9 along SCP-tree
15: if GeoRating(ugi, ci) > GeoRating then
16: c0← ci
17: end if
18: GeoRating← GeoRating(ugi, ci)
19: end if
20: end for
21: lnfi′ ← SingleGroupUserParkingAllocation(ugi, θtd , c0)
22: else
23: foreach ui′ ∈ ugi do
24: lnfi′ ← SingleUserParkingAllocation(ui′ , θtd , ndst)
25: end for
26: end if

available capacity of R4 is ‘‘0’’, R4 is pruned and we focus on
R3 for the nearest parking location allocation.

V. IMPLEMENTATION AND EVALUATION
A. EXPERIMENTAL SETUP
Our real parking locations dataset is from Melbourne City
Centre, which consists of 2908 parking locations [33], [34].
In this experiment, we use the parking space availability data
from the on street parking bay sensors events records recently
published online, that include different bays, streets, status as
well as spatial information such as the latitude and longitude
of the parking locations (see Table 2 as an example). Fig. 4(a)
reveals the parking location availability in Melbourne City
Centre within a certain time interval. Further, we extract
100 users’ departing locations that disperse in the admin-
istrative regions of Melbourne City during 2016/1/4-2016/
1/10 8:00-17:00. The parking locations and extracted depart-
ing locations are visualized in Fig. 4(b). In addition, we also
extract 130 users’ destination locations from the neighbor-
hood of parking locations. The user percent for each attribute
combination shown in Table 3 is extracted from a real-world
dataset such as China Daily [35].

Furthermore, we extract the data from the four time divi-
sions (Morning (AM), Afternoon (PM), Monday to Friday
(MF), Saturday to Sunday (SS)), to compare the parking
location performance. The parking locations in the four time
divisions are counted from parking violation sensor datasets
in January, 2016 (see Table 4 as an example). And the values

158954 VOLUME 9, 2021

J. Tang et al.: SCP-Tree: Finding Multiple Nearest Parking Spots With Minimal Group Travel Cost

FIGURE 4. Parking availability, departing locations and parking locations.

TABLE 2. Parking Locations Without Time Division in Experiments.

TABLE 3. User Attribute Percent Settings in Experiments.

tested for each parameter in our experiment are detailed in
Table 5, where the default parameter values are given in bold.

For the sake of understanding the effectiveness of
SCP-tree, time constraints, GPE and priority, the four meth-
ods with progressive constraints are tested in our experiment
(see Table 6), where ’’yes’’ indicates that the method has the
corresponding constraint, otherwise, it is labeled as ’’no’’.
Meanwhile, we also give another three typical baseline meth-
ods to illustrate the performance of proposed method:
• BPMT : An allocation scheme that provides a pricing
mechanism to guarantee the optimal social welfare by
using ad auction theory [7].

• NHEQ: An allocation scheme that assigns vehicle-slot
pair prices, which guarantees that no driver will pay a
higher total cost than the one she can obtain by behaving
selfishly [6].

• ECP: An allocation scheme that recursively searches for
the closest pair objects from two data sets [8].

In the following, we aim to compare thesemethods in terms
of allocation time, I/O cost, traveling time and service utility.
Meanwhile, we also test and analyze the parking allocation
performance about group based allocation scheme, which
includes the following aspects: group and non-group based
allocation time (GAI, AI), group and non-group based trav-
eling time (GTT, TT), group and non-group based accessed
pages (GAP, AP), as well as group and non-group based
service utility (GSU, SU).

To evaluate the service utility for allocation scheme,
we adopt the following three kinds of utilities similar to that
in Literature [12]:

• Parking Location-related Utility (ξp(ui, pj) ∈ [0, 1]):
This utility reflects the preference of user ui towards
the parking location pj. It can be estimated with the
categorically stated parking experience relevant to the
geographical preference and personalized attributes.

• User-related Utility (ξu(ui, pj)): This utility will change
when other users with similar tastes in parking location
pj change. Specifically, we define user-related utility in
the following form:

ξu(ui, pj) =
∑
u
i′∈Tkj

USI (ui, ui′)

T kj − ui
(11)

where T kj indicates the users parking in pj during the

trajectories Tr ji connecting ui and pj, and USI (ui, ui′) is
the social similarity of ui and ui′ . Intuitively, for a user
ui, sharing with other high-similarity users for a larger
portion of Tr ji , will lead to a higher user-related utility.

• Trajectory-related Utility (ξt (ui, pj) ∈ [0, 1]): This util-
ity is to measure the satisfaction level of the user ui
towards the routes Tr ji . In general, the trajectory-related
utility decreases when the extra travel cost is incurred
(e.g., caused by detours, weather, traffic congestion etc)
for ui parking in pj. We define the trajectory-related
utility as

ξt (ui, pj) =
Cost(ldi, lpj)∑

trk∈Tr
j
i

Cost(trk)
(12)

B. EXPERIMENTAL RESULTS
1) COMPARISON WITH PROGRESSIVE METHODS
a: EFFECT OF USER NUMBER
We begin by studying the impact of user number
from 10 to 130. In this set of experiment, the parking
location number is set as 2908. From Fig. 5(a), we can see the
method NNNN without any order and pruning optimization
performs worst in terms of parking location allocation time.
With the help of SCP-tree, the method NNNS is at least 10
times faster than NNNN. This means that the SCP-tree gives
a better pruning effect on the parking location search with
geographical approximation. When pruning in the SCP-tree,
we adopt the Geographical Preference Estimation, lower
boundary driving time and node capacity as the three criteria
to accurately carry on judgment. This eliminates the distant
parking locations that are not within the time constraints. The
experiment results of method NGTS verify this effectiveness.
Additionally, we design user priority based on the distance
and personalized attributes. Leveraging the order of user
priority, the allocation process incurs less comparison and
adjustment for maximizing the benefits of all users. Over-
all, the approach PGTS has a better improvement than the
other three progressive methods in terms of parking location
allocation time. We also notice that the parking location
allocation time increases with the number of users in the order
of NNNN � NNNS � NGTS � PGTS. This is to be expected

VOLUME 9, 2021 158955

J. Tang et al.: SCP-Tree: Finding Multiple Nearest Parking Spots With Minimal Group Travel Cost

TABLE 4. Parking Locations for the Four Time Divisions in Experiments.

TABLE 5. Parameter and Value Settings in Experiments.

TABLE 6. Progressive Methods Settings in Experiments.

since the parking officer has to do more work to consider all
the users’ requirements.

Here, we study the distribution of average traveling time in
terms of the number of users. Fig. 5(b) compares the average
traveling time for the four approaches. Note that, the four
approaches have a very similar traveling time distribution
with the increase of user number. This demonstrates the
superiority of our approach, as the other candidate approaches
provide an approximately optimal allocation result in about
1100s. Some factors, such as weather, age, habit, road condi-
tion etc, have an impact on the traveling time. Compared with
the parking location allocation time, the difference value of
average traveling time is very small, at most 100s.

Next, we evaluate index I/O cost of the four approaches
in Fig. 5(c). It is clear that all approaches follow a linear
trend with the number of users, consistent to the behavior
determined in our cost model. Meanwhile, we can also see a
significant difference in terms of magnitudes among all those
approaches due to the efficient pruning-based spatial index
search algorithm facilitated by the Geographical Preference
Estimation and user priority.

We also evaluate the service utility of our proposed
approach in terms of the number of users in Fig. 5(d). As the
user number increases, the generated service utility also
grows sincemore users’ benefits aremaximized for allocating
the nearest available parking locations. Since the service
utility is evaluated in terms of user preference towards the
parking location and route, as well as user similarity, PGTS
performs best among the four methods.

In summary, we observe that the parking location allo-
cation time, I/O cost as well as service utility present an
increasing trend with the user number for each approach.
The method NNNN has the largest parking allocation time,

I/O cost, and the minimum service utility. The next worst
method is NNNS, and the best method is PGTS. The alloca-
tion time, I/O cost, service utility and increment speed reflect
the influence of SCP-tree, GPE, time constraint, user priority
and user similarity on the allocation scheme. This implies that
the method including more dominate factors provides better
allocation performance. Although the four methods have a
big difference in the parking location allocation time, I/O
cost and user utility to get the optimal allocation strategy,
the average traveling time of the final allocation result for
each method has a smaller fluctuation time range, always in
[1000s, 1200s]. The experiment results indicate the four fac-
tors, namely SCP-tree, GPE, time constraint and user priority,
along with the user similarity greatly improve the allocation
performance.

b: EFFECT OF PARKING LOCATION NUMBER
To further explore the performance of our method, Fig. 5(e),
Fig. 5(f), Fig. 5(g), Fig. 5(h) present the parking location
allocation time, I/O cost, average travel time and service
utility changing over the number of parking locations. We set
the user number as 100 in this experiment. We observe that
the parking location allocation time and I/O cost increase
with the number of parking locations, as the parking alloca-
tion scheme needs to query and give a judgement over the
gradually increasing parking range. The four methodsNNNN,
NNNS, NGTS, PGTS generate less and less allocation time
and I/O cost for achieving the optimal allocation plan, as they
gradually consider the SCP-tree, GPE, time constraint and
user priority for effective pruning and filtering. The alloca-
tion time and I/O cost always increase with the number of
parking locations regardless of the strategies considered in
the allocation scheme.

We also test the average traveling time of the four
approaches in terms of the number of parking locations. The
traveling time distribution in Fig. 5(f) shows that the average
traveling time for the allocation result of each method always
fluctuates around 1100s in all cases. This is an interest-
ing insight, which suggests that the other three progressive
approaches tend to have the approximately average traveling
time with PGTS at the expense of the parking allocation
time, I/O cost and service utility. As for the service utility,
PGTS performs best among the four methods, which can be
explained as that in the former set of experiments.

c: EFFECT OF TRAVELING SPEED
Fig. 5(i), Fig. 5(j), Fig. 5(k), Fig. 5(l) further study the
parking location allocation time, I/O cost, average travel

158956 VOLUME 9, 2021

J. Tang et al.: SCP-Tree: Finding Multiple Nearest Parking Spots With Minimal Group Travel Cost

FIGURE 5. Progressive methods comparison without time division.

TABLE 7. Performance Comparison of Progressive Methods in Four Time Divisions.

time and service utility for varying the traveling speed of
users. In this set of experiments, we set the user number
as 100 and the number of parking locations as 2908. The
experiment results match our intuition that the allocation
time, I/O cost and service utility are mainly influenced by
two dominated factors, namely the user number and parking
location number, along with some other impact factors, such
as the user preference, user similarity, weather, road condition
etc. We see that varying the traveling speed of users has no
obvious impact on the allocation time, I/O cost and service
utility. We further observe that the allocation time and I/O

cost decrease by a large margin in the order of NNNN, NNNS,
NGTS, PGTS, while the service utility increases in the order
of NNNN, NNNS, NGTS, PGTS. The reasons behind this can
be explained as that in the experiments for varying the number
of users and parking locations.

Fig. 5(j) illustrates the traveling time performance with the
traveling speed according to the allocation result of the four
approaches. As shown in the figure, increasing the traveling
speed has absolutely reduced the traveling time for all the
four allocation approaches since the allocation result of each
approach has the approximately same parking location for the

VOLUME 9, 2021 158957

J. Tang et al.: SCP-Tree: Finding Multiple Nearest Parking Spots With Minimal Group Travel Cost

FIGURE 6. Baseline methods comparison without time division.

TABLE 8. Performance Comparison of Baseline Methods in Four Time Divisions.

same user. The average traveling time of the four methods
can reach to the maximum value of 2300s and minimum
value of 810s when the user has the slowest traveling speed
7m/s and the highest traveling speed 22m/s, respectively. The
difference between traveling time values only reaches to the
maximum value of 180s.

To further illustrate the parking allocation performance,
we compare the performance of four progressive methods in
different time divisions (see Table 7). In this set of exper-
iments, we adopt the default parameters values given in

Table 5. The results present the similar variant trend for
parking allocation performance as that without time division.

2) COMPARISON WITH BASELINE METHODS
Fig. 6 illustrates the experimental results on the comparison
with the baseline methods without time division. The results
are quite similar to that of the previous experiments. PGTS
demonstrates a significant advantage over the other meth-
ods in terms of the overall parking location allocation time,
average traveling time, I/O cost and service utility, while the

158958 VOLUME 9, 2021

J. Tang et al.: SCP-Tree: Finding Multiple Nearest Parking Spots With Minimal Group Travel Cost

FIGURE 7. Performance comparison with group-based allocation.

four methods have the almost similar performance variant
trend under different parameter settings. In all cases, PGTS
efficiently allocates the parking locations and requires much
less I/O cost as well as generates a higher service utility than
BPMT ,NHEQ and ECP for varying the number of users, the
number of parking locations and traveling speed. This can
be attributed to the ideas that the layer partitions for parking
locations are at an arbitrary order in BPMT while NHEQ
executes the auction algorithm for pricing parking locations
in rounds or iterations beginning with arbitrary allocations
and prices. Meanwhile, ECP only considers the pair nearest
distance for parking location allocation. A significant adjust-
ment is still required for maximizing all the users’ benefits
since the users’ personalized attributes also have an important
impact on the traveling time. Moreover, PGTS reduces the
average traveling time compared to BPMT , NHEQ and ECP
since they do not consider any time and personalized attribute
constraint as the preference allocation order in the allocation
process. The intuition behind is that the factors, such as the
time and personalized attributes, can impact and postpone the
traveling to some extent.

To further illustrate the parking allocation performance,
we compare the performance of four baseline methods in
different time divisions (see Table 8). In this set of exper-
iments, we also adopt the default parameter values given
in Table 5. The results present the similar variant trend for
parking allocation performance as that without time division.

3) COMPARISON WITH GROUP-BASED
ALLOCATION METHOD
In the following, we present group based allocation perfor-
mance in peak hours. Fig. 7 shows the experiment results for
varying the number of users, the number of parking locations
and traveling speed. In all cases, group based allocation
method requires less allocation time and I/O cost than that
of the non-group allocation scheme, while having a higher
service utility and approximate traveling time trend. The
reason behind is that the users with approximate priority are
grouped together, which can facilitate the officer to make
some analysis and decision as soon as possible by sharing
and reducing some of the computations when querying along
the SCP-tree. Meanwhile, the user group provides a higher
user-related utility since ’’group’’ indicates that the users in
this group have a higher social similarity and ’’users gath-
ering together at peak hours’’ indicates they have a higher

probability to park in the regions along the same or adjacent
trajectories.

VI. CONCLUSION
In this article, we propose a novel parking location alloca-
tion scheme for mobile users to support the sustainability
in green transportation systems. The focus of this work is
to construct an SCP-tree by incorporating a lower boundary
driving time and a node parking capacity into the design
mechanism. Furthermore, we present a Geographical Prefer-
ence Estimation based search strategy along the branch nodes
that are within the walking time requirement in descending
order of user priority. We evaluate the performance with four
progressive methods and also compare our approach against
three baselines. The experimental results show that our pro-
posed method has a theoretical and practical superiority in
the parking allocation performance. However, the method has
to be executed by parking officer continuously for efficient
allocation. As future work, we would like to extend this paper
to providemeans to automatically and intelligently realize the
parking allocation combined with the technology of Internet
of Things and machine learning.

REFERENCES
[1] B. Yang, N. Fantini, and C. S. Jensen, ‘‘iPark: Identifying parking spaces

from trajectories,’’ in Proc. 16th Int. Conf. Extending Database Technol.,
2013, pp. 705–708.

[2] E. H.-C. Lu and C.-H. Liao, ‘‘Prediction-based parking allocation frame-
work in urban environments,’’ Int. J. Geographical Inf. Sci., vol. 34, no. 9,
pp. 1873–1901, Sep. 2020.

[3] J. Arellano-Verdejo, F. Alonso-Pecina, E. Alba, and A. G. Arenas, ‘‘Opti-
mal allocation of public parking spots in a smart city: Problem character-
isation and first algorithms,’’ J. Exp. Theor. Artif. Intell., vol. 31, no. 4,
pp. 575–597, Jul. 2019.

[4] D. Ayala, O.Wolfson, B. Xu, B. Dasgupta, and J. Lin, ‘‘Parking slot assign-
ment games,’’ in Proc. 19th ACM SIGSPATIAL Int. Conf. Adv. Geographic
Inf. Syst. (GIS), 2011, pp. 299–308.

[5] D. Ayala, O. Wolfson, B. Xu, B. DasGupta, and J. Lin, ‘‘Parking in
competitive settings: A gravitational approach,’’ in Proc. IEEE 13th Int.
Conf. Mobile Data Manage., Jul. 2012, pp. 27–32.

[6] D. Ayala, O. Wolfson, B. Xu, B. DasGupta, and J. Lin, ‘‘Pricing of parking
for congestion reduction,’’ in Proc. 20th Int. Conf. Adv. Geographic Inf.
Syst. (SIGSPATIAL), 2012, pp. 43–51.

[7] R. Meir, Y. Chen, and M. Feldman, ‘‘Efficient parking allocation as online
bipartite matching with posted prices,’’ in Proc. Int. Conf. Auto. Agents
Multi-Agent Syst., 2013, pp. 303–310.

[8] N. Mamoulis and M. L. Yiu, ‘‘Computation and monitoring of exclu-
sive closest pairs,’’ IEEE Trans. Knowl. Data Eng., vol. 20, no. 12,
pp. 1641–1654, Dec. 2008.

[9] Y. Kc and C.-S. Kang, ‘‘A connected car-based parking location service
system,’’ in Proc. IEEE Int. Conf. Internet Things Intell. Syst. (IoTaIS),
Nov. 2019, pp. 167–171.

VOLUME 9, 2021 158959

J. Tang et al.: SCP-Tree: Finding Multiple Nearest Parking Spots With Minimal Group Travel Cost

[10] H. U. Leong, M. L. Yiu, K. Mouratidis, and N. Mamoulis, ‘‘Capacity
constrained assignment in spatial databases,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data (SIGMOD), 2008, pp. 1–12.

[11] C. Tian, H. Yan, L. Zhi, F. Bastani, and R. Jin, ‘‘Noah: A dynamic
ridesharing system,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2013, pp. 985–988.

[12] P. Cheng, H. Xin, and L. Chen, ‘‘Utility-aware ridesharing on road
networks,’’ in Proc. ACM Int. Conf. Manage. Data, May 2017,
pp. 1197–1210.

[13] L. Chen, Y. Gao, Z. Liu, X. Xiao, C. S. Jensen, and Y. Zhu, ‘‘PTRider:
A price-and-time-aware ridesharing system,’’ in Proc. VLDB Endowment,
2018, pp. 1938–1941.

[14] A. Corral, Y. Manolopoulos, Y. Theodoridis, and M. Vassilakopoulos,
‘‘Closest pair queries in spatial databases,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data (SIGMOD), 2000, pp. 189–200.

[15] P. Zhou, D. Zhang, B. Salzberg, G. Cooperman, andG. Kollios, ‘‘Close pair
queries in moving object databases,’’ in Proc. Int. Workshop Geographic
Inf. Syst. (GIS), 2005, pp. 2–11.

[16] H. U. Leong, K. Mouratidis, M. L. Yiu, and N. Mamoulis, ‘‘Optimal
matching between spatial datasets under capacity constraints,’’ACMTrans.
Database Syst., vol. 35, no. 2, pp. 1–43, 2010.

[17] M. Chen, Z. Jia, Y. Gu, and G. Yu, ‘‘Top-K probabilistic closest pairs
query in uncertain spatial databases,’’ in Proc. Asia–Pacific Web Conf. Web
Technol. Appl., 2011, pp. 53–64.

[18] Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D.-C. Lee, and X. Wang, ‘‘IR-
tree: An efficient index for geographic document search,’’ IEEE Trans.
Knowl. Data Eng., vol. 23, no. 4, pp. 585–599, Apr. 2011.

[19] F. M. Choudhury, J. S. Culpepper, and Z. Bao, ‘‘Batch processing of top-K
spatial-textual queries,’’ ACM Trans. Spatial Algorithms Syst., vol. 3, no. 4,
p. 13, 2018.

[20] R. Zhong, G. Li, K. L. Tan, L. Zhou, and Z. Gong, ‘‘G-tree: An efficient and
scalable index for spatial search on road networks,’’ IEEE Trans. Knowl.
Data Eng., vol. 27, no. 8, pp. 2175–2189, Aug. 2015.

[21] O. Kucuktunc and H. Ferhatosmanoglu, ‘‘λ-diverse nearest neighbors
browsing for multidimensional data,’’ IEEE Trans. Knowl. Data Eng.,
vol. 25, no. 3, pp. 481–493, Mar. 2013.

[22] Y. Tao and C. Sheng, ‘‘Fast nearest neighbor search with keywords,’’ IEEE
Trans. Knowl. Data Eng., vol. 26, no. 4, pp. 878–888, Apr. 2014.

[23] X. Cao, G. Cong, T. Guo, C. Jensen, and B. C. Ooi, ‘‘Efficient processing
of spatial group keyword queries,’’ ACM Trans. Database Syst., vol. 40,
no. 2, p. 13, 2015.

[24] A. Guttman, ‘‘R-trees: A dynamic index structure for spatial searching,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1984, pp. 47–57.

[25] W. Shao, Y. Zhang, B. Guo, K. Qin, J. Chan, and F. D. Salim, ‘‘Parking
availability prediction with long short term memory model,’’ in Proc. 13th
Int. Conf. Green, Pervasive, Cloud Comput., 2018, pp. 124–137.

[26] W. Shao, S. Zhao, Z. Zhang, S. Wang, M. S. Rahaman, A. Song, and
F. D. Salim, ‘‘FADACS: A few-shot adversarial domain adaptation archi-
tecture for context-aware parking availability sensing,’’ in Proc. IEEE Int.
Conf. Pervasive Comput. Commun. (PerCom), Mar. 2021, pp. 1–10.

[27] K. K. Qin, W. Shao, Y. Ren, J. Chan, and F. D. Salim, ‘‘Solving
multiple travelling officers problem with population-based optimization
algorithms,’’ Neural Comput. Appl., vol. 32, no. 16, pp. 12033–12059,
Aug. 2020.

[28] W. Shao, S. Tan, S. Zhao, K. K. Qin, X. Hei, J. Chan, and F. D. Salim,
‘‘Incorporating LSTM auto-encoders in optimizations to solve parking
officer patrolling problem,’’ ACM Trans. Spatial Algorithms Syst., vol. 6,
no. 3, p. 20, 2020.

[29] A. R. Khan, S. A. Madani, K. Hayat, and S. U. Khan, ‘‘Clustering-
based power-controlled routing for mobile wireless sensor networks,’’ Int.
J. Commun. Syst., vol. 25, no. 4, pp. 529–542, 2012.

[30] M. Ye, P. Yin, W.-C. Lee, and D.-L. Lee, ‘‘Exploiting geographical influ-
ence for collaborative point-of-interest recommendation,’’ in Proc. 34th
Int. ACM SIGIR Conf. Res. Develop. Inf. (SIGIR), 2011, pp. 325–334.

[31] Y. Lyu, C.-Y. Chow, R. Wang, and V. C. S. Lee, ‘‘Using multi-criteria deci-
sionmaking for personalized point-of-interest recommendations,’’ in Proc.
22nd ACM SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst., Nov. 2014,
pp. 461–464.

[32] J.-D. Zhang and C.-Y. Chow, ‘‘iGSLR: Personalized geo-social location
recommendation: A kernel density estimation approach,’’ in Proc. 21st
ACM SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst., 2013, pp. 1–10.

[33] W. Shao, F. D. Salim, A. Song, and A. Bouguettaya, ‘‘Clustering big
spatiotemporal-interval data,’’ IEEE Trans. Big Data, vol. 2, no. 3,
pp. 190–203, Sep. 2016.

[34] W. Shao, F. Salim, T. Gu, T. Dinh, and J. Chan, ‘‘Traveling officer problem:
Managing car parking violations efficiently using sensor data,’’ IEEE
Internet Things J., vol. 5, no. 2, pp. 802–810, Apr. 2018.

[35] [Online]. Available: http://www.chinadaily.com.cn/

JINE TANG received the Ph.D. degree from the
China University of Geosciences, Beijing, China,
in 2014. She is currently an Associate Profes-
sor with the School of Artificial Intelligence,
Hebei University of Technology, Tianjin, China.
Her research interests include spatial-temporal
database and IoT search.

YUPENG WANG received the M.S. degree
in transportation information engineering from
Beihang University, Beijing, China, in 2021,
where he is currently pursuing the Ph.D. degree
with the School of Electronics and Information
Engineering. His research interests include traffic
forecasting and spatio-temporal data mining.

WEIJING LIU received the M.Sc. degree from
Yanshan University, in 2016. She is currently
an Engineer with the Tianjin Key Laboratory
of Aerospace Intelligent Equipment Technol-
ogy, Tianjin Institute of Aerospace Mechanical
and Electrical Equipment. Her research inter-
ests include hardware circuit design and software
development.

XILING LUO received the B.E. and Ph.D. degrees
from the School of Electronics and Informa-
tion Engineering, Beihang University, Beijing,
China, in 1996 and 2003, respectively. He is
currently a Professor with the Research Insti-
tute for Frontier Science, Beihang University.
He is also the Principle Investigator of the
Comprehensive Transportation Big-Data Research
Center, Hangzhou Innovation Research Institute
of Beihang University. His research interests

include comprehensive transportation information systems and air traffic
managements.

ZHANGBING ZHOU received the Ph.D. degree
in computer science from the Digital Enter-
prise Research Institute (DERI), Galway, Ireland,
in 2010. He worked as a Software Engineer
with Huawei Technology Company Ltd., Beijing,
China, for one year and served as a member of
the Technical Staff at Bell Laboratories, Lucent
Technologies, Beijing, for five years. He is cur-
rently a Professor with the China University of
Geosciences, Beijing, and as an Adjunct Professor

at TELECOM SudParis, Evry, France. He has authored over 100 refereed
papers. His research interests include process-aware information systems and
sensor network middleware. He has served as an Associate or a Guest Editor
of over ten journals.

158960 VOLUME 9, 2021

