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ABSTRACT Verification of software and processor hardware usually proceeds separately, software analysis
relying on the correctness of processors executing machine instructions. This assumption is valid as long as
the software runs on standard CPUs that have been extensively validated and are in wide use. However,
for processors exploiting custom instruction set extensions to meet performance and energy constraints
the validation might be less extensive, challenging the correctness assumption. In this paper we present a
novel formal approach for hardware/software co-verification targeting processors with custom instruction set
extensions. We detail two different approaches for checking whether the hardware fulfills the requirements
expected by the software analysis. The approaches are designed to explore a trade-off between generality
of the verification and computational effort. Then, we describe the integration of software and hardware
analyses for both techniques and describe a fully automated tool chain implementing the approaches. Finally,
we demonstrate and compare the two approaches on example source code with custom instructions, using
state-of-the-art software analysis and hardware verification techniques.

INDEX TERMS Software analysis, abstract interpretation, custom instruction, hardware verification.

I. INTRODUCTION
Today, software verification has reached industrial size code,
and annual competitions on software verification [1] demon-
strate the continuing progress. This success is due to recent
advances in the software analysis techniques themselves
as well as in the underlying SMT (Satisfiability modulo
theories) solvers [2], [3]. In general, software analyses rely
on the correctness of the processor hardware executing
the program. More specifically, strongest postcondition
computation used to determine the successor state of a given
state for a program statement assumes that the processor
correctly implements the statement’s semantics.

The assumption of correct hardware is certainly valid for
standard processors, since they undergo extensive simulation,
testing and partly also formal verification processes [4].
However, during the last years processors with so-called
custom instruction set extensions became popular [5], [6],
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which challenge this correctness assumption. Customized
instructions map a part of an application’s data flow graph to
specialized functional units in the processor pipeline in order
to improve performance and/or energy-efficiency [6].

In this paper, we present a novel formal approach for soft-
ware/hardware co-verification, in particular for processors
with custom instruction set extensions. From the software
analysis, we derive requirements on the hardware, which then
need to be validated in order for the software analysis to
produce trustworthy results.

We detail two different approaches for integrating software
and hardware analyses that differ in what needs to be verified
on the hardware side. Our first approach proves behavioral
equivalence between the specification and the implementa-
tion of a custom instruction, e.g., that an integer adder is
actually adding integer values. While proving equivalence is
potentially the most runtime-consuming approach, it is also
the most powerful, as it inherently covers all behavioral prop-
erties of the custom instruction on which software analyses
could rely. Our second approach ties together software and
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hardware analyses more closely by exploiting the abstract
state space of the program generated during verification to
identify the specific properties of the individual program
statements the software analysis has actually used during
verification. These properties become requirements on the
hardware. We thereby tailor the hardware verification exactly
to the needs of the software analysis, hoping to avoid
unnecessarily complex and runtime-consuming hardware
verification.

In summary, our paper makes the following contributions:
• We present two approaches for software/hardware co-
verification that differ in their level of integration
between software and hardware analyses and potentially
allow for a trade-off between generality and computa-
tional effort.

• We describe a tool chain automating all steps required
for the two co-verification approaches.

• We evaluate, discuss, and compare our two approaches
based on a large set of case studies.

We have presented initial ideas on our co-verification
approach in [7]. This paper extends previous work by an
elaborate description of the different steps of our methods,
a presentation of a tool chain providing full automation of
all steps, and a significantly extended evaluation based on 14
custom instructions and 7 analyses on 244 case studies.

The paper is structured as follows: section II introduces
to basics on custom instruction set extension as well as on
software and hardware analyses. Then, section III discusses
the interface between software and hardware analyses.
We present our tool chain in section IV. Sections V and VI
report on our experimental setup and discuss results of
experiments. Finally, section VII reviews related work and
section VIII concludes the paper.

II. BACKGROUND
In this section, we provide background information for
custom instruction set extension as well as software and
hardware analyses techniques employed in this paper.

A. CUSTOM INSTRUCTION SET EXTENSION
The motivation for customizing instruction sets is to improve
processor performance and/or energy-efficiency, while keep-
ing the cost as low as possible [8]. There are several
approaches to custom instruction set extension. The original
static approach analyzes a set of targeted applications to
identify runtime intense portions of the applications’ data
flow graphs. These subgraphs are then turned into custom
instructions and mapped to specialized hardware in form of
functional units (FU) accelerating the code. These specialized
FUs are then integrated into a processor pipeline and a so-
called application-specific instruction set processor (ASIP) is
being fabricated.

Since the cost of designing a new processor is immense,
the dynamic approach to instruction set extension proposes
a flexible interface between the processor pipeline and
a runtime reconfigurable fabric added as reconfigurable

FIGURE 1. Design process for custom instruction (CI) set extensions.

functional unit (RFU) to a processor pipeline. Runtime
reconfigurability helps not only lower design cost but also
increases flexibility, because the reconfigurable fabric can
accommodate different custom instructions that can be
switched on demand during runtime. While typically the
RFUs are programmedwith pre-generated configurations, the
most sophisticated approaches currently studied in research,
such as Dynamic Instruction Merging (DIM) [9], even shift
the tasks of identifying and generating custom instructions
to runtime with the goal to achieve transparent just-in-time
acceleration.

Figure 1 displays the design process for custom instruction
set extensions. Based on an analysis of application code,
potential custom instructions are identified by exploring
the design space. In a second step, the most promising
custom instructions are selected applying cost functions.
Then, custom instruction synthesis is used to generate the
configurations for the RFUs and the code is modified to
include the custom instructions. The custom instruction set
extension problem is well-studied, for a general survey
see [5] and for a recent one highlighting the potential
benefits in performance and energy consumption see [6];
current examples of processor architectures with runtime
reconfigurable RFUs can be found, e.g, in [10]–[12].

In this paper, we do not consider the impact that
introducing such dynamic approaches to custom instruction
set extensions can have on the non-functional properties of a
processor, such as its energy-efficiency, but rather focus on
verifying the functional correctness of the extensions. The
effort that can be spent for these verifications in such dynamic
scenarios is presumably much lower than for standard
processor designs; this issue is particularly emphasized for
just-in-time acceleration. It has to be noted that the circuit
structures of the underlying reconfigurable fabrics, e.g., the
RFUs, are indeed well-tested. What creates the verification
challenge is the correctness of the RFU configurations shown
in Figure 1.

Throughout this paper, we use the program FKT shown
in Figure 2 as running example. The program employs
z = (x1 ∗ x2)+ x3 as custom instruction implemented in
hardware, combining two arithmetic operations into one
instruction. For our experimental evaluation we have chosen
a range of different custom instructions, many combining
base instructions, as in the case of FKT, but some also
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FIGURE 2. Example program FKT (left) and its control-flow automation (right).

offering special functionality, such as using saturation instead
of modular arithmetic, so results do not overflow and wrap
around, but instead saturate at the extreme values of the
range. Saturating arithmetic is often used in signal or image
processing and thus can be found in instruction set extensions
such as Intel’s SSE2 (streaming SIMD extensions).

B. SOFTWARE ANALYSIS
The programs that we consider in our software analyses are
written in C. Following the notation of Beyer et al. [13],
we model a program as a control-flow automaton (CFA).
A CFA P = (L,G, l0) consists of a set L of locations, a set
of control-flow edgesG ⊆ L × Ops× L and a program entry
location l0 ∈ L. The set Ops contains all operations, e.g.,
assignments, function calls and (negated) conditions1 such as
those arising of an if or while statement. Assert statements
are used to encode properties to be checked by analyzers. For
printing outputs the C printf statement is used.
The left of Figure 2 shows our example program FKT

given in the C programming language. All variables (i.e., y, x
and N) are of type int. The program shows the calculation of
a value table for the function f (x) = 2 ∗ x + 8 and its inverse
1
f (x) in the range 0 to 100 with step size 10. The assertion
in line 6 specifies y to not be zero (such that the following
division will not cause a fault because of dividing by zero)
and to be less than 900 (for ensuring the value to not exceed
a certain range, e.g., for drawing). This is the property to be
verified by the software analysis.

The CFA on the right of Figure 2 depicts the program in the
form of a control-flow automation. We see that the condition
in the while statement has led to two edges in the CFA, one for
the condition evaluating to true and one for evaluating to false.
The latter is labeledwith the negated condition. The statement
framed in gray is the location of a custom instruction usage:
This statement is executed several times and a specific CI
design for statements of the form z = (x1 ∗ x2)+ x3 could be
employed for executing y = 2 ∗ x + 8 (using 2 for x1, x for
x2, 8 for x3 and y for z).

1Negated conditions start with the negation symbol ¬.

The software analyses that we perform on the programs
are all based on the idea of abstract interpretation. Instead of
exploring the complete state space of the programs, we only
generate the set of states on a specific level of abstraction,
called the abstract domain or analysis domain. This level fixes
what we are interested in with respect to property checking.
All our analyses are specified in the Configurable Program
Analysis (CPA) framework [13] and are performed using the
associated tool CPAchecker2 [14]. The framework allows
for the definition of arbitrary abstract interpretation based
analyses, which vary in their abstract domain and applied
analysis technique. The supported analysis techniques range
from dataflow analyses to model checking. To specify such
an analysis, we need to configure the analysis technique
and define the analysis domain as well as the semantics of
program operations on this domain. The semantics is given
in terms of a transfer relation. In order to provide a sound
analysis, the abstract domain and the transfer relation need
to provide an overapproximation of the concrete program
execution semantics.
In the following, we describe the concept of abstract

interpretation on the example of cartesian predicate abstrac-
tion [15]. In cartesian predicate abstraction, the abstract
domain consists of (conjunctions of) predicates on program
variables, like x ≥ 0. The predicates are often incremen-
tally determined using counterexample-guided abstraction
refinement (CEGAR) [16]. For a given set of predicates
P = {p1, . . . , pn}, the transfer relation is determined by
(1) computing the strongest postcondition [17] of the
currently holding predicates R ⊆ P with respect to the oper-
ation op, i.e. post = sp(op,

∧
r∈R r), and (2) finding the set

of predicates best approximating the strongest postcondition
post within in the available predicates P, i.e.

∧
p∈P,post⇒p p.

Function calls like printf or assert do not influence
predicates. Predicates can be arbitrarily weakened without
losing soundness of the analysis. The analysis then computes
the abstract state space of the program using predicate true
for the initial location and determines new states according

2http://cpachecker.sosy-lab.org
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FIGURE 3. Abstract state space of program FKT using predicate abstraction.

to the CFA and the statements on its control-flow edges.
The computation of the transfer relation is done with the
help of SMT solvers. The precision of the computed abstract
state space depends on the analysis technique, which may
or may not merge different abstract states during state space
construction.

As an example consider the abstract state space of
program FKT as given in Figure 3 in the form of an abstract
reachability graph (ARG). The set of predicates used in the
analysis is

P = {x ≥ 0, x ≤ 100,N ≤ 100,¬(y = 0), y ≤ 208}

The analysis determines the predicate N ≤ 100 and x ≥ 0 to
hold after the initial assignments to N and x, respectively,
and then throughout the entire remaining program. When
entering the loop, this gives us x ≤ 100 which enables the
analysis to deduce predicate ¬(y = 0), i.e., y is not 0, and
predicate y ≤ 208 after the custom instruction, and thus that
the assertion can never fail. The result of the software analysis
on FKT thus yields the result TRUE (property as encoded in
assertion holds).

1) COMPLEXITY OF THE ANALYSES
In general, all sorts of non-trivial problems in software
analysis are undecidable due to Rice’s theorem. Analyses
therefore concentrate on over- or underapproximating a
certain analysis problem instead of computing an exact solu-
tion. In our experiments, we will employ overapproximating
analyses that rely on abstract interpretation and analysis
techniques like dataflow analyses and model checking. Some
of these analyses – for instance analyses based on predicate
abstraction – involve CEGAR loops in which the level of
abstraction of the analysis is incrementally determined. These
techniques might actually not terminate on some programs,
thereby manifesting their undecidability. For analyses that
employ the dataflow analysis technique, termination depends
on the analysis’ abstract domain. Domains that consider
lattices with infinite heights like the interval abstraction

we use require widening operators in order to ensure
termination for arbitrary programs. Finally, our simplest
analyses (analyses based on sign abstraction) are polynomial
in the size of the program. Since the complexity is highly
dependent on the program at hand and its requirement,
we decided to study the analysis performance experimentally
and make the comparison of our approaches on case studies.

C. HARDWARE ANALYSIS
The task of the hardware analysis within this work is to
formally verify the validity of certain correctness require-
ments for custom instructions. These requirements are used
by the software analysis implicitly or explicitly during the
analysis. We aim for automated or automatable processes
and thus employ model checking for this purpose, and
we therefore require the model of the custom instruction
depicted in Figure 4 (i.e., the verification environment),
in order to apply the methods. Figure 4 depicts the general
structure of our hardware analysis model for a combinational
custom instruction circuit. As verification environment,
we expand the implementation of the custom instruction,
i.e., its RFU configuration, I (in) with a property checking
circuit P(in, out), where in is the set of primary inputs of
the custom instruction and out the set of primary outputs,
respectively. The output of the property checker is an error
flag error = P(in, out) = P(in, I (in)), which is set iff the
properties encoded in P(in, out) are violated for the given
input stimuli in. To show that the encoded properties for the
implementation of the custom instruction actually hold, it is
thus sufficient to prove that the error flag is never set under all
possible input stimuli. Our main tasks are thus to encode the
requirements posed by the software analysis into a suitable
property checker, i.e., into a circuit description in a hardware
description language (HDL) such as Verilog, and to prove
the unsatisfiability of the resulting model. While the details
of the verification model depend on the choice between the
approaches we will present in section III, its general structure
is always as depicted in Figure 4.
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FIGURE 4. General structure for the hardware analysis. A property
checker encodes the requirements posed by software analysis for the
implementation of the custom instruction (CI) with n bits input and m
bits output.

FIGURE 5. Property checker for proving functional equivalence between
an implementation of a custom instruction and its specification, both
with n bits input and m bits output.

The actual internal design of the property checker is highly
dependent on the requirements placed by the software anal-
ysis on the custom instruction. The analysis of one specific
CI circuit often requires several independent requirements to
be verified. In that case we can devise several property sub-
checkers and simply form the error flag as the disjunction
of the outputs of these sub-checkers or as the negated
conjunction of the underlying assertions, respectively, or we
can simply run one verification per property to obtain several
hardware certificates. In subsection IV-B, we will present a
method to fully automate the property checker generation.

To prove full functional equivalence between an imple-
mentation of a custom instruction and its behavioral spec-
ification, we need to construct a circuit for a function
that is commonly called a miter [18]. A miter comprises
the implementation I (in) and the specification S(in), both
of which receive the same inputs in. The outputs of the
implementation, out , and the specification, out ′, are pairwise
XOR-ed, and the disjunction of the results forms the error
flag. The specification and implementation are equivalent if
the outputs are identical for any input. Figure 5 sketches the
resulting property checker for functional equivalence.

Note that checking for functional equivalence can thus
be considered a special case of property checking, and both
verifications therefore involve proving the unsatisfiability of
a property checker applied to a custom instruction. Since
solving SAT is NP-complete, the worst-case runtime of the
hardware analysis is hence always exponential in the size of
its input, i.e., the CNF formula generated from the check.
The main difference between the general and special case
lies in the minimization potential of that input size through
a smaller checker and simplifications in the pre-processing
steps before generating the CNF formula: When checking
for functional equivalence, two full copies of the CI will be
compared to one another and the resulting Boolean formula

FIGURE 6. Illustration of the link between software analysis (¶) and both
hardware analysis approaches (·: #1 and #2).

will not be reduced by much, but if we could find small and
simple rule sets instead that suffice to show the functional
correctness, then the resulting formula could be very small
after the simplifications. This could then significantly speed
up the hardware analysis, although it would not change the
worst-case runtime behavior, since we would still need to
employ SAT solving.

In the following sections, we present a novel integrated
software/hardware co-verification approach, where software
analyses such as the one reviewed in subsection II-B
work together with the verification of RFU configurations.
We detail two alternatives for the integration of software and
hardware analyses designed to explore the trade-off between
generality and efficiency.

III. LINKING SOFTWARE AND HARDWARE ANALYSES
We strive for establishing trust into the correctness of custom
instructions as far as needed by the software employing
the CIs, more accurately trust into the configurations for
reconfigurable functional units. To this end, we employ
formal hardware verification, which we need to properly link
to the employed state-of-the-art software analysis, as depicted
in Figure 6. Here, we introduce two approaches, #1 and #2, for
analyzing if the hardware implementation is in line with the
requirements of the software analysis. Approach #1 performs
¶ software and · hardware analysis rather independently.
It basically checks whether the custom instruction design is
functionally equivalent to the intended behavior, as specified
in a hardware description language. Approach #2 closely ties
the requirements to be checked on the CI to the software
analysis carried out on the specific program.

Linking both analyses as shown in Figure 6, i.e., first
executing ¶ to verify if program P upholds property ϕ,
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and then performing either of the alternatives from ·, will
yield two certificates, one for the software and one for the
hardware. Together, these two guarantee the adherence to the
verified property ϕ for executions of the software program P
when using the given hardware implementation of the custom
instruction. The role of the hardware certificate is thus to
prove the soundness of the assumptions onwhich the software
certificate is based.

A. APPROACH #1: FUNCTIONAL EQUIVALENCE
The most general requirement for the functional verification
of hardware is full functional equivalence of the implementa-
tion I to the desired behavioral specification S. For our exam-
ple, the custom instruction z = (x1 ∗ x2)+ x3, we thus need
to show that it carries out the correct arithmetic operations, by
comparing the actual low-level hardware description I , e.g.,
a technologymapped placed and routed netlist, to a high-level
behavioral description of the desired custom instruction S,
usually given in a hardware description language (HDL) such
as Verilog. If functional equivalence can be shown, then all
software analysis results will automatically hold for programs
running on processor hardware using the custom instruction.
For functional equivalence, we have to prove for every
possible input x, which is the vector of bits which results
from mapping the program variables to the hardware input
signals, that the output of the implementation I (x) must match
the output of the behavioral specification S(x), or short:
∀x : S(x) = I (x). Checking for full functional equivalence is
done by most of the current hardware verification approaches
(see e.g., [19]) and is also the basic strategy of some coupled
hardware/software verification techniques [20], [21]. The
differences to our approach are a) that we require a golden
model for the instruction’s behavior, i.e., specification S
must be guaranteed to realize the original intent of the
C instructions that the CI replaces and the software analysis
is using, and b) that we actually might verify more than
the software analysis needs to know, and thus might have
an unnecessarily high effort. We thus pay for the generality
of this approach with a higher risk of running into runtime
or memory limits for the verifications due to the state
explosion problem [22], and we will likely encounter
problems whenever hardware limitations prevent us from
realizing the original intent as CI, for instance due to limited
bit-widths.

B. APPROACH #2: REQUIREMENTS OF THE
SPECIFIC ANALYSIS
Our second approach presents a tighter integration of
software analysis and hardware verification. Here, we extract
the requirements for the hardware from the specific analysis
result represented by the abstract reachability graph. The
abstract reachability graph for a program as constructed by
CPAchecker exactly tells us what properties the software
analysis has used. This is typically much less than the full
functional equivalence required by the first approach. In the
extreme case, the behavior of the custom instruction does not

influence the validity of the property at all and we need not
check anything on the hardware.

In the following, we describe this approach for our analysis
of program FKT. We only give an informal description of
the approach; a formalization can be found in [23], [24]
within the context of approximate computing and the validity
of software analysis results for approximate hardware. The
approach consists of the following steps:

CI localizationGiven a number of custom instructions
to be employed for program execution, their usage
needs to be located within the abstract reachability
graph.
Pre- and postcondition extraction For every CI
found in the abstract reachability graph, we extract the
abstract values in the states directly before and directly
after the CI in the form of a pair (pre, post).
Variable replacement In every (pre, post) pair,
we replace the program variables by the corresponding
CI variables. Note that the replacement can be different
for the precondition and the postcondition. Further-
more, we equate CI variables with constant values as
employed in the usage of the CI.
Pruning pre- and postconditions Pre- and postcondi-
tions often contain variables that do not occur in the CI,
e.g., variable N in our example (Figure 3). Sometimes,
there are transitively related CI variables, for example
in formula x < u ∧ u = z variable u relates x and z. For
each pre- and postcondition pair, we determine the set
Vntr of all non-CI variables that do not transitively relate
CI variables. Then, we remove all constraints from the
pre- and postcondition that only contain variables from
Vntr and that only restrict the state.

For program FKT these steps yield the following results: The
CI localization finds the CI z = (x1 ∗ x2)+ x3 on the edge
from location 4 to 5 only. We thus extract the following
(pre, post) pair for this CI:

(x ≥ 0 ∧ x ≤ 100 ∧ N ≤ 100,

x ≥ 0 ∧ x ≤ 100 ∧ y ≤ 208 ∧ ¬(y = 0) ∧ N ≤ 100)

Next, we need to map program variables to CI variables (i.e.,
y to z and x to x2), carry out an appropriate replacement in the
pre- and postcondition and equate CI variables x1 and x3 with
the constants 2 and 8, respectively. The pruning removes
the constraint on N . As a result we obtain the following
requirement to be checked on the hardware implementation
of the CI:

x2 ≥ 0 ∧ x2 ≤ 100 ∧ x1 = 2 ∧ x3 = 8

−
CI
−→ x2 ≥ 0 ∧ x2 ≤ 100 ∧ z ≤ 208 ∧ ¬(z = 0)

This requirement basically states that whenever the precon-
dition is true, then the result of the execution of (2 ∗ x2)+ 8
when employing the CI design for this calculation is not zero
and less or equal to 208. This is the only requirement which
needs to be checked on the CI implementation to guarantee
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FIGURE 7. Tool chain for approaches #1 and #2.

that the software analysis result remains when using our
example CI.

IV. TOOL CHAIN
We have built a tool chain automating all steps from
Figure 6. Since the software analysis ¶ is not directly
influencing the hardware analysis · in the first approach,
both can be performed independently of each other, with
the added requirement that the specification S needs to
be functionally equivalent to the C implementation of the
custom instruction. This prerequisite has to be ensured with
other means of verification, e.g., by having a knowledgeable
designer implementing both in exactly the same way. For
Approach #2, both analyses are actually linked in a chain via
the assumptions of the software analysis.

We have defined the tool chain depicted in Figure 7 to
link the software analysis ¶ to the hardware analysis ·
without intermediate user interaction for both approaches.
The only inputs which must be provided in order to start our
co-verification approach are:

1) a configuration that specifies the software analysis to
be used and the property (ϕ) to be evaluated,

2) the targeted C program (P), which uses custom
instructions,

3) two implementations of each involved custom instruc-
tion – one in C to be used by the software analysis and
another one as synthesized version in Berkeley Logic
Interchange Format (BLIF) for the hardware analysis,
and

4) for Approach #1 additionally specifications of the
custom instructions as Verilog files.

The final outputs at the end of this fully automated tool
chain are a software certificate that shows the validity of the
specified property ϕ for programP, and a hardware certificate
showing that the software certificate is based on valid
assumptions about the hardware functionality. The software
and hardware analysis including all four intermediate steps
(see , , , in Figure 7) are described in the following.
The automated linking step ( ) is obviously only needed and
executed for Approach #2.

A. SOFTWARE ANALYSIS WITH CI REQUIREMENT
EXTRACTION
The first step in Approach #2, which checks the custom
instruction against requirements from the software analysis,
performs the software analysis and the extraction of the
requirements from the software analysis result (the ARG).
We have decided to use the software analysis frame-
work CPAchecker [14] to perform the analysis because it
allows us to configure and automatically run a large set
of analyses. However, to fully automatize the first step of
Approach #2, we also need to integrate the requirement
extraction into CPAchecker.

Figure 8 gives an overview of the components taking
part in the process of extracting CI requirements from the
software analysis. Next to the obvious components, the
software analysis and the requirement extraction, there exists
a component that identifies the custom instructions used in
the program and a component that translates the requirements
into standard SMT-LIB format [25],3 the format employed

3http://smtlib.cs.uiowa.edu
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FIGURE 8. Overview on the process of CI requirement extraction from the
software analysis.

by SMT solvers. The component identifying custom instruc-
tion usages in the program simplifies later extraction of the
requirements and the translation component ensures that the
requirements are not domain-specific abstract values, but are
represented in a common representation.

To realize the process shown in Figure 8, we have
integrated the identification of custom instruction usages as
well as the requirement extraction and translation utilities
into CPAchecker. Furthermore, we have implemented an
algorithm that first calls the custom instructions usage
extraction utility and then runs the software analysis. If the
software analysis proves the property to hold, the algorithm
will call the requirement extraction functionality to extract
the requirements from the ARG and then translates the
requirements into SMT-LIB format. Next, we describe the
utilities that we have integrated into CPAchecker to realize
requirement extraction in more detail.

1) EXTRACTING CUSTOM INSTRUCTION USAGES
FROM PROGRAM
To extract the requirements on a custom instruction, we need
to identify its usage in the ARG. Instead of identifying
the CI usages in the ARG directly, we have decided to
identify them in the program and use their start and end
location in the program to find them in the ARG. The
reasons for our decision are manifold. Most importantly,
our predicate analysis uses adjustable block encoding [26]
and only abstracts at specific program locations like loop
heads. To get coarse requirements, we also need the predicate
analysis to abstract at the beginning and end of custom
instructions. Hence, we already need to know at analysis time
where the custom instructions are to be found in the program.
Furthermore, the identification in the ARG is more difficult.
Due to additional analysis information, the CI in the ARG

might not be syntactically identical to the CI in the program.
For example, the ARG excludes paths that are known to be
infeasible. Finally, a custom instruction usage in the program
may occur multiple times in the ARG. Hence, it is analyzed
multiple times, which is an unnecessary waste of resources.

To identify the custom instructions in the program, we get
the custom instruction (prototype).4 In our example, we get
z = (x1 ∗ x2)+ x3. First, we identify the signature of the
custom instruction prototype, which is (x1, x2, x3) 7→ z for
our example. Then, we iterate overall program locations
and check if they are start nodes of a custom instruction
usage.5 The check tries to find a structural match between
the custom instruction prototype and the code starting at the
respective location. To this end, it performs an exploration of
the prototype and the code and checks that the two at most
differ in variable naming or the code uses a constant instead
of a variable. Additionally, the check examines whether the
differences are consistent, i.e., whether exactly either one
variable name or one constant is used for each variable in
the prototype. If the structure matches consistently, a custom
instruction is found and the information of the exploration
is used to determine the end location(s) and the signature of
the custom instruction. In our example, we identify a custom
instruction that starts at location 4, ends at location 5, and has
signature (2, x, 8) 7→ y. At the end of this process, we have
a set of custom instructions specified by their signature, start
and end location.

2) REQUIREMENT EXTRACTION FROM ARG
The requirement extraction locates the custom instructions
in the ARG (CI localization) and extracts the pre- and
postcondition for each of those CIs. Localization is simple.
We previously already identified the custom instructions in
the program and, thus, know the starting locations of the
CIs. Since we assume that the software analysis is at least
flow-sensitive, i.e., abstract states (ARG nodes) are related
to program locations, we only need to pass through the
ARG nodes and identify those ARG nodes that refer to a
program location that is the beginning of a CI. The identified
nodes are the preconditions for the CIs and each node can
be related to a particular CI in the program. To find the
postconditions, we start at the identified ARG nodes and use
the corresponding custom instruction ci in the program to
follow all ARG paths until they end at a node that refers to a
program location that is an end location in custom instruction
ci. The set of all these ARG nodes form the postcondition.6

As an optimization, we finally sort out all pre-/postcondition

4Technically, we encode the CI in a separate C function and use C
labels start_ci, end_ci_i to describe the start and end of the custom
instruction.

5To speed up the process, we tell the custom instruction process where
custom instruction usages start.

6Note that although the CI itself has only one end location, the
postcondition can still contain multiple ARG nodes. One reason can be that
the CI’s control flow is not a single path, e.g., it contains an if-statement, and
the analysis does not join different paths.
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FIGURE 9. SMT-LIB representation of the requirement for the custom instruction extracted from the predicate
analysis result of our example program FKT.

pairs with postcondition that do not impose constraints
on the CI.

3) TRANSLATING ABSTRACT STATES TO SMT-LIB FORMAT
After requirement extraction, pre- and postconditions are
in form of (sets of) abstract states. Typically, the software
analysis uses domain-specific representations for the abstract
states. In our example, abstract states are represented by
sets of predicates. However, to further automatically process
the extracted requirements, they should be represented in
a common format. We have decided to use SMT-LIB
formulae [25] because it is a well-known standard and one
can express many constraints on data states. Thus, we expect
that most of the abstract states can be expressed in SMT-LIB.
For all abstract domains we considered in our experiments,
we are able to do the translation.

Figure 9 shows the SMT-LIB representation for the
requirement from our example. The SMT-LIB representation
starts with the declaration of the used variables and optional
helper functions. Remember that the pre- and postcondition
of our example refers to variables x and y. In contrast,
Figure 9 declares variables x and y@1. We use y@1 to
refer to variable y after it has been modified by the custom
instruction. If the precondition had referred to variable y,
we would have declared variable y, too, to refer to y
before its modification. Generally, we use var and var@1 to
distinguish between variables that are modified by the
custom instruction. The values of variables that are not
modified by the custom instruction are identical before and
after the execution of the custom instruction. For these
variables, we avoid to introduce two versions, for which
we needed to explicitly state their identical values, and,
thus, keep the representation more simple. The declarations
are produced when translating the abstract states of a pre-
/postcondition pair. The translation of each abstract state
produces declarations. All these declarations are merged and
duplicates are removed, before writing them to the SMT-LIB
representation of the requirement.

After the declarations, the SMT-LIB representation of a
requirement describes the corresponding custom instruction.
We only need the custom instruction description to map it to
the custom instruction prototype, which is z = (x1 ∗ x2)+ x3
for our example. Since the structure of the custom instruction
never deviates from its prototype, we only encode the

signature of the custom instruction, i.e., inputs and outputs.
The signature of our example is (x1, x2, x3) 7→ z, which we
cannot express in SMT-LIB directly. Therefore, the signature
is written as a conjunction of predicates using predicate
(= par 0)7 for each input or output par . The predicates in
the conjunction are ordered such that we can relate them
to the variables of the CI’s prototype. In our example, the
first predicate (= 2 0) describes that x1 7→ 2. The second
predicate (= x 0) states that x2 7→ x. The third predicate
(= 8 0) encodes that x3 7→ 8 and the last predicate (= y@1 0)
relates z to y@1.

The last part of the SMT-LIB representation is the pair
of pre- and postcondition. The precondition results from
the translation of the abstract state in the precondition.
The postcondition is the disjunction of all translations of
abstract states in the postcondition. Next, we describe how
we translate abstract states to SMT-LIB. We describe the
translation for predicate, value, sign, and interval states, the
abstract states we use in our experiments.

a: TRANSLATING PREDICATE STATES
Predicate states are represented as Boolean formulae and
CPAchecker already provides a converter to SMT-LIB. Trans-
lating predicate states is therefore rather simple. We only
need to call the converter and split its result into (variable)
declarations and formula representation. To properly add
the suffix @1 to output variables when translating the post
condition states, we use the instantiate method provided by
CPAchecker and then call the converter. This method is used
to get the static single assignment (SSA) representation of a
formulae and adds the suffix @SSAIndex to all variables for
which an SSA index is specified. In our case, we use an SSA
index 1 for each output variable.

b: TRANSLATING ABSTRACT STATES OF
VARIABLE-SEPARATE DOMAINS
Variable-separate domains constrain the value of each
variable individually, but do not include constraints relating
different variables. To this end, they separately assign abstract
values to each variable. The abstract values differ among the
variable-separate domains. Examples for abstract values are
explicit values, sign values, or intervals.

7We cannot simply use par because it is not a Boolean formula.
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TABLE 1. Mapping constraints from translating the mapping pair
consisting of variable var and the respective sign value.

Typically, variable-separate domains represent abstract
states as mappings from program variables to abstract values.
Program variables that are not constrained, i.e., would be
mapped to any value, are often not present in the mapping.
However, this is no problem for translation. Not mentioning a
variable in a requirement makes it unconstrained. To translate
a variable-separate abstract state, it is therefore sufficient to
compute a mapping constraint for each pair of variable and
abstract value in the mapping and then build the conjunction
of all these mapping constraints. If the mapping is empty,
we therefore get constraint true. Moreover, each variable in
the mapping must be covered by a variable declaration8 at the
beginning of the SMT-LIB representation. Next, we describe
how to translate pairs of variables and abstract values into
mapping constraints. This translation depends on the type of
abstract value, i.e., it is domain dependent. We explain the
translation for the three types of variable-separate domains
we currently support.
Translation of Explicit Values. The explicit value analysis

domain stores mappings from variables var to explicit
values val, e.g., integer variables are mapped to inte-
gers. This can easily be represented by the SMT-LIB
constraint (= var val). Note that if we translate an
abstract state of the post condition and var is an output
variable, i.e., it is modified by the custom instruction,
we use (= var@1 val).
Translation of Sign Values. The sign domain stores the

sign of a variable, e.g., whether it is positive (+), negative
(−) or zero (0). Table 1 shows how to translate a pair of a
variable var and a sign value. For Table 1, we assume that
either we translate the precondition or var is not an output
variable. If we translate an abstract state of the post condition
and var is an output variable, the constraints use var@1
instead of var.
Translation of Intervals. The interval domain maps numer-

ical variables to intervals [a, b]. Intervals [a, b] either use
numerical values for a and b or are unbounded on one
side (either a = −∞ or b = ∞). In the following,
we present the mapping constraints resulting from translating
the pair (var , [a, b]). Thereby, we assume that either we
translate the precondition or var is not an output variable.
If the assumption is invalid, one needs to use var@1 instead
of var.

8In post conditions, output variable names need to be extended by the
suffix @1.

Case a = −∞, b numerical: We only need to
constrain the upper value of var resulting in the
mapping constraint (<= var b).
Case a numerical, b = ∞: In this case, we constrain
the lower value of var resulting in the mapping
constraint (>= var a).
Case a, b numerical: We need to constrain upper and
lower value of var. To this end, we conjunct the
constraint for the upper and for the lower value. The
mapping constraint gets (and (>= var a) (<=
var b)).

B. LINKING VIA PROPERTY CHECKER GENERATION
To link the software analysis to the hardware verification
all pairs of pre- and postconditions must be translated
into a so-called property checker in form of a Verilog
module (see in Figure 7). For this translation task,
we have developed the PropertyCheckerGenerator (PCG).
It takes two outputs of the software analysis as input,
namely the set of pre- and postcondition pairs (P =

{(pre0, post0), (pre1, post1), . . . , (prej, post j)}) and the CI’s
specification. The generator constructs one implication per
pre- and postcondition pair. The negation (¬) of the
conjunction of all these implications, represents the property
checker as depicted in Figure 10. As the figure shows, the
property checker takes three inputs (in, out, extra) and
computes one output (error). Input in represents all inputs
that are also provided to the CI – out refers to the associated
output. extra holds variables which are used in a pre-
or postcondition although they do not appear in the CI’s
specification. While in, out and extra hold n, m and k
integer values respectively, error represents the Boolean
(1-bit) error flag. Considering P with |P| = j, the property
checker implements the following formula:

error = ¬
(
(pre0→ post0)

∧ (pre1→ post1) ∧ . . . ∧ (prej→ post j)
)

⇔

error = ¬
(
(¬pre0 ∨ post0)

∧ (¬pre1 ∨ post1) ∧ . . . ∧ (¬prej ∨ post j)
)

With respect to the running example, there is only one
precondition (pre0) and one postcondition (post0), hence, the
generated property checker encodes the following formula:

error = ¬(pre0→ post0)

⇔

error = ¬
(

(x ≥ 0 ∧ x ≤ 100)→ (x ≥ 0 ∧ x ≤ 100 ∧ y

≤ 208 ∧ ¬(y = 0))
)

Note, the CI’s specification (second input to the PCG) is
required in order to map the variables used in it to those
appearing in any pre- or postcondition. In case of the running
example, x and y are mapped this way. A shortened version
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FIGURE 10. Generated property checker for linking hardware and
software analyses.

of the Verilog module associated with the running example
can be found in Appendix A.

C. HARDWARE VERIFICATION TOOL FLOW
To perform the hardware verification required for part ·
of Figure 7, we use the synthesis suite Yosys [27], the
synthesis and verification tool ABC [28], and the SAT solver
CaDiCaL [29], which placed first in the SAT track and second
overall in the SAT Race 2019. We chose Yosys, because it is
a powerful open-source tool that can synthesize behavioral
Verilog into a netlist, but in principle any synthesis tool
would work that can output netlists in a format that ABC
can read. For the actual verification, we take the circuit
netlist for a custom instruction and convert it into ABC’s
natural representation: an And-Inverter-Graph. The property
checkers required for the verification model are also supplied
as Verilog files, and represent either the specification of the
custom instruction, or the automatically generated checker
circuit from step .We synthesize the property checker using
Yosys, and then build the entire verification model in And-
Inverter-Graph representation. When checking for functional
equivalence, we can utilize ABC, which has the capability to
automatically transform two circuits into a miter if they use
the same number of inputs and outputs. For Approach #2,
we use our own tool to combine the representations for
the implementation and the property checker into one And-
Inverter-Graph, our verification input. Again using ABC,
we simplify the graph by removing everything that does not
influence the error flag, i.e., is not in its cone-of-influence,
and then transform the graph into a large Boolean formula
in conjunctive normal form (CNF). We then use CaDiCaL
to prove unsatisfiability of the CNF formula and thus the
adherence of the CI implementation to the requirements of
the software analysis.

As explained above and in subsection II-C, the underlying
verification involves SAT solving with CaDiCaL, and hence

the worst-case runtime behavior for both approaches is
exponential in their input size. Since we can predict
neither the quantitative nor qualitative impact of employing
Approach #2 over Approach #1 for the subsequent SAT
verification, we have conducted a large set of experiments to
gain new insights here. The features and trade-offs involved
for both approaches will be illustrated and discussed in
section VI using the 244 case studies introduced in section V.

V. EXPERIMENTAL SETUP
One goal of our evaluation is to demonstrate the feasi-
bility of our two methods for integrating software and
hardware analysis, which guarantees a reliable software
analysis despite the use of reconfigurable functional units.
Additionally, we aim to show that our methods can be run
fully automatically and do not require expert knowledge in
verification. Also, we are interested in the additional costs
for automation, e.g., the extraction of requirements from the
software analysis. Another objective is to compare the two
methods and get a better insight when which method should
be applied. Especially, we want to investigate whether the
custom instruction and the software analysis significantly
influence the performance of themethods and how. To answer
these questions, we need to evaluate the two methods on a set
of verification tasks. More concretely, we require abstraction-
based software analyses that verify programs that use custom
instructions.

A. APPLIED SOFTWARE ANALYSES
In this experiment, we consider three different software
analysis techniques: dataflow analysis (D) [30], [31],
model checking (M) [32], and model checking with
CEGAR (M+) [16]. All three analysis techniques are
parametrized by the abstract domain. We consider four
abstract domains: interval abstraction (I) [33], explicit
value abstraction (V) [31], [34], sign abstraction (S) [35],
and predicate abstraction (P) [26]. We combine the value
abstraction with all three analysis techniques. However,
we combine the interval abstraction only with the dataflow
analysis technique because using interval abstraction with
model checking techniques is the same as using model
checking with value abstraction. Moreover, we combine the
sign abstraction with the dataflow analysis and the model
checking technique. As common, the predicate abstraction is
only used in model checking with CEGAR. In total, we get
7 different software analyses. All of them are implemented in
the software analysis framework CPAchecker [14], in which
we have integrated the property derivation of Approach #2
(cf. Figure 7).

B. ANALYZED CUSTOM INSTRUCTIONS
Our custom instructions are specialized operations common
in programs like increment, common programming idioms
like compare and swap, or combinations of multiple opera-
tions, which occurred in benchmark programs. Table 2 lists
the 14 custom instructions considered in our experiments.
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TABLE 2. Overview on custom instructions used in our experiments.

For each CI, Table 2 lists its name, its identifier, and a
description in program code.

C. PROGRAMS
To apply our methods, especially to verify programs,
we require programs with specifications, e.g., assertions,
locations that must not be reached, etc. Also, one of our
analyses must be able to prove that the program fulfills its
specification. Additionally, the programs must use at least
one of the CIs from Table 2. In total, we collected 97 pro-
grams meeting the above requirements. Some programs we
created ourselves, a few programs are taken from research
papers [36]–[38], but most of the programs are from existing
benchmarks. We considered programs from the NECLA
static analysis benchmarks [39] (including our three previous
examples [7]), the VeriSec benchmark suite [40], and the
SV-COMP benchmark [41].

D. TASK SET
As already mentioned, a program may not use all custom
instructions. Furthermore, even if a CI is used by a program,
it will not guarantee that it is relevant, i.e., we can extract
requirements with postconditions true. Additionally, not
every software analysis can verify each of the programs,
hardware and software analyzers may disagree on the
semantics,9 and verification capabilities may even depend on
the custom instruction.

Our goal was to build a task set that ensures that we
consider different analyses for each custom instruction and
vice versa, for each analysis different custom instructions.
To this end, it is sufficient to consider one custom instruction
type at a time and our current automation can only deal
with one type. Handling multiple custom instructions is an
implementation issue, which we do not need to solve for our
experiments.

Table 3 shows which pairs of analysis and custom
instruction we managed to cover with our task set. Although
the table is densely filled, we also notice that we do not

9For example, the software constraints assume mathematical integers or
no overflow, while the hardware approach 2-complement integers.

TABLE 3. Overview on which combinations of custom instructions (rows)
and software analyses (columns) are covered (X) by our task set.

cover all pairs. Furthermore, note that we created our task
set by looking at the pairs of software analysis and custom
instruction independently and trying to find programs that use
the particular custom instruction and that can be verified by
the analysis. Table 5 in Appendix B gives an overview on
our task set, which consists of 244 tasks. The sparse table
describes for each pair of program and analysis (i.e., cell in
the table) which custom instructions are considered.

E. CUSTOM INSTRUCTION IMPLEMENTATION
To prepare the benchmark circuits for the evaluation,
we require an implemented version for an RFU. To this
end, we employ the academic tool flow VTR [42] and the
synthesis suite Yosys [27], both of which are open-source.
We specify the custom instructions in Verilog, (manually)
making sure that we implement the same functionality as in
the C files, which the software analysis uses. We implement
the data type used in the software analysis, which is a signed
integer of unspecified bit width, using 64-bit binary numbers
encoded in two’s complement, and then map the CIs to
circuits using Yosys for hardware synthesis, followed by
ABC (which is used by both, Yosys and VTR) for technology
mapping. The circuits are technology-mapped to a generic
FPGA architecture that is defined using VTR’s architecture
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TABLE 4. Runtimes for the software analysis, averaged over all 243 case studies.

description mechanism and is comprised of logic blocks with
6-input lookup tables. For a real customizable processor,
the resulting circuit netlist would be placed and routed for
the reconfigurable fabric of an RFU and the configuration
bitstream would be generated. For the sake of simplicity,
these steps are omitted in our current work. Expanding our
tool flow to cover also these steps is part of future work
and will allow us to catch not only design errors and errors
introduced by hardware synthesis and technology mapping,
but also errors due to low-level FPGA implementation tools.
We store the resulting circuit representation generated by
ABC as a BLIF file and use this as the final implemented
hardware version of the custom instruction, i.e., as input for
part · in Figure 7.

VI. EXPERIMENTAL RESULTS AND DISCUSSION
We have used the tool chain from section IV to run all
244 experiments described in section V. The software side
has been run on a Debian 9 (Stretch) virtual machine with
Java 11 (OpenJDK 11.0.5) installed. Two cores of the host’s
Intel Xeon E5-2695v3@2.30GHz were assigned to the guest
machine. The memory provided to the analysis tools was
limited to a maximum of 32 GiB. For the hardware analysis,
we have used a compute cluster with a per-experiment time
limit of seven days and memory limit of 5 GiB. The cluster
nodes run Scientific Linux 7.2 (Nitrogen) on an Intel Xeon
E5-2670@2.6 GHz with 16 cores; however, the current tool
chain is single-threaded.

Considering the software side, we compared the runtimes
of the analyses executed through CPAchecker with respect
to Approach #1 and #2. In both scenarios, the same analyses
are executed but considering #2 the pre- and postconditions
must be extracted. In addition, the property checker must
be built when dealing with Approach #2. Table 4 shows the
maximum, minimum, average and median of all runtimes
measured. In the first two rows, the runtimes of the
employed software analyses with and without CI extraction
are summarized. The next two rows titled with CPAchecker
and PCG deal with the overall runtime of both tools. When
comparing the runtimes with and without CI extraction (1.
and 2. in Table 4) the difference is always negligibly low (only
3% wrt. the median—see 5. in Table 4). Also negligibly low
(3%wrt. the median—see 6.) is the time required by PCG (4.)
in comparison to the time consumed by CPAchecker (3.). In a

single case, the runtime of PCG is greater than the runtime of
CPAchecker (309%), since CPAchecker extracts 479 pre- and
postcondition pairs in this case—way more than in any other
case (30 on average). Apart from this case, PCG’s runtime is
always lower (≤ 64%). In summary, the runtime required by
the software side is almost the same regarding Approach #1
and #2. Consequently, we only discuss the runtimes of the
hardware verification in detail in the following.

To evaluate these verification times, we executed our
complete tool chain, depicted in Figure 7, for all 244 case
studies. One of the most important results from this series
of experiments was the fact that it uncovered several tasks
in which the software analysis actually had posed unrealistic
assumptions on the C code, which, when translated to
requirements on the CI’s circuit, were consequently not
fulfilled, leading to failed verifications for Approach #2.
These requirements are mostly due to over-simplifying
assumptions designed to increase the performance of the soft-
ware analysis in cases where the exact physical limitations
of the executed commands, such as bit widths of variables,
are not actually needed. Approach #1 does not expose this
issue, since it is unaware of and unaffected by the preceding
software analysis, and can thus regard neither the resulting
requirements, nor the context in which the CI will be executed
for its hardware verification. For Approach #2, however,
each assumption of the software analysis is translated into
a requirement for the employed CI, disregarding any such
incompatibilities. Using this approach, a verification engineer
can thus bemade aware of anymodel mismatches that happen
during this translation from software to hardware verification.

For our concrete benchmark set, the software analysis’
ignorance of the specific bit widths of the signals lead to
requirements that are impossible to satisfy in nine cases.
The verification had simplified the software’s structure with
unbounded integers for its analysis on sign abstraction in
eight cases, and in two cases on predicate abstraction, which
resulted in violating cases in the hardware when the signal
overflows, underflows, or satisfies at the extreme values
in the operation. We have encountered this issue with the
following benchmarks and CIs: ex19 with pdSAT , ex49 with
i, factorial with i and mul, first_binomial with mia and
mul, Problem14_l35 with sm, and resize with mia.

Of the same nature but with reversed roles was the failure
of one benchmark, lock-impl-s with cas, where the software
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FIGURE 11. Runtimes for the hardware analysis in seconds, grouped by custom instruction and averaged over
100 runs for each of the case studies using the CI mul (a) or s (b). The labels indicate the employed software
analysis.

analysis had deduced the possible states of two variables to
be binary and had therefore concluded that they are Boolean
variables in the context of the program, while the CI working
on them was realizing the full precision of the underlying C
variables. The analysis then internally exploited the duality
of the two possible variable states in its assumptions, which
then later failed as requirements for the hardware CI, whose
possible state space was not limited similarly.

All of these cases combined thus effectively show that
traditional software analyses tend to neglect the limitations
of the underlying hardware, especially when bit widths are
concerned. This mismatch between both worlds is the exact
reason for our work in this paper, where we aim to provide
a verification for the soundness of the software analysis
despite these differences. Their detection through our flow
hence proves the necessity of such a coupled verification as
well as the adequacy of our method to uncover such issues.
The successful verifications of each of these cases using
Approach #1 furthermore highlights how easy it is to miss
these broken requirements when employing a traditional,
uncoupled verification style.

We will now discuss the 235 case studies that were
successfully verified with both approaches. Figure 11 shows
the runtimes for the hardware verification for the case studies
using the custom instructions mul and s, i.e., the time in
seconds required to perform a cone-of-influence reduction
with ABC to cut away all logic that does not contribute to
the satisfiability of the property checker, and to prove the
unsatisfiability of the verification model with CaDiCaL. The
figure groups the experiments by their custom instruction,
with Figure 11 a) showing CI Multiply and b) CI Swap (cp.
Table 2). Each blue bar represents the average runtime of one
of the 235 successfully verified benchmarks for Approach #2,
checking the requirement-based properties, while the label at
the axis denotes the employed software analysis for that task.
The gray bars depict runtimes for Approach #1, checking the

functional equivalence, and since this has to be performed
only once per CI, its runtime is depicted spanning each
subfigure, with the dark line denoting the average runtime
over a 100 runs per involved benchmark.

For CI mul in Subfigure a), the hardware verification
runtimes for Approach #2 are orders of magnitude faster
than verifying the full functional equivalence in Approach #1,
although differences in the requirements generated for the
involved software analyses also lead to significant changes
in the runtime of Approach #2. Custom instructions like
mul thus clearly indicate that the second approach can
save significant verification effort, when the functional
equivalence checking encounters structures that trigger state
explosions, such as multiplications, especially when the
employed software analysis only requires a partial verifica-
tion of the circuit. For CIs (Subfigure b) all verification times
are in the range of less than one second for both approaches,
i.e., very small. This shows that the resulting combinational
circuits of custom instructionsmight often times be quite easy
to verify, enabling SAT solvers to prove even full functional
equivalence of specification and implementation quickly, and
that proving the extracted properties is neither faster normuch
slower in these cases.

Figure 12 shows all benchmarks for the remaining custom
instructions, who mostly underline the above observations:
For many CIs, e.g., mia, sa, i, cs, both approaches are
very fast and do not differ by much, such that either approach
is well suited for verifying these benchmarks. And similar
to CI mul, other CIs that lead to hard verification problems
for full functional verification, i.e., am, ma, and sm, can
greatly benefit from Approach #2 when it enables a much
faster hardware verification. For our benchmark set, we have
observed differences for these types of CIs of under one
second to about 1000 seconds of verification runtime.

There is, however, also a third type of CI which our
experiments clearly show with CI pd, for which the role
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FIGURE 12. Runtimes for the hardware analysis for the remaining instructions in seconds, grouped by CI. Each blue bar represents one of the 235
benchmarks, averaged over 100 runs.

of the approaches is reversed. The special structure of this
CI, which performs a parallel decrement of two operands,
allows for a very efficient hardware verification, since the
verification problem basically collapses into two very easy
disjoint verifications of one subtraction circuit each. The
extracted requirements from the software analysis, however,
correlate the two inputs and also the outputs with each other,

since they co-exist with a known difference in the abstract
state conditions. The hardware verification for Approach #2
thus does not lead to two mostly disjoint subproblems, but
remains entangled and thus more complex to solve for the
verification engine.

Figure 13 presents an overview of the same runtimes of
the 235 case studies grouped by employed software analysis
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FIGURE 13. Runtimes for the hardware analysis in seconds, grouped by software analysis and averaged per custom instruction and 100 runs for each of
the 235 case studies. The labels indicate the employed custom instruction.

(cp. Table 3). Observe that while in Figure 11 and 12 the
runtime relation between the approaches does not change
over the performed experiments for most of the presented
custom instructions, it differs significantly for the software
analyses in Figure 13, where we can still clearly identify the
harder custom instructions. This effect is mainly due to the
runtime relations between the approaches and the CIs and
analyses, where the internal structure of the CI determines
the complexity of the formal equivalence checking, i.e.,
the gray bars in Figures 11 through 13, whereas the
employed software analysis is responsible for the complexity
of the derived properties that have to be checked for
Approach #2.

On the other hand, there are some software analyses
such as VM+, which corresponds to the last column of
Table 3, who seem to generally lead to easily verifiable

requirements on the hardware, even if the involved CI itself
is harder to verify, since these requirements only demand
the correct functionality of the CI for a very narrow value
range. This enables the SAT solver to break down the complex
verification of the multipliers involved in the CIs am, ma,
mul, and sm to just a few relevant states, thus avoiding the
usual state explosion.

We therefore conclude that whether it is advantageous
to check the assumptions instead of the equivalence seems
to be predominantly determined by the combination of
the hardware circuit’s verification complexity versus the
complexity of the requirements derived by the employed
software analysis. The differences between the blue bars of
the subfigures of Figure 13 reveal, however, that the overall
hardware verification time for Approach #2 is furthermore
influenced by the employed CI, software property, and
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FIGURE 14. Property Checker generated for our example program FKT (Shortened for legibility).

program, albeit on a much smaller scale. In summary, these
235 case studies support our expectation that exploiting more
knowledge about the specific analysis can lead to a more
efficient verification.

VII. RELATED WORK
There are a number of approaches for software/hardware
co-verification. Several techniques exist ( [43]–[50]) which
first compute a joint model of hardware and software and
then check properties on that model. Other approaches
[51], [52] apply compositional reasoning. Xie et al. [51]
check component-based systems and present a scenario–
system development–in which requirements for subcompo-
nents, hardware or software, are created. Whenever a com-
ponent is partitioned into subcomponents, the requirements
for the subcomponents are formulated and the component is
verified based on the assumption that the subcomponents’
requirements hold. Although the requirements are used in
verification, they result from partitioning and not from
verification as in our second approach. Loitz et al. [52]
first verify the hardware assuming certain constraints on
the environment and then check that the software respects
these constraints. In a sense, they aim at the same goal
as our work does, but start from the opposite side. The
disadvantage of this technique is that it might produce
overly complex constraints, whose validation is not needed
for trustworthiness. Again, other works ( [20], [21]) check
that the hardware is equivalent to a specification, which is
somewhat similar to the hardware side of our first approach.
For example, Clarke et al. [20] verify Verilog against a C
specification and Erkok et al. [21] verify a low level circuit
implementation, e.g., in form of a netlist, based on a cryptol
specification.

Besides these co-verification approaches, there are further
integrations of hardware and software level validation
techniques (e.g., [53]–[56]) using simulation, testing or some
form of monitoring. However, none of these techniques tar-
gets custom instruction set extensions and derives hardware
properties to be validated from a software analysis step.

The influence of hardware correctness on software verifi-
cation has also been investigated in the area of approximate
computing [57] (AC), where computation precision of
hardware components is sacrificed for reducing energy
consumption. Approaches for the correctness of software
in the context of approximate computing have for instance
studied quantitative reliability, i.e., the probability that
outputs of functions have correct values [58], [59] or
values within a tolerated quality of service band [60], or
differences between approximate and precise executions [61].
Furthermore, PAC [62] computes for each instruction the
required degree of accuracy, e.g., allowed number of incorrect
bits, when a given accuracy of the output. Closest to our own
work is that presented by Isenberg et al. [23], [24]. While
they also use the abstract reachability graph for extraction
of constraints on the behavior of hardware, they focus
on approximate circuits instead of processors with custom
instruction set extensions and experimentally validate their
technique on a number of approximate adders [24].

VIII. CONCLUSION
In this paper, we have proposed a new technique for
software/hardware co-verification for processors with custom
instruction set extensions. We have detailed two approaches
tailoring the hardware verification to the needs of the software
analysis to different extents, thus potentially allowing for
a trade-off between generality and computational effort.
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TABLE 5. Overview on task set. The columns fix the software analyses and rows the program. A cell contains the ID of the custom instructions considered
for the respective pair of analysis and program. (*: am, ma, sm).

Further, we have presented a fully automated tool chain and
reported on extensive experiments.

As a main result from our experimentation, we can
conclude that while in general tailoring the hardware

verification more to the concrete needs of the software
analysis indeed results in lower computational effort, neither
approach is superior for all cases. Moreover, we have been
able to identify clear recommendations for each of the two
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TABLE 5. (Continued.) Overview on task set. The columns fix the software analyses and rows the program. A cell contains the ID of the custom
instructions considered for the respective pair of analysis and program. (*: am, ma, sm).

approaches, depending on the difference between the inherent
verification complexity of a CI’s hardware implementation
and the resulting complexity of the actual requirements
extracted from the employed software analysis.

Our case studies have furthermore revealed the gap
between the semantics of software and hardware verification,
where the former sometimes all but ignores the physical
limitations of the underlying processing units to increase the
verification performance. This leads to an interesting line of
future work that couples software and hardware analyses even
closer, by bridging this gap in a way that a) does not impede
the software analysis, e.g., by forcing it indiscriminately
to bit-vector accuracy, b) allows for successful hardware
verifications of custom instructions that realize the required
functionality within the physically feasible limitations, and
c) does not sacrifice the benefits of our coupling approach

that enables us to verify software and hardware successively
without a joint co-verification model. Building on such
a joint model would require users to perform a full re-
verification of the whole system for each new combination
of software and custom instruction, therefore limiting the
dynamic usage of automatically generated CIs. In contrast,
our current approaches can enable the dynamic usage of
automatically generated CIs, as the hardware verification in
our approaches serves as legitimization of a previous software
analysis’ result.

Going one step further, this method could allow us
to extend our current coupled verification scheme into a
full software/hardware co-certification, integrating proof-
carrying code [63] and proof carrying hardware [64], such
that a user could replace their own verifications with a
validation of the accompanying proofs of the software
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program and the RFU configuration, leading to the same level
of trust with only a fraction of the computational effort.

APPENDIX A
VERILOG PROPERTY CHECKER MODULE
Figure 14 shows a shortened version of the Verilog module
that implements the property checker associated with the
paper’s running example. It illustrates the conversion of
variables into Verilog wires based on the mapping generated
between the CI’s specification and variables used in pre- and
postconditions (Lines 2-13). The conditions themselves and
the output error flag can be found in Lines 15-26.

APPENDIX B
BENCHMARK TASKS
See Table 5.
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