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ABSTRACT In this paper, we investigate the error performance of access point-based reconfigurable
intelligent surfaces (AP-RISs) under a Rayleigh frequency-flat slow fading channel with path loss in the
presence of Gaussian-plus-Laplacian additive noise. Since the additive noise includes an impulsive Laplacian
component, it describes a scenario that is more realistic in practice. A closed-form expression of the average
bit error probability (ABEP) is derived and validated by simulation results. The ABEP formulation employs
an approximation of the sum of Rayleigh random variables and agrees well with simulation results for
arbitrary surface sizes. However, the ABEP expression takes relatively long to evaluate due to the required
multiple computations of the confluent hypergeometric function. On this note, a simplified expression of
the ABEP is formulated by employing an asymptotic cumulative distribution function representation of the
Gaussian-plus-Laplacian noise. The simplified ABEP agrees well with simulation results. An asymptotic
analysis of the ABEP shows that the asymptotic diversity order is not affected by the Laplacian component.
Finally, the ABEP formulations are used in the validations of error performance for an AP-RIS-assisted
two-way relaying network under the same channel conditions. Overall, the investigations in this paper
demonstrates the vulnerability of RISs to this type of noise and highlights the need for the design of suitable
mitigation techniques.

INDEX TERMS Access point-based reconfigurable intelligent surfaces, Gaussian-plus-Laplacian additive
noise, impulsive noise, intelligent reflecting surfaces, heavy-tail distributions, two-way relaying.

I. INTRODUCTION
The use of smart propagation in next generation networks
is currently showing much promise in the research commu-
nity and future releases of fifth- and sixth-generation wire-
less communications technology may exploit these concepts.
A very recent example of smart propagation is the phase-
adjustable element reconfigurable intelligent surface (RIS)
that has been proposed as a subset of RISs or intelligent
reflecting surfaces [1]. An RIS is able to intelligently modify
an impinging electromagnetic wave to enhance communica-
tions system objectives, including, but not limited to, relia-
bility, capacity, energy and spectrum efficiency [1], [2]. The
generic RIS is made up of a large number of low-cost and
energy-efficient reflecting elements. Elements are associated
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with an adjustable parameter that may be software-defined,
for example, amplitude, phase, frequency or polarization.
Phase-adjustable RISs are very attractive because they can be
passive and hence, low cost and can enable the superposition
of several coherent reflected signals at the receiver [1]–[3].
This ensures that the average signal-to-noise ratio (SNR)
increases proportionally to the square of the number of RIS
elements, thus significantly increasing the SNR especially for
large element RISs.

Some very recent contributions in the literature are: Since
co-channel interference can severely degrade the received
signal, its effect on a RIS-assisted dual-hop mixed free-space
optical-radio frequency (RF) communication system has been
considered [4]. It is further demonstrated that the system
still gains significant performance enhancement compared to
its traditional counterpart. In [5], a RIS-assisted Alamouti
scheme which employs only a single RF signal generator at
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the transmitter is proposed. It is shown that the diversity order
is preserved compared to the classical Alamouti scheme.
Furthermore, a RIS-assisted and index modulation-based
vertical Bell Labs layered space-time scheme is proposed
and supported by optimal and sub-optimal detectors. In [6],
a simple yet effective model for RIS scattering is pro-
posed and used to formulate an expression for path loss
of the transmitter-RIS-receiver channel. The potential of
RISs in anti-jamming communications is investigated in [7],
by considering an aerial RIS (ARIS) that is deployed in
the air for jamming mitigation. Optimization frameworks for
ARIS deployment and passive beamforming are proposed
and results show that legitimate transmissions are effectively
enhanced.

One of the key open challenges to the realization of RISs
is the acquisition of channel state information [3], since the
channel knowledge is a critical component in the transceiver
design of RIS-assisted communications to achieve its full
potential. Base station (BS)-User RIS-assisted communica-
tion requires channel knowledge pertaining to a cascaded
channel, since estimation of the User-RIS and BS-RIS links
are required [3]. On this note, several solutions involving
active channel sensors, channel decomposition and structural
learning are currently being investigated [3].

Meanwhile, an access point (AP)-based RIS (AP-RIS) was
conceptualized [8] to allow both information transmission
and phase adjustment, while retaining the use of passive
and low-cost reflecting elements. An AP-RIS is realized by
placing an RF source in very close proximity to an RIS. This
inherently eliminates the cascaded channel and only knowl-
edge of the User-RIS link is required; hence, naturally hold-
ing much promise in terms of reduced system complexity.

Conventionally, wireless communication systems are
assumed to be affected by only Gaussian noise. However,
in practical scenarios or particular environments, such as
metropolitan, manufacturing plants and indoor settings, the
noise can have an impulsive component [9]. This compo-
nent of the noise can occur in transients or bursts and is
sporadic/non-contiguous in nature, resulting in the serious
degradation of reliability or error performance. Man-made
and natural sources that are responsible for generating the
impulsive component in wireless communication systems
include, but are not limited to, ignition noise in motor vehi-
cles, switching transients in power lines, fluorescent light-
ing, multiple-access interference and lightning discharges;
hence, resulting in distributions with positive excess-Kurtosis
(heavy-tails) [10]. These distributions are more accurately
described by models, such as the Symmetric-alpha Stable
(SαS) which includes the Cauchy (α = 1) distribution, Mid-
dleton Class A and Class B, generalized Gaussian, Laplacian
and Bernoulli-Gaussian [9]–[11].

In [11], an analysis of diversity-reception schemes in the
presence of additive noise including an impulsive component
is presented, where the additive noise assumes a Gaussian-
plus-Laplacian model. The Laplacian distribution is assumed

over other impulsive noise models, due to its convenient
analytical properties.

A. MOTIVATION AND CONTRIBUTIONS
Impulsive noise can have a significant deleterious effect
on the error performance of wireless communication sys-
tems [9]–[11]. In the current open literature, there has been no
investigation into the effect of additive noise with an impul-
sive component on the error performance of RIS-assisted
communications. On this note, since the AP-RIS1 holds much
promise due its low system complexity, we consider the
vulnerability of its error performance to additive noise with
an impulsive component.

Due to the convenient analytical properties of the Lapla-
cian distribution which may be used to model the impulsive
noise component, we consider a mixture of Gaussian and
Laplacian additive noise and study it’s effect on the error
performance of AP-RIS-assisted communications.

Based on the above, the contributions of this paper2 are
as follows: a) We derive the theoretical average bit error
probability (ABEP) of an AP-RIS for a Rayleigh frequency-
flat slow fading channel with path loss in the presence
of Gaussian-plus-Laplacian additive noise. The formulation
employs an approximation of the sum of Rayleigh random
variables (RVs) and therefore agrees well for arbitrary RIS
sizes. b) An asymptotic analysis is presented and includes
the formulation of a simplified ABEP expression using
an asymptotic representation of the cumulative distribution
function (CDF) of the additive noise, and c) The formulated
ABEPs are further used in the validations of error perfor-
mance of a two-way relaying network under the same channel
conditions.

FIGURE 1. Model of the AP-RIS transmitter-receiver system.

II. SYSTEM MODEL AND PRELIMINARIES
Consider an AP-RIS transmitter and receiver as depicted in
Fig. 1. The RIS at the transmitter is equipped withN elements
and the transmitter and receiver each make use of a single RF
antenna. The antenna at the transmitter is located sufficiently

1In [8], [12] analyses of the error performance of AP-RISs under a
frequency-flat Rayleigh fading channel in the presence of Gaussian-only
additive noise have been investigated. Unlike the analysis in [8], whichmakes
the simplifying assumption of large RISs, the analysis in [12] is valid even
for small RISs.

2Notation: |·| is the Euclidean norm,E{·} is the expectation operator, while
Q(·) represents the Gaussian Q-function.

(
·

·

)
is the binomial coefficient. (·)!

represents factorial and (2N−1)!! = (2N−1)(2N−3) · · · 3 ·1 represents the
double factorial.Ip represents an integral p.⊕ represents the XORoperation.
j is the complex number

√
−1.
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close to the RIS, such that there is no small-scale fading
channel between the antenna and the RIS [8].

Assuming a Rayleigh frequency-flat slow fading channel
with path loss in the presence of Gaussian-plus-Laplacian
additive noise at the receiver, the received signal may be
defined as:

r=
√
γPL

[
N∑
i=1

hiejφi
]
ξ + I + η=

√
γPL

N∑
i=1

αiξ + I + η,

(1)

where the RV hi is distributed as CN (0, 1) with Rayleigh
distributed magnitude αi and uniformly distributed phase θi,
such that hi = αiejθi represents the channel between the
receive antenna and the i-th, i ∈ [1 : N ] RIS element, φi
represents the adjustable phase at the i-th RIS element and is
set as φi = −θi, such as to maximize the received SNR [8],
ξ is the message carrying binary phase shift keying (BPSK)
symbol and E{ξ2} = 1. The average transmit power is
γ and PL is the total path loss [5], [6], which is defined
in Section IV. The Laplacian and Gaussian additive noise
components are represented by I and η, respectively. Both I
and η are mutually independent and have probability density
functions (PDFs) given by (2.1) and (2.2), respectively.

fI (x) =
1
2c
e−
|x|
c , (2.1)

fη(x) =
1

√
2πσ

e−
x2

2σ2 , (2.2)

where c, c > 0 is a scale parameter of the Laplacian distribu-
tion and σ , σ > 0 is the scale parameter (standard deviation)
of the Gaussian distribution.

In the upper part of Fig. 2 (refer to the top of the next
page), we plot the empirical3 versus analytical PDFs of I for
c = 0.8, 1, 2 and 4. The analytical PDF of the Gaussian
distribution given by (2.2) with σ = 1, is also depicted and
serves to give an indication of the positive excess kurtosis of
the Laplacian distributed noise. It is evident that the empirical
and analytical PDFs of I agree well and as c increases from
c = 0.8 to c = 4 the heaviness of the tails increase, i.e. the
noise takes on extreme values with increasing frequency.

The PDF of the total additive noise given by J = I+η was
determined in [13], and is defined as:

fJ (x, σ, c)

=
1
2c
e
σ2

2c2
[
e
x
cQ
( x
σ
+
σ

c

)
+ e−

x
cQ
(
−
x
σ
+
σ

c

)]
. (3)

In the lower part of Fig. 2, the empirical versus analyti-
cal PDF plots of J for c = 0.8, 1, 2 and 4 assuming
σ = 1 are shown and agree well. Once again, the Gaus-
sian PDF (σ = 1) is depicted. While the Gaussian-plus-
Laplacian PDF peaks are less sharp, as expected the positive

3The empirical PDFs were generated from simulated noise using the his-
togram function hist(·) in MATLAB. A Laplacian RV with scale parameter
c was simulated using I = −c × sign(u) ln (1− 2|u|), where u = −0.5 +
rand(·) is a uniformly distributed RV and sign(·), rand(·) are the signum,
uniform RV functions, respectively, in MATLAB.

excess kurtosis remains evident. Since, there is a high prob-
ability of extreme Gaussian-plus-Laplacian noise amplitudes
occurring, this suggests the potentially significant deleterious
impact this noise will have on error performance. In the
ensuing analysis, we will employ the PDF given by (3).

III. ERROR PERFORMANCE ANALYSIS
A. THEORETICAL ABEP
Consider an equivalent received signal model of (1) given
as r = xξ + Ī + η̄, where x =

∑N
i=1 αi/

√
N , Ī has

scaling parameter c̄ = c
√
γPLN

and η̄ has scaling parameter
σ̄ = σ

√
γPLN

.

Then with BPSK transmission, the ABEP of the AP-RIS
system for a Rayleigh frequency-flat slow fading channel
with path loss in the presence of Gaussian-plus-Laplacian
additive noise may be given as:

Pe =
∫
∞

0
P(Ī + η̄ > x)fx(x)dx, (4)

where fx(x) the PDF of x may be approximated4 as [14]:

fx(x) ≈
x2N−1e

−x2
2b

2N−1bN (N − 1)!
, (5)

with b = 1
2N [(2N − 1)!!]

1
N .

Using P(Ī + η̄ > x) , 1 − FJ̄ (x, σ̄ , c̄), where FJ̄ (x, σ̄ , c̄)
is the CDF of J̄ = Ī + η̄, which is defined as [11]:

FJ̄ (x, σ̄ , c̄) =
e
σ2

2c2

2

[
e
x
c̄Q
(
x
σ̄
+
σ

c

)
−e−

x
c̄Q
(
−
x
σ̄
+
σ

c

)]
− Q

(
x
σ̄

)
+ 1, (6)

we may rewrite (4) as:

Pe ≈
1

2N−1bN (N − 1)!

{∫
∞

0
x2N−1e−

x2
2b dx − I1

}
, (7)

where I1 =
∫
∞

0 x2N−1e−
x2
2b FJ̄ (x, σ̄ , c̄)dx.

Using integration-by-parts, I1 is given as (given in
Appendix A):

I1 =
(N − 1)!
21−Nb−N

[
1
2
+

N−1∑
k=0

1
k!(2b)k

I2
]
, (8)

where I2 =
∫
∞

0 x2ke−
x2
2b fJ̄ (x, σ̄ , c̄)dx and may be solved as

(given in Appendix B):

I2 =
1
2c̄
e−0.5ϕ

2
2 (ϕ1+1)σ̄ 2k+1

2k∑
m=0

(−1)2k−m

×

(
2k
m

)
ϕ2k−m2 I3, (9)

where I3 =
∫
∞

−∞
e−0.5ϕ1y

2
eϕ2(ϕ1+1)yymQ(y)dy with ϕ1 = σ̄ 2

b ,
ϕ2 =

σ
c and using the identity Q(−y) = 1 − Q(y), may be

4Amore accurate expression of the PDF fx (x) was given as Equ. (9) in [14]
but makes negligible difference to the accuracy here. Comparison is drawn
in Section IV.
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FIGURE 2. Empirical versus analytical PDFs for Laplacian (c = 0.8, 1, 2, 4) and
Gaussian-plus-Laplacian (σ = 1, c = 0.8, 1, 2, 4) noises with Gaussian PDF (σ = 1)
indicated.

equivalently5 written as:

I3 = I31 + I32, (10)

where I31 =
∫
∞

0 e−0.5ϕ1y
2
eϕ2(ϕ1+1)yymQ(y)dy and I32 =∫

∞

0 e−0.5ϕ1y
2
e−ϕ2(ϕ1+1)y(−y)m[1− Q(y)]dy.

Applying the trapezoidal rule to Q(·), we get:

Q(y) ≈
1
2n

[
1
2
e−

y2
2 +

n−1∑
`=1

exp

(
−

y2

2 sin2
(
`π
2n

))] , (11)

where n ≥ 2 is the number of intervals used in the integration;
accordingly, we write I31 as:

I31

≈
1
4n

∫
∞

0
e−y

2(0.5ϕ1+0.5)eyϕ2(ϕ1+1)ymdy

+
1
2n

n−1∑
`=1

∫
∞

0
e
−y2

(
0.5ϕ1+ 1

2 sin2
(
`π
2n

)
)
eyϕ2(ϕ1+1)ymdy.

(12)

Using [15, Equ. (3.462.1)], (12) is reduced to:

I31

≈
0(v)
4n

(2β1)−v/2 exp
(
ρ2

8β1

)
D−v

(
ρ
√
2β1

)

+
0(v)
2n

n−1∑
`=1

(2β`2)
−v/2 exp

(
ρ2

8β`2

)
D−v

 ρ√
2β`2

 , (13)

where β1 = 0.5(ϕ1 + 1), β`2 = 0.5
(
ϕ1 +

1
sin2

(
`π
2n

)), ρ =
−ϕ2(ϕ1 + 1), v = m+ 1 and D−v(·) is the parabolic cylinder

5Note, we assumed the integration interval (−∞,∞) for convenience in
derivation of (9); however, we now convert back to the interval (0,∞), since
we subsequently employ an approximation of Q(·) to solve I3.

function [15], which is defined as:

D−v(z) =
e−z

2/4

0(v)

∫
∞

0
e−xz−0.5x

2
xv−1dx, (14)

and in terms of the confluent hypergeometric function
1F1(·; ·; ·) as [15]:

D−v(z) = 2−v/2e−z
2/4
{ √

π

0
(
1+v
2

) 1F1

(
v
2
;
1
2
;
z2

2

)

−

√
2πz

0
( v
2

) 1F1

(
1+ v
2
;
3
2
;
z2

2

)}
. (15)

Similar to the steps used to arrive at (13), we may determine
the solution of I32 in (10) as:

I32 ≈ (−1)m0(v)(2β3)−v/2 exp
(
ρ2

8β3

)
D−v

(
−ρ
√
2β3

)
−(−1)m

0(v)
4n

(2β1)−v/2 exp
(
ρ2

8β1

)
D−v

(
−ρ
√
2β1

)
−(−1)m

0(v)
2n

n−1∑
`=1

(2β`2)
−v/2exp

(
ρ2

8β`2

)
D−v

 −ρ√
2β`2

,
(16)

where β3 = 0.5ϕ1.
Solving the first term in (7) using [15, Equ. (3.326.2)]

and substituting in turn (8), (9), (10), (13) and (16) in (7),
then simplifying, we finally arrive at the approximate ABEP
expression as:

Pe

≈
0(N )

(N − 1)!
−

1
8n
ϕ2e−0.5ϕ

2
2 (ϕ1+1)

N−1∑
k=0

σ̄ 2k

k! (2b)k

×

2k∑
m=0

(−1)2k−m
(
2k
m

)
ϕ2k−m2 2−

v
20(v)

{
β
−v/2
1 exp

(
ρ2

8β1

)
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FIGURE 3. Comparison of CDFs (σ = 1, c = 0.8, 1, 2, 4) showing accuracy of asymptotic CDF (18) with N = 4,
PL = 1.

×

[
D−v

(
ρ
√
2β1

)
−(−1)mD−v

(
−ρ
√
2β1

)]
+2

n−1∑
`=1

(β`2)
−v/2

× exp

(
ρ2

8β`2

)[
D−v

(
ρ√
2β`2

)
− (−1)mD−v

(
−ρ√
2β`2

)]

+(−1)m(4n)β−v/23 exp
(
ρ2

8β3

)
D−v

(
−ρ
√
2β3

)}
−

1
2
.

(17)

B. ASYMPTOTIC ANALYSIS
1) SIMPLIFIED ABEP USING AN ASYMPTOTIC CDF
The ABEP expression derived in (17) requires multiple com-
putations of the confluent hypergeometric function, which is
well-known to be relatively slow. By evaluating (7) using
an asymptotic representation of (6), (17) may be simplified.
Setting γ →∞, it may be validated that (6) may be approx-
imated as:

Fγ→∞
J̄

(x, σ̄ , c̄) ≈ 1−
exp ( σ

2

2c2
)

2
e
−x
c̄ . (18)

Fig. 3 illustrates the curves of the CDF given by (6) and the
asymptotic CDF given by (18). We have considered values of
c = 0.8, 1, 2 and 4. Further, we have only considered N = 4,
which represents the worst-case setting. It is immediately
evident that at high SNRs, the CDFs match exactly. For
example, in the case of c = 0.8, for small values of x the
match is very tight from a worst case SNR of approximately
16 dB, while at higher values of x the match is tight even in
the low SNR region. As c increases from c = 1 to c = 4,
the match becomes tighter even at lower values of x. This
investigation serves to show that if we use the asymptotic
CDF representation in (18) to derive a simplified ABEP
expression, then a good match with simulation results can be
expected.

Based on the above motivation, we may substitute (18) in
(7) for FJ̄ (x, σ̄ , c̄), and arrive at:

Pe ≈
e
σ2

2c2

2NbN (N − 1)!

∫
∞

0
e
−x2
2b −

x
c̄ x2N−1dx. (19)

Using [15, Equ. (3.462.1)], (19) is reduced to:

Pe ≈
e
σ2

2c2

2N (N − 1)!
0(2N ) exp

(
b
4c̄2

)
D−2N

(√
b
c̄

)
. (20)

It is immediately evident that the ABEP in (20) is signif-
icantly simpler than (17) to evaluate, since the confluent
hypergeometric function is evaluated only once, while it is
evaluated N (2k + 1)[3 + 2(n − 1)] times in (17). Based
on the previous motivation drawn from Fig. 3, the ABEP in
(20) is also expected to agree well with simulation results
at moderate-to-high SNRs. Comparison will be drawn in
Section IV to demonstrate the accuracy of the expression.

2) ASYMPTOTIC ABEP
Based on the expression derived in (20), and applying the
asymptotic representation of the parabolic cylinder function
D−v(·) using [15, Equ. (9.246.1)], we have:

Pγ→∞e

≈
e
σ2

2c2

2N (N − 1)!
0(2N )

(√
b
c̄

)−2N[
1

−
N (2N + 1)c̄2

b
+
N (2N + 1)(2N + 2)(2N + 3)c̄4

4b2
−· · ·

]
.

(21)

Since c̄ = c
√
γPLN

and γ →∞, the second and higher order
terms will become very small and may thus be neglected,
yielding the asymptotic ABEP:

Pγ→∞e ≈
e
σ2

2c2

2N (N − 1)!
0(2N )

(√
b
c̄

)−2N
. (22)

The result in (22) will be evaluated in Section IV.
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3) DIVERSITY ORDER
Given the average SNR δ, the diversity order may be defined
as: Gd = limδ→∞−

logPe
log δ and consequently Pδ→∞e ≈ δ−Gd .

In order to determine the diversity order, we consider
γ → ∞. Substituting c̄ = c

√
γPLN

and using δ = γ

σ 2
, (22)

may be written as:

Pδ→∞e ≈
e
σ2

2c2

2N (N − 1)!
0(2N )

(√
bPLNσ
c

)−2N
δ−N . (23)

It is immediately evident that the diversity order is given by
Gd = N , and consequently does not affect the asymptotic
diversity order of the AP-RIS in the presence of Gaussian-
only additive noise [12].

C. TWO-WAY RELAYING
Two-way relaying employing physical-layer network cod-
ing is well-known [16] and enables two source nodes to
exchange information via a relay node over two transmission
phases. Two-way relaying has been considered for wire-
less communications to achieve spectrum efficiency gain
and improved error performance as well as to extend net-
work coverage, reduce shadowing effects, and increase power
efficiency [16], [17].

Consider AP-RIS transceivers at Nodes A and B and a
single-antenna transceiver at Node R as depicted in Fig. 4.
Each of the nodes operate in half-duplex and the RISs are
each equipped with N elements.

FIGURE 4. System model of the AP-RIS-assisted two-way relaying
network.

In the multiple access channel (MAC) phase, Nodes A
and B transmit their message symbols to Node R. Node R
detects the two symbols and in the broadcast channel (BC)
phase, transmits a network-coded version of the message
symbols using decode-and-forward to Nodes A and B. Each
of the nodes detect the received symbol and then perform
network coding with their respective transmitted symbols.
Hence the exchange of messages between Nodes A and B
is achieved. Perfect transmit synchronization is assumed and
that transmission from Node A cannot directly arrive at Node
B or vice-versa due to large-scale fading. These assumptions
are consistent with related literature [16], [17].

Accordingly, assuming a Rayleigh frequency-flat slow fad-
ing channel with path loss in the presence of Gaussian-plus-
Laplacian additive noise, the received signal at Node R in the

MAC phase is:

yR =
√
γAPLA

N∑
i=1

hR,Ai ejφ
R,A
i ξA +

√
γBPLB

N∑
i=1

hR,Bi

×ejφ
R,B
i ξB + JR, (24.1)

=
√
γAPLA

N∑
i=1

α
R,A
i ξA +

√
γBPLB

N∑
i=1

α
R,B
i ξB + JR,

(24.2)

where hR,A(B)i = α
R,A(B)
i ejθ

R,A(B)
i is the channel gain between

the relay antenna and the i-th RIS element at Node A(B),
with αR,A(B)i the respective channel magnitude and θR,A(B)i the
respective channel phase. In order to maximize the received
SNR, the phase at each RIS is intelligently adjusted as
φ
R,A(B)
i = −θ

R,A(B)
i , hence yielding (24.2). The symbol ξA(B)

is the assumed BPSK symbol emitted from Node A(B) with
E{ξ2A(B)} = 1 and ξA(B) ∈ χ . γA(B) is the average transmit
power at Node A(B). PLA(B) is the total path loss with respect
to Node A(B). JR = IR + ηR with the mutually independent
Laplacian and Gaussian additive noises represented by IR and
ηR, respectively.
Given complete knowledge of the channel, the symbols ξA,

ξB detected at the relay node is determined as:[
ξ̂RA , ξ̂

R
B

]
= argmin

ξA(B)∈χ

{
(yR −

√
γAPLA

N∑
i=1

α
R,A
i ξA

−
√
γBPLB

N∑
i=1

α
R,B
i ξB)2

}
, (25)

Given the bit representation b
ξ̂RA(B)

for the detected symbol

ξ̂RA(B), network coding is applied at the relay as: bξR = b
ξ̂RA
⊕

b
ξ̂RB
. The corresponding assumed BPSK symbol ξR ∈ χ with

E{ξ2R} = 1 is then transmitted by Node R in the BC phase.
The received signal and subsequent detection rule (assuming
complete knowledge of the channel) at Node A(B) are given
as (26.1), (26.2) and (26.3), respectively.

yA(B)

=

√
γRPLA(B)

N∑
i=1

hA(B),Ri ejφ
A(B),R
i ξR + JA(B) (26.1)

=

√
γRPLA(B)

N∑
i=1

α
A(B),R
i ξR + JA(B), (26.2)

ξ̂
A(B)
R = argmin

ξR∈χ

{
(yA(B) −

√
γRPLA(B)

N∑
i=1

α
A(B),R
i ξR)2

}
,

(26.3)

where hA(B),Ri = α
A(B),R
i ejθ

A(B),R
i is the Rayleigh frequency-

flat slow fading channel gain between the i-th RIS element at
Node A(B) and Node R, with αA(B),Ri the respective channel
magnitude and θA(B),Ri the respective channel phase. In order
to maximize the received SNR, the phase at each RIS is
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FIGURE 5. Validation of error performance for AP-RISs (N = 4, 8, 16, 32 and 64) for σ = 1, c = 0.8, 1, 2 and 4 with r1 = 1 m and r2 = 9 m.

intelligently adjusted as φA(B),Ri = −θ
A(B),R
i , hence yielding

(26.2). γR is the average transmit power at the relay. PLA(B)
is the total path loss with respect to Node A(B). JA(B) =
IA(B) + ηA(B), where the mutually independent Laplacian and
Gaussian additive noises are represented by IA(B) and ηA(B),
respectively, at Node A(B).

Finally, the bit representation b
ξ̂B(A)
= b

ξ̂
A(B)
R
⊕ bξA(B) is

determined at Node A(B), hence achieving the exchange of
message symbols between Nodes A and B.

1) ERROR PERFORMANCE
Consider the transmission from Node A(B) to Node B(A),
then based on the analysis of the error performance of
two-way relaying presented in [17], the ABEP may be
expressed as:

PA(B)→B(A)
e ≈ PA,B→R

eA + PA,B→R
eB

−[2((PA,B→R
eA + PA,B→R

eB )− 1]PR→B(A)
e , (27)

where PA,B→R
eA(B) is the error probability at the relay assuming

ξA(B) is received in error, while ξB(A) is received correctly and
PR→B(A)
e is the error probability at Node B(A).
Assuming each node employs the transmission of a BPSK

symbol, then the probabilities on the RHS of (27) may be
given as Pe in (17); hence, (27) may be simplified as:

PA(B)→B(A)
e ≈ 3Pe − 4P2e . (28)

We may also employ the simplified ABEP given by (20)
for Pe in (28). Both results will be plotted and compared
in Section IV.

IV. NUMERICAL RESULTS
In this section, we first present the numerical results for
the AP-RIS assuming a Rayleigh frequency-flat slow fading
channel with path loss in the presence of Gaussian-plus-
Laplacian additive noise. Second, we present the numerical
results for AP-RIS-assisted two-way relaying under the same
channel conditions. For error performance comparisons, the
figure-of-merit considered is the bit error rate (BER) versus
average SNR. We consider the average SNR δ =

γ

σ 2
with

γ = γA = γB = γR. Comparisons are drawn at a BER of
10−5 unless otherwise stated. We consider N = 4, 8, 16,
32 and 64. BPSK modulation is assumed. Values of c = 0.8,
1, 2 and 4 are considered. In all cases, we assume σ = 1. For
large-scale fading, the total path loss PL is defined as [5], [6]:

PL =
λ4

256(πr1r2)2
, (29)

where λ = c/fc, with c the speed of light, fc is the carrier
frequency, r1 is the distance between the transmit antenna
and AP-RIS and r2 is the distance between the AP-RIS
and receive antenna. For two-way relaying, we consider
PL = PLA = PLB , r1 the distance between the transmit
antenna and AP-RIS at Node A(B), r2 the distance between
the AP-RIS at Node A(B) and antenna at Node R. In the
following results, we choose fc = 1.8 GHz, r1 = 1 m,
r2 = 9 m or r1 = 1 m, r2 = 12 m.

A. AP-RISs IN THE PRESENCE OF
GAUSSIAN-PLUS-LAPLACIAN ADDITIVE NOISE
In Fig. 5 (refer to the top of next page), the simulation results
and evaluated theoretical ABEP curves given by (17) and
(20) are presented. We have also included the MATLAB
symbolic math toolbox integrations of (4) with fx(x) given
by (5) and its improved approximation (cf. Equ. (9) in [14]).
We have considered the CDF given by (6) for these integra-
tions. In all settings of c andN , it is evident that the theoretical
and simulation results agree well at moderate-to-high SNRs
and are valid even for small RISs. More specifically, for
c = 0.8 and 1 (Figs. 5(a) and (b)), the results agree well
at moderate-to-high SNRs, while for heavier noise tails with
c = 2 and 4 (Figs. 5(c) and (d)), simulation and theoretical
results increase in tightness and generally agree well across
the range of SNRs. However, only in some of these instances
do they match at low SNRs. This will be discussed in brief
shortly. In all settings of N , the simplified ABEP given in
(20)matches theABEP of (17) and the simulation results very
closely formoderate-to-high SNRs for c = 0.8, 1 and for low-
to-high SNRs for c = 2, c = 4. It is also demonstrated that
the curves plotted for (4) match the derived ABEP exactly at
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FIGURE 6. Asymptotic ABEP for σ = 1, c = 0.8, 1, 2, 4, N = 4, 8, 16, 32 and 64 with r1 = 1 m and r2 = 9 m.

moderate-to-high SNRs in the cases of c = 0.8 and 1 and
at low-to-high SNRs for the cases of c = 2 and c = 4.
Furthermore, the improved approximation of fx(x) presented
in [14], demonstrates no further improvement in accuracy
of the ABEP. As mentioned earlier, in some instances it is
evident that there is difference between the ABEP of (17),
simplified ABEP of (20) and simulation results at low SNRs.
At the same time, the curves for (4) and the improved approx-
imation for fx(x) matches the simulation results much more
closely at these low SNRs. Based on this, we can state that
the error is not due to the Gaussian-plus-Laplacian noise
CDF employed at low values of c. This is further evidenced
in the comparisons drawn in Figure 2. Instead, since the
error at low SNRs is much more pronounced for (17) and
significantly less for (20), we can induce that such error is due
to the inaccuracy of the confluent hypergeometric function
computation at these SNRs.

FIGURE 7. Comparison of error performance for AP-RISs (N = 4, 8, 16,
32 and 64) with Gaussian-only (σ = 1) and Gaussian-plus-Laplacian
(σ = 1, c = 0.8, 1, 2 and 4) additive noise.

Fig. 6 (refer to top of next page) presents the BER vs. SNR
result in order to draw comparison with the asymptotic ABEP
given by (22). Since it is not practical to obtain the simulation
results at the high SNRs of interest, we have instead gen-
erated the curves using the simplified ABEP given by (20).

Results have been shown for N = 4, 8, 16, 32 and 64 with
σ = 1, c = 0.8, 1, 2, 4 and we consider r1 = 1 m
and r2 = 9 m. In each of the cases, it is evident that the
curves converge and a close match is seen at high SNRs.
Using (22), the asymptotic diversity order was shown earlier
to be Gd = N . Since the curves converge and the slopes are
identical at high SNRs, the diversity order is evident.

In Fig. 7, comparison is drawn between the error perfor-
mances with and without the impulsive noise component.
Serious degradation is shown when the noise includes an
impulsive component. This is even more so when the noise
tails become heavier (c = 1, 2 and 4). For example, consid-
ering N = 64, SNR penalties of approximately 9.5 dB are
evident for c = 0.8, while approximately 11 dB, 17 dB and
23 dB penalties are evident for c = 1, c = 2 and c = 4,
respectively. Similar penalties are evident for other values of
N and are tabulated in Table 1.

TABLE 1. Summary of SNR penalties due to impulsive noise component
for N = 4, 8, 16, 32 and 64 with σ = 1 and c = 0.8, 1, 2 and 4.

B. AP-RIS-ASSISTED TWO-WAY RELAYING
Figs. 8 and 9 present the simulation results and evaluated
theoretical ABEPs for the AP-RIS-assisted two-way relaying
network. Comparison is drawn between the error perfor-
mances with and without the impulsive noise component.
We consider σ = 1 and c = 1. Two configurations r1 = 1 m,
r2 = 9 m and r1 = 1 m, r2 = 12 m are considered.
Severe penalties in SNR are evident in the presence of noise

with an impulsive component. For example, in Figs. 8 and 9,
for N = 64 there is a penalty of approximately 11 dB,
while similar penalties are evident for other values of N .
In each instant, it is evident that the theoretical ABEP, which
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FIGURE 8. Comparison of error performance for AP-RIS-assisted two-way
relaying (N = 4, 8, 16, 32 and 64) with Gaussian-only (σ = 1) and
Gaussian-plus-Laplacian (σ = 1, c = 1) additive noise for r1 = 1 m and
r2 = 9 m.

FIGURE 9. Comparison of error performance for AP-RIS-assisted two-way
relaying (N = 4, 8, 16, 32 and 64) with Gaussian-only (σ = 1) and
Gaussian-plus-Laplacian (σ = 1, c = 1) additive noise for r1 = 1 m and
r2 = 12 m.

is a bound [17] given by (17) in (28), agrees well with the
simulation results. The simplified ABEP using (20) in (28)
also agrees very well and is identical to (28) using (17) at
higher SNRs.

V. CONCLUSION AND FUTURE WORK
In this paper, the error performance of an AP-RIS in the pres-
ence of Gaussian-plus-Laplacian additive noise was inves-
tigated. The formulated theoretical ABEP was validated by
simulation results and allows arbitrary RIS sizes. A simplified
ABEP that requires only a single evaluation of the confluent
hypergeometric function was derived andmatched simulation
results well. Both formulations were used in the validation
of the error performance of an AP-RIS-assisted two-way
relaying network. Results presented in this paper demonstrate
the vulnerability of RISs to additive noise with an impul-
sive component. Future work involves the investigation of
techniques to mitigate the deleterious impact this type of
noise has on the error performance of RIS-based communi-
cations. The effects of co-channel interference may also be
investigated together with extending the result to generalized
channels.

APPENDIX A
DERIVATION OF INTEGRAL I1

Given I1 =
∫
∞

0 x2N−1e−
x2
2b FJ̄ (x, σ̄ , c̄)dx, let u = FJ̄ (x, σ̄ , c̄)

and dv = x2N−1e−
x2
2b dx. Using [15, Equ. (2.33.11)]:

v = −
(N − 1)!

2
e−

x2
2b

N−1∑
k=0

x2k

k!
(

1
2b

)N−k . (30)

We then have:

I1

= −FJ̄ (x, σ̄ , c̄)
(N − 1)!

2
e−

x2
2b

N−1∑
k=0

x2k

k!
(

1
2b

)N−k
∣∣∣∣∞
0

+
(N − 1)!

2

N−1∑
k=0

1

k!
(

1
2b

)N−k ∫ ∞
0

x2ke−
x2
2b fJ̄ (x, σ̄ , c̄)dx.

(31)

Since FJ̄ (0, σ̄ , c̄) =
1
2 , (31) is reduced to:

I1 =
(N − 1)!
22−Nb−N

+
(N − 1)!

2

N−1∑
k=0

1

k!
(

1
2b

)N−k
×

∫
∞

0
x2ke−

x2
2b fJ̄ (x, σ̄ , c̄)dx. (32)

APPENDIX B
DERIVATION OF INTEGRAL I2

It may be validated that I2 =
∫
∞

0 x2ke−
x2
2b fJ̄ (x, σ̄ , c̄)dx, may

be written as:

I2 =
1
2c̄
e
σ2

2c2

∫
∞

−∞

x2ke−
x2
2b e

x
c̄Q
( x
σ̄
+
σ

c

)
dx. (33)

Let y = x
σ̄
+

σ
c , ϕ1 =

σ̄ 2

b and ϕ2 = σ
c , then simplifying and

rearranging, we have:

I2 =
1
2c̄
e−0.5ϕ

2
2 (ϕ1+1)σ̄ 2k+1

×

∫
∞

−∞

e−0.5ϕ1y
2
eϕ2(ϕ1+1)y(y− ϕ2)2kQ(y)dy. (34)

Using the binomial expansion for (y− ϕ2)2k , given as:

(y− ϕ2)2k =
2k∑
m=0

(−1)2k−m
(
2k
m

)
ymϕ2k−m2 , (35)

we have:

I2 =
1
2c̄
e−0.5ϕ

2
2 (ϕ1+1)σ̄ 2k+1

2k∑
m=0

(−1)2k−m
(
2k
m

)
ϕ2k−m2

×

∫
∞

−∞

e−0.5ϕ1y
2
eϕ2(ϕ1+1)yymQ(y)dy

(36)
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