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ABSTRACT Asynchronous systems are native to a full custom domain. Their implementation using auto
place-and-route tools requires dynamic calibration of interconnects delays in addition to the placement of
predefined static delay elements. This paper presents a completion detector for a single-rail bit encoded
datapath that, as an adaptive-delay element, eliminates the need to insert any predefined delay element and
caters to routing delays dynamically. A programmable pulse-generator is also proposed that empowers the
designers to generate clock signals based on the timing report obtained from the CAD tool to drive various
synchronous subsystems and embedded resources like BRAMs in FPGAs. Employing these components,
we present an asynchronous pipeline model with implicit control to expedite migration from the traditional
synchronous pipelines to their asynchronous counterparts. A single-rail bit encoded datapath has been used
to utilize chip area effectively instead of a delay-insensitive dual-rail datapath, and a two-phase handshake
protocol has been adopted as opposed to a four-phase handshake protocol to lower handshaking overhead.
A RISC processor validates the proposed asynchronous pipeline model, exhibiting a smooth functionality
and power-delay parameter comparable to that of a synchronous pipeline, in addition to ease of routing and
avoiding clock skews in a complex system-on-chip.

INDEX TERMS Adaptive delay, asynchronous pipeline, auto place-and-route, microprocessor.

I. INTRODUCTION
Down-scaling of semiconductor technology increases the
number of transistors exponentially, allowing integration
of higher density Systems on Chip (SOC) to build larger
circuits [1]. The interconnect delays have become so signif-
icant that it is challenging to distribute the clock network
over the chip area without ignoring clock skews [2]. The
high power and clock skew associated with distributed net-
works compels researchers to consider asynchronous design
methodologies [3].

FPGAs provide a platform to implement any digital
system. They have gained popularity due to their sup-
port for quick system prototyping and low costs. How-
ever, the logic implemented on FPGAs consumes more area
and power than ASIC implementation of the same logic.
Commercial FPGAs are synchronous except ‘‘Speedster’’
by Achronix [4], [5], which supports asynchronous logic.
Implementation of an asynchronous system on conventional
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FPGAs requires knowledge of synthesis, placement, and
routing tools.

A pipeline is a well-proven technique for enhancing
the throughput of a system. In an asynchronous pipeline,
the absence of a common clock eliminates the imposed
restrictions on the system and lets the pipeline stages work
independently of others. This independence brings some pos-
itive implications in terms of elasticity, modularity, increased
performance, on-demand dynamic power dissipation [6], and
electromagnetic compatibility.

The path connecting two stages in an asynchronous
pipeline can either be a single-rail or dual-rail bit encoded.
In a single-rail bit encoding, one wire represents a single
bit [2], whereas a dual-rail encoding requires two wires to
represent a single bit. Both datapaths require handshake pro-
tocols [7], either two-phase or four-phase [8], [9], comprising
Request (Req) and Acknowledge (Ack) signals, to syn-
chronize various stages. The single-rail encoding scheme
necessitates the placement of a delay element, typically an
inverter chain or a counter, in the Req line to slow down
request signals to match the speed of the datapath. This may
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also be necessary in the Ack line to meet the hold time
requirements of inter-stage latches [10]. The delay-element
placement might not work as the auto Place-And-Route
(PAR) tools are unaware of asynchronous design method-
ology [11]; therefore, they do not preserve the delay ratios
between control and various nets of datapaths [12]. This delay
mismatchmay cause setup and hold time violations and result
in design failure. The problem leads to a need for a circuit that
calibrates the delays after the design is placed and routed.

To deal with the delays, we propose a Completion Detector
(CD), which senses its input for complete receipt of incoming
data and generates the Ack signal when the hold time is sat-
isfied. The proposed CD enables the PAR tools to implement
the design without notable design constraints except routing
optimization. Synchronous components such as RAM, coun-
ters and registers may also be placed within pipeline stages
requiring a clock signal that meets their timing requirements.
Hence, a programmable pulse generator is also proposed.

Our key contributions are as follow:

• Designing a logic-based completion detector that acts as
an adaptive-delay element in an asynchronous pipeline
to store only valid results in inter-stage latches/registers.

• Designing an on-chip ring oscillator to drive shift
registers whose adjustable size as a programmable
delay-element allows quick modeling of delays.

• Designing an asynchronous pipeline model that com-
bines adaptive and programmable delays, enabling
designers to insert synchronous and FPGA’s embedded
components inside the pipeline stages.

• Validation of the proposed asynchronous pipeline model
by using a complex application of a pipelined RISC
machine.

The remainder of the paper is organized as follows.
In section II, conventional pipelines are discussed, whereas
section III presents proposed building blocks. Section IV
presents the proposed asynchronous pipeline model using
building blocks, while its application is presented in
section V. Section VI presents results, comparisons, and dis-
cussion. Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK
Asynchronous systems have widely been implemented in
full custom ASICs. Their implementation using auto PAR
tools requires a delay-insensitive bit encoding scheme (like
dual-rail bit encoding). In dual-rail bit encoding, where two
wires are required for propagation of a single bit, the cir-
cuit requires more chip area, impacting performance and
power parameters [13]. However, efficient utilization of the
resources and better power-delay products require single-rail
encoding schemes. Single-rail encoded datapaths require
placement of precise delay elements in control path parallel
to the datapath covering both logic and interconnects delays
which are intricate to handle without the support of PAR
tools. Manual PAR requires the same effort and time that is
required for full custom designs.

The high-performance asynchronous pipelines based on
single-rail encoding schemes such as Micropipelines [14],
MOUSETRAP [15], GasP [16] use predefined delays in their
Req lines and exist in full custom ASICs. However, the
William PSO pipeline [17] and lookahead pipelines [18] use
dual-rail encoded datapath and generate Ack signal using a
dual-rail completion detector. The completion detector for
single-rail encoded datapath was first introduced by [19]
and the work was further carried out by [20], [21] [22].
They detect logic completion by activity monitoring using
current sensing. The circuit declares logic completion if the
current gets stable or no variation in current is detected for
a finite amount of time. The reliable data can be stored in
an inter-stage latch only after logic completion. In case of
using FPGA platforms to implement asynchronous systems,
it is pertinent to mention here that FPGAs neither contain
current-sensing completion detection circuitry nor can the
same be built using existing configurable logic blocks.

There has been little work on implementing asynchronous
pipelines on FPGAs with a single-rail encoding scheme.
The authors in [12], [23]–[26] implemented asynchronous
pipelines in FPGAs for various applications and inserted pre-
defined delays in Req lines parallel to logic and wire delays.
They do not offer dynamic calibration of delays, and there
is no detail for inserting sequential components like RAMs
and counters that require clock signals between pipeline
stages. There has been no concrete implementation of an
asynchronous pipeline on FPGAs using single-rail encoding
schemes with an adaptive-delay element or the implementa-
tion that allows the insertion of sequential components in the
pipeline targeting various applications.

FIGURE 1. On-chip ring oscillator.

III. PROPOSED METHOD
A. RING OSCILLATOR
An on-chip Ring Oscillator (RO) is proposed, as shown in
Figure 1, which automatically adapts the underlying technol-
ogy and produces clock frequency in synchronization with a
latch to meet the setup and hold time requirements of on-chip
D Flip-flops. The ‘Enable’ signal at the gate input of the
1-bit latch makes the latch transparent such that the output
of the latch going through the NOT gate causes the output of
the latch to flip continuously as long as the gate input remains
HIGH. The propagation delay of the latch and the NOT gate
defines the time period of the clock with a 50% duty cycle.
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The generated frequency can be slowed down further
according to the requirement to drive on-chip sequential
components in a design. The circuit that produces a single
pulse after a programmable delay upon the ‘Enable’ signal’s
assertion is shown in figure 2. A high ‘Enable’ signal enables
RO to produce clock pulses to drive the N-bit Shift-Left
Register (SLR). The logical one is connected to the Least
Significant Bit (LSB) of the SLR that serially shifts it left
on each clock cycle until it reaches MSB. The ‘Pulse’ signal
is taken from MSB as ‘R(N)’ of SLR. When the ‘Enable’
signal goes low, it clears the SLR asynchronously. The size
of SLR is chosen as per the needed delay. Figure 3 shows
post-layout simulation of pulse generator circuit for Xilinx
XC7a100t-1csg324 FPGA.The generated pulse can be fed as
a clock to any sequential component in a pipeline or generate
glitch-free Req and Ack signals.

B. COMPLETION DETECTOR
Completion detection is a critical need of delay-adaptive
asynchronous systems because it must indicate the comple-
tion of data execution by the logic blocks, and thus the results
can be stored safely. The duration after which the output of
a circuit becomes stable is determined by the propagation
delay of gates, the wire lengths of interconnects, and the
circuit complexity. As an example, in a Ripple Carry Adder
(RCA), the carry from the least significant bit may continue
to change the resultant bits for a delay that corresponds to
its word length. The resultant sum, thus, cannot be latched
safely till the most significant bit gets stable. The minimum
delay occurs in many cases when no carry is involved [27].
The random delay is expressed by Log2 N, where N is the
number of bits of RCA [28].

The operation of the RCA circuit reveals that the logic
completion time of combinatorial circuits may also depend
upon the data at its input, and it correlates with the transitions
at its output. Based on this correlation, we propose a comple-
tion detector for a single-rail encoded datapath. It senses the
transitions at its input and generates the completion signal if
no transitions are detected for a finite amount of time.

C. THE WORKING PRINCIPLE OF THE CD
The working principle behind the presented CD is to evaluate
the derivative of data at its input, which is nonzero when there
are transitions and becomes zero when transitions are wiped
out, i.e., when results become valid, as shown in equation 1.
Here, dD

dt denotes the rate of change of the input data. The
equivalent circuit compares the incoming current data with
its neighbouring preceding one, i.e., the delayed version,
as shown in figure 4, where 1 denotes the delay.

The delayed version can be achieved by propagating data
through a chain of even number inverters or a level-triggered
latch whose enable is kept high. The comparator can be either
logical AND of bitwise 2-input XNOR gates or a standard
ALU in subtraction mode whose zero flag is the comple-
tion signal. During the transition period, the comparator’s
mismatch keeps its output low, and when the inputs become

stable, the comparator’s output goes high.

dD
dt
=

{
6= 0 if there are transitions in results
0 when results become stable

(1)

D. THE BASIC CIRCUIT OF CD
As shown in figure 5, an N-bit CD employs DFFs
from the configurable logic blocks of an FPGA as D-type
level-triggered latches based on the concept discussed above.
Such latches on a bus remain transparent to data as long as
their gate signal remains active. The propagation delay of a
latch separates input and output data. The inputs and outputs
of an N-bit latch as two sets of inputs to a comparator that
compares its inputs for equality. The output of the comparator
will go low only for the duration of the mismatch between
both of its inputs. The comparator’s high output guarantees
stability of data at the latch’s input and, hence, detects com-
pletion of logic execution by the CD’s preceding circuitry.
This way, the comparator’s output becomes a logic comple-
tion signal ‘Done’ and is asserted only when no transitions
are detected within that delay.

E. VERIFICATION OF VALIDITY OF THE CD CONCEPT
To verify the validity of the presented concept, we connected
the output of a 32-bit multiplier to the proposed CD. The
completion signal ‘Done’ goes low for the duration when
changes at the inputs of the multiplier produce transitions at
its output. When the transitions at the output of the multiplier
die out, and the result becomes valid, the ‘Done’ signal goes
back to high, indicating that the multiplier has completed its
execution. This can be seen from the post-route simulation
viewgraph figure 6. This way the CD detects the execution
completion by sensing data stability at its input. Thus, the
high state of the ‘Done’ signal guarantees that the latch has
stored only the valid data.

The time for which the ‘Done’ signal remains low depends
upon the transition time of the output of the logic circuit
connected to the CD, plus the propagation delays of the latch
and the comparator of the CD, as shown in equation 2. Here,
d and t denote the delay of the logic propagation and time,
respectively. Since the latch and comparator work in parallel
and get stable with transition stabilization in the incoming
data; therefore, the time taken from the last transition till the
assertion of the ‘Done’ signal is the overhead. If the output
of the logic circuit is to be stored, then this overhead will be
eliminated depending upon the application.

tDone = ttransitions + dlatch + dcomparator (2)

F. CD WITH HANDSHAKE SIGNALS
The complete CD with additional logic circuity that performs
as a 2-phase sequence controller for pipeline processing is
shown in figure 7. To understand the signaling sequence of the
CD-based sequence controller in a pipeline, initially start with
all the inputs and outputs signals of the CD at logic low. The
Execution and Data Transfer (EDT) cycle begins with the flip
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FIGURE 2. Programmable delay-element.

FIGURE 3. Post layout simulation of Pulse-generator on XC7A100t-1CSG324 FPGA.

FIGURE 4. Basic concept of logic based completion detector.

FIGURE 5. Basic completion detector.

of ‘Req_in’ signal. The XNOR gate compares the ‘Ack_in’
and ‘Ack_out’ signals for equality. Their same state turns the
XNOR gate’s output high, making the N-bit latch transparent
for the comparator to perform its function. The XOR1 gate
compares the states of its inputs, ‘Req_in’ and ‘Ack_out’. The

mismatch at the input of XOR1 gate produces high output,
that enables the AND gate to propagate the output of the
comparator to the DFF1.

When results at the N-bit latch input become transitions-
free and valid, the comparator’s output goes high that through
the AND gate triggers DFF1 to store a copy of ‘Req_in’
in it. This copy matches the XOR1 and XNOR gate’s input
and mismatches the XOR2 gate’s inputs; thus, low outputs
of XNOR and XOR1 gates disable the comparator’s output
and make the N-bit latch opaque, respectively. At the same
time, the mismatch caused at the inputs of XOR2 will make
its output high, enabling the pulse generator to generate a
clock pulse after a programmable delay. The pulse will trigger
the DFF2 to save the copy of DFF1 and trigger any other
sequential component.

The purpose of DFF1 is to generate ‘Ack_out’ signal for
the preceding stage after storing valid data, and the purpose
of DFF2 is to forward ‘Ack_out’ received through DFF1
as ‘Req_out’ to the proceeding stage after a programmable
delay. The transition from the arrival of ‘Req_in’ to the gen-
eration of ‘Req_out’ signal completes EDT cycle. The new
EDT cycle can now be initiated by flipping back the state of
its ‘Req_in’. Following the same EDT cycle procedure, the
states of its control signals will get restored after the second
EDT cycle. This way, there are two EDT cycles in one cycle
of control signals, i.e., 2-phase communication.

The CD can detect logic completion of any combinatorial
or sequential circuit provided that the contamination delay
of a circuit is less than the ‘Req_in’ to ‘Ack_out’ time of
CD, as given in equation 3. The period between a combi-
natorial circuit’s input and the first transition on its output
is referred to as contamination delay. This delay can also be
calculated through post-route simulations if required. If the
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FIGURE 6. Post-layout simulation of completion detector on XC7A100t-1CSG324 FPGA.

first transition at the input of CD occurs after the genera-
tion of ‘Ack_out’, then the output of the comparator will
go low again. However, the old data would be forwarded
to the proceeding stage. It is observed that the subsystems,
either generated through behavioral or gate-level Verilog
HDLmodeling techniques, satisfies equation 3, if they do not
infer any embedded resources like BRAM and DSP blocks.
However, in case of significant contamination delay caused
due to these blocks, the programmable-delay element will
cater to it.

dContamination < tReqin−to−Ackout (3)

The operation of CD can be divided into two parts. One is
the generation of Ack after receiving data, commencing the
second part to generate Req for transmitting data onward.
If incoming data is the same as stored in N-bit latch upon
the assertion of Req_in, the minimum time taken by CD to
generate ‘Ack_out’ is shown in equation 4. The dxor1 and dand
are the delays associated with xor1 & and gates, respectively
whereas tsu and dcq are the setup time and clock-to-q delay of
DFF1, respectively.

tReqin−to−Ackout = dxor1 + dand + tsu + dcq (4)

Since a gate logic is implemented in the Look-up
Tables (LUT) inside FPGAs, the output of LUT goes through
D Flip-flop for sequential logic and bypasses it for combi-
natorial logic. Therefore, the logic equivalent to xor1 & and
gates will be implemented in LUT, and its output will follow
the sequential path. Therefore, after technology mapping, the
delay equation 4 will transform into equation 5. The dLUT is
the delay of single look-up table.

tReqin−to−Ackout = dLUT + tsu + dcq (5)

Similarly, after technology mapping, the time required to
generate ‘Req_out’ from the generation of ‘Ack_out’ with
minimal size of SLR, i.e., 1-bit, is illustrated in equation 6.
TOsc−TimePeriod is the time period of the frequency generated
by RO. Here, the tsu and the dcq are the setup and clock-to-q
delay of DFF2, respectively.

tAckout−to−Reqout = dLUT + tOsc−TimePeriod + tsu + dcq (6)

The N-bit latch becomes transparent when the Ack_out and
Ack_in become the same, permitting it to receive data without
waiting for the assertion of Req_in. This way, a latch in a
CD holds data until the receiver consumes it. The maximum
delay will occur if the N-bit latch gets transparent along with
the assertion of Req_in. In that case, the propagation delays
of latch and comparator will also be included in equation 5

as illustrated in equation 7. The tsu and dcq are the setup and
clock-to-q delay of DFF1, respectively.

tReqin−to−Ackout=dLUT+dlatch+dcomparator + tsu + tcq (7)

IV. ASYNCHRONOUS PIPELINE
The three-stage asynchronous pipeline model with 2-phase
bundle data protocol, implementable in FPGAs, is shown in
figure 8. An EDT cycle of the pipeline begins when data is
placed at its input, and Req input is flipped. This flip, in turn,
flips the output of its Muller-C element whose other input,
i.e., Ack coming from the proceeding stage, was already
matching with its Req input.

The output of Muller-C follows the state of its inputs when
both become in the same logic state. The Muller-C ’s output
as ‘Req_in’ enables CD to receive new data and generate
‘Ack_out’ upon receipt of data and subsequently ‘Req_out’
after a programmable delay. Both ‘Ack_out’ and ‘Req_out’
will be in the same logic state as of ‘Req_in’. Thus, ‘Ack_out’
and ‘Req_out’ will go to the preceding and proceeding CDs,
respectively, allowing them to process new data. However, the
latch in a CD will receive new data only if its proceeding CD
has received its current data.

This way, in a pipeline, the ‘Req_in’ signal coming to a CD
is generated by theMuller-C logic of the signals coming from
both of its neighbouring stages, i.e., the ‘Req_out’ of the pre-
ceding stage (when it wants to send data) and ‘Ack_out’ of the
proceeding stage (when it has saved data at its input), so that a
CD can coordinate its operation with its neighbouring stages.
Consequently, a proceeding stage does not allow data changes
at its input, i.e., in the N-bit latch of its preceding stage, till it
completes its execution with stable input and saves the valid
result in its N-bit latch. Thus, a newEDT cycle can commence
only when both the neighbouring stages will allow.This way,
even and odd number CDs work alternately. Thus, all the
stages of the pipeline safely process and save data.

The standalone operation of the asynchronous pipeline
requires the generation of the control signals along with
the processing. The inversion of Ack from the second stage
through AND gate goes as a request to the first stage. The
second input of AND gate is the global reset signal (Rst)
which is active Low. The last stage CD’s ‘Req_out’ will be
feed as ‘Ack_in’ to the same CD.

A. FPGA IMPLEMENTATION OF
ASYNCHRONOUS PIPELINE
In an asynchronous pipeline, each stage runs at its own pace
with its local clock. The clock is not free running but toggles
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FIGURE 7. Completion detector circuit with handshake signals.

FIGURE 8. Asynchronous pipeline model.

only when needed. A pipeline stage may include FPGA’s
embedded resources, e.g., BRAM or DSP blocks which may
be located at some distance within the FPGA, and thus the
interconnect delay may slow down the pipeline. For proper
functioning of the pipeline, in such cases, a pulse generator
may be needed at the output of the CD to provide the required
delay. The interconnect delays from CD to some sequential
blocks are controlled by applying the timing constraint on
the clock net. The FPGA’s PAR tool reports clock timing
based on interconnect delays from CD to sequential logic
block. This information can be obtained in different ways.
One way to calculate the clock delay is by synthesizing
each stage separately. In a static timing report, source rise to
destination rise time under clock-to-setup time requirement is
divided by the oscillator’s cycle time to get the size of SLR.

This approach of calculating delay is hectic. Another way of
obtaining delay information is by applying timing constraints
on all the internal clock nets together in a design and read the
timing report to check if the timing constraints have been met
after the PAR process. On compliance, the delay information
from the timing report is used to define the size of the SLR.
The latter method is reliable; therefore, it should be adopted
in defining the size of the SLR.

V. ASYNCHRONOUS PIPELINED RISC PROCESSOR
A tri-operand, five-stage pipelined RISC processor based on
the above-proposed concepts is shown in figure 10. This pro-
cessor supports a single type of instruction format, as shown
in figure 9. There are 16 32-bit registers, so there is a need
for a 4-bit address, with Rs, Rt, and Rd being the source,
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TABLE 1. Contents of data and code memories.

FIGURE 9. Instruction format.

target, and destination register operands, respectively. The
‘Immediate’ field is a 16-bit signed number. The 4-bit opcode
allows 16 different instructions in the instruction set archi-
tecture. The positions of the operands in the instructions
are fixed. A 32-bit instruction is fetched from the instruc-
tion memory. The Rs and Rt operands are read from the
Register File (RF) in the decode phase. ALU operations
are performed on Rs, Rt, and Immediate operands in the
execute stage depending upon the opcode. The ALU out-
put is fed as an address to the data memory in the case
of load and store instructions, otherwise bypassed to the
write-back stage where it is written in RF. Inspiration for this
micro-architecture is taken from the MIPS architecture [29].

The CD with a pulse generator takes care of the setup
and hold time requirements of register file, instruction, and
data memories which require clock signals.The contents of
memories are shown in the table 1. The addresses are listed in
the first column, while the contents of the data and codemem-
ories are shown in the second and third columns, respectively.
The assembly language representations of the instructions
in the third column are in the fourth column. The Register
Transfer Language (RTL) of these instructions is represented
in the fifth column. The post-layout simulation of the RISC
processor executing these instructions is shown in figure 11.

VI. RESULTS AND DISCUSSION
Apart from asynchronous implementation with adaptive
delays, we also implemented as part of this research for com-
parison, synchronous and asynchronous versions with fixed
delays of the RISC machine on the XC7A100t-1CSG324
FPGA device using ISE 14.7 with auto PAR tools. The same
pipeline model was used in both asynchronous implemen-
tations except that the comparators in CDs were replaced
with fixed delays. Fixed delays are implemented by insert-
ing LUT chains in the Req and clock lines based on the
delay information obtained from the PAR timing analysis
report. Timing constraints were specified to optimize design
routing. The optimization goal was set to speed rather than

area, and the effort level was set to high. All of the three
designs are implemented using the same parameters for
comparisons.

The area, speed, and power dissipation parameters for
asynchronous and synchronous systems are listed in Table 2.
It was observed that asynchronous implementation with CD
requires 85% more hardware than synchronous design due
to the addition of comparators and sequencers for the hand-
shaking protocol. Whereas the asynchronous implementation
with predefined delays requires 82.5% more hardware than
the synchronous design due to the sequencers and chains of
LUTs on the clock and Req lines.

For comparison purposes, to execute a set of ten instruc-
tions, the synchronous processor took 15 cycles, each of
7.28ns, i.e., a time of 109.2ns, while both the asynchronous
versions with adaptive delays and predefined delays required
106ns and 109ns respectively to execute the same set of
instructions, with average clock cycle times of 106ns/15 =
7.06ns and 107ns/15= 7.26ns. The asynchronous implemen-
tation with adaptive delays exhibits 3.0% better speed than its
synchronous version due to the relaxed timing offered by CD.
However, the predefined delays approach could not achieve
the speed benefit due to fixed nature of delays. Unlike syn-
chronous and asynchronous systems with predefined delays,
the cycle time of an asynchronous system with adaptive
delays is data-dependent.

It was also observed that both asynchronous implementa-
tions dissipate more dynamic power than their synchronous
counterpart due to extra hardware and better speed. The
absence of clock trees in asynchronous systems conserves
dynamic power [30]. We used clock trees for clk1, clk2,
and clk3 signals to meet timing constraints. Each sequential
subsystem runs at its own pace using a dedicated clock, which
can be gated to save power consumption [31]. However, all
the clock signals are non-gated and toggle upon the arrival of
request signal.

We used the same methods to calculate the speed and
power dissipation for both asynchronous and synchronous
designs. To conclude which design is better, a power-delay
product [32] as a unified performance matric, where a lower
value is better, is calculated and given in the Table2, which
shows that asynchronous design with adaptive delays exhibits
relatively better performance.
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FIGURE 10. Asynchronous pipelined RISC processor.

FIGURE 11. Post-layout simulation of asynchronous RISC processor on XC7A100t-1CSG324 FPGA.

TABLE 2. Power and performance comparison of conventional and adaptive pipeline.

Due to the adaptive nature of a ring oscillator, it adapts
to the delays of the underlying technology. Designers must
reconsider time constraints on clock nets for a design to
work during the migration of FPGA technology platforms.
Whereas, in the adaptive-delay-based (CD approach) asyn-
chronous pipeline, only clock nets are to be adjusted for
constraints. In the fixed delay-based pipeline, however,
all requests and clock nets must be adjusted accordingly.
Otherwise, timing violations may occur. It has been

observed that the adaptive-delay-based pipeline exhibits
smoother functionality upon technology migration due to
self-adjustments of delays.

VII. CONCLUSION
It has been shown that the proposed completion detec-
tor delays the generation of the acknowledge signal until
the transitions in the incoming data are entirely wiped
out in response to the request signal, thus acting as an
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adaptive-delay element, which eliminates the need to insert
any static delay-element at the pre-synthesis phase. The
proposed pulse generator makes the completion detector
robust and provides clock pulses to various sequential com-
ponents and FPGA’s embedded resources. The proposed
asynchronous pipeline model lets designers migrate from
synchronous to asynchronous domain quickly and reliably
without worrying about modeling post-synthesis delays,
a cumbersome job, and auto place-and-route tools to place
designs without maintaining ratios between control and
datapath.
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