
Received October 22, 2021, accepted November 19, 2021, date of publication November 25, 2021,
date of current version December 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3131002

Convolutional Neural Networks for Texture
Feature Extraction. Applications to Leaf Disease
Classification in Precision Agriculture
STEFANIA BARBURICEANU , SERBAN MEZA , (Member, IEEE), BOGDAN ORZA ,
RAUL MALUTAN, AND ROMULUS TEREBES, (Member, IEEE)
Communications Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania

Corresponding author: Stefania Barburiceanu (stefania.barburiceanu@com.utcluj.ro)

This work was supported by the Project ‘‘Entrepreneurial Competences and Excellence Research in Doctoral and Postdoctoral
Programs—ANTREDOC,’’ Project co-funded by the European Social Fund Financing under Grant 56437/24.07.2019.

ABSTRACT This paper studies the use of deep-learning models (AlexNet, VggNet, ResNet) pre-trained
on object categories (ImageNet) in applied texture classification problems such as plant disease detection
tasks. Research related to precision agriculture is of high relevance due to its potential economic impact
on agricultural productivity and quality. Within this context, we propose a deep learning-based feature
extraction method for the identification of plant species and the classification of plant leaf diseases. We focus
on results relevant to real-time processing scenarios that can be easily transferred to manned/unmanned
agricultural smart machinery (e.g. tractors, drones, robots, IoT smart sensor networks, etc.) by reconsidering
the common processing pipeline. In our approach, texture features are extracted from different layers of
pre-trained Convolutional Neural Network models and are later applied to a machine-learning classifier. For
the experimental evaluation, we used publicly available datasets consisting of RGB textured images and
datasets containing images of healthy and non-healthy plant leaves of different species. We compared our
method to feature vectors derived from traditional handcrafted feature extraction descriptors computed for
the same images and end-to-end deep-learning approaches. The proposed method proves to be significantly
more efficient in terms of processing times and discriminative power, being able to surpass traditional and
end-to-end CNN-based methods and provide a solution also to the problem of the reduced datasets available
for precision agriculture.

INDEX TERMS Applied convolutional neural networks, leaf disease detection, image classification, texture
classification, texture feature extraction.

I. INTRODUCTION
Image feature extraction and classification is a computer
vision field that has been studied intensively by researchers
due to its practical relevance for various scenarios, includ-
ing that of precision agriculture, [1]. Plant diseases have a
huge effect on the agricultural productivity [2]. They can
easily degrade the quality of the products, so they must
be detected as soon as possible. The current methodology
for detection is the human perception of plant leaves [3].
However, this method is not efficient in terms of available
resources, especially for large crops, and automatic image
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classification systems can be beneficial in this situation. In the
literature, several plant disease classification problems were
addressed, such as the classification of cucumber and citrus
leaves [4], [5] which is performed by using the Gray-Level
Co-occurrence Matrix (GLCM) for the extraction of relevant
features. In [6], colour information is used along with GLCM
- derived features and Gabor characteristics for the classi-
fication of mango leaves. Deep-learning methods are also
mentioned for the classification of plant diseases in [7]–[9].

Until recently, [7], [9], the problem of image classification
has been addressed as a two-stage approach: the extraction
of handcrafted features and machine-learning classification.
The feature extraction step is regarded as the most impor-
tant stage because the subsequent classification task is based
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on the derived image descriptors. Even the most powerful
machine-learning classifier will provide a poor classification
performance if the image features are not chosen appropri-
ately. The extraction of relevant and discriminative features
is a challenging task for real-world applications. Moreover,
images are captured under various conditions and, to obtain
good classification results, the extracted features should pro-
vide invariance to several transformations (such as scale,
rotation, illumination conditions) and robustness to noise.

One of the most popular and efficient feature extraction
methods is the Local Binary Patterns operator (LBP) [10]
and its improved version, proposed in [11]. The LBP descrip-
tor is based on the signs of differences between neighbour-
ing pixels, and it is used to describe locally the texture of
the analysed image. Later, several LBP-derived operators
which provide improved invariance to different transforma-
tions and a greater discrimination power were proposed,
such as the Median Robust Extended Local Binary Patterns
(MRELBP) [12]. Also, in order to improve the robustness
to Gaussian noise, the Block Matching and 3D Filtering
Extended Local Binary Patterns (BM3DELBP) was intro-
duced by us in [13]. Another popular texture feature descrip-
tor is the Gray-Level Co-occurrence Matrix (GLCM) [14]
which achieved significant performance for texture classifi-
cation tasks as reported in the literature.

In the case of traditional machine-learning methods,
expert-driven feature selection and extraction are needed.
A specialist must design a feature extraction method capable
of outputting the most relevant features and feed them into
a conventional machine-learning classifier. The classifier is
then trained to learn from data and apply the learnt informa-
tion to new data in order to make a classification decision.

However, lately, [7], [9], impressive results were obtained
with the use of deep-learning methods, revolutionising the
image and object classification field. Rather than relying
on handcrafted features, these methods can be used as end-
to-end approaches because they work by automatically learn-
ing the relevant features themselves, without the need of
expertise, from the raw data provided as input. Deep-learning
methods are constructed to learn hierarchically, their archi-
tecture being composed of several hidden layers, and are
generally trained on large datasets to obtain a good classi-
fication performance. Such a dataset is ImageNet [15]. The
main disadvantage of these algorithms is the long training
time, which in most situations is a lot larger compared to the
case of traditional classification methods. This is due to the
large number of parameters that have to be learnt from
the data.

The Convolutional Neural Network (CNN) is a deep-
learning technique that has been widely used in the
past years with great success for many computer vision
tasks, [1], [7], [9], [16]. The architecture of a CNN is com-
posed of several types of layers: convolutional, nonlinear,
pooling, fully connected, normalization and others. The stack
of convolutional, nonlinear, and pooling layers act as a feature
extractor. The second part of the CNN is composed of several

FIGURE 1. The architecture of an end-to-end CNN for image classification.

fully connected layers that are used to make a classification
decision based on the generated features. We show in Fig. 1
the general block scheme of an end-to-end CNN architecture
for classification tasks.

One of the main disadvantages of CNN-based methods is
the fact that very large datasets are required in order to achieve
significant results, [17], like with any deep-learning tech-
nique. However, there are applications inwhich the number of
available training samples is limited, [18], especially because
of the large resources (time, expertise, etc.) needed to acquire
and label consistently a vast number of images (e.g. precision
agriculture). This is largely addressed either by performing
some sort of ‘‘data augmentation,’’ where, from the existing
data, ‘‘new’’ data is generated, or by deployingwhat is termed
‘‘transfer learning.’’

Data augmentation is a challenging approach, as it tries
to create relevant variability in the data, and, with the use
of generative adversarial networks contributes more to the
increase in the overall complexity of the classification sys-
tem. The work in [17] provides a relevant overview of the
field, and [19] is an example of an applied case of vine leaf
classification.

The ‘‘transfer learning’’ concept, developed by [20], [21],
resembles the approaches we, as humans, take in our every-
day life, as we do not learn everything from scratch, but rather
use the knowledge gained in a particular previous task in other
related new tasks. Practically, we transfer the knowledge
acquired in the past to solve future problems. Isolated training
models are designed specifically for a particular task and
dataset, whereas in the transfer learning models, the gained
knowledge can be transferred and used in another related new
task which can imply a better performance obtained on a
smaller dataset and less training time. CNN-based methods
that explored the transfer learning approach by using features
derived from pre-trained CNNs on large image datasets can
be found in the work of [22]–[26] and others.

Typically, a new object classification problem is addressed
by using a pre-trained model without its classification layers
to extract the relevant features for the new problem. Practi-
cally, the weights of the network are not updated for the new
task, but they are used in the new problem exactly as they
were trained for the previous task and only the classification
part is replaced. Popular CNN models and datasets which are
widely used for feature extraction in the context of transfer
learning and belonging to the object classification problem
include: AlexNet [27], VggNet [28], GoogleNet [29], and
ResNet [30]. Features can be extracted either from the con-
volutional layers or from the fully connected layers of the
network. In general, it was shown, [23], [31], [32], that the
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features extracted from convolutional layers have a better
generalization capability. The features extracted from fully
connected layers have a poorer transferability because they
are more specific to a particular task or dataset.

In the context of plant disease, the classification problem
translates to a texture classification problem from the point
of view of the image content, where the disease manifests
itself more as a variation in the leaf texture rather than a
type of object that is present in the image, [3], [7], [9].
Such, different state-of-the-art CNN architectures for texture
classification and recognition have been proposed [33]–[36].
However, this strategy is highly impacted by the lack of large
texture datasets compared to the object classification problem
datasets. Fine-tuning (retraining only some layers) on small
texture datasets does not bring enough improvements in the
classification accuracy [33]. In [33], the authors proposed
the Texture CNN architecture which is based on AlexNet
but uses an energy measure derived from the last convolu-
tional layer. They arrived at the conclusion that the size of
the dataset strongly influences the performance. The authors
also observed that the fine-tuning performed on a network
pre-trained on textured images achieves better results than by
using a network pre-trained on a dataset that contains mostly
objects. This happens probably because an image from an
object-oriented dataset can contain multiple textures. In [36],
the authors propose Bilinear CNN Models in which the fully
connected layers are replaced with bilinear pooling models.

Our paper is structured as follows. Section II describes
the proposed technique which involves using pre-trained
CNN models on object-oriented datasets to extract textural
features. Section III details the experimental configuration
setups. We use publicly available textures and images of
different real-world plant species affected by disease datasets
for evaluation. Section IV details the obtained experimental
results together with a comparison between other handcrafted
and deep-learning methods and the proposed technique in
terms of classification performance and time efficiency.
Section V is dedicated to final conclusions and remarks.

II. THE PROPOSED METHOD
We are interested in the study of the performance of deep-
learning pre-trained models in the classification of textured
images even if the models were pre-trained on object cate-
gories. We show, therefore, how the chosen networks behave
in a real task in which the textural characteristics are essen-
tial, namely in the classification of diseases that affect plant
leaves. The underlying approach of the proposed method
is to analyse which are the best pre-trained CNN models
and their relevant layers for feature characterisation. We take
advantage of the fact that there are large object datasets that
allow for the pre-training of CNNs and keep the weights for
the model and use this model in a new classification task.

The use of pre-trained models has several advantages.
One of them is the fact that the feature extraction process
is time-efficient because the images pass only once through
the network. Secondly, relevant results can be obtained for

FIGURE 2. The block scheme of the considered classification system
based on pre-trained CNNs.

small datasets for the classification task and no architecture
handcrafting is required. This can be achieved because such
models were trained on very large datasets, so there are many
patterns and features already learnt that can be used to solve a
different problem. For the significance of the results, the ini-
tial and the new task should be similar. Since we are interested
in the classification of textures, even if the datasets on which
popular CNN models were built are object-oriented, they
are well-suited also for texture classification problems. This
happens because of the hierarchical architecture of CNNs:
while the early and mid-convolutional layers detect low-level
features and texture structures, only the features computed
from the last layers are more specific to the initial object
classification task. We show in Fig. 2 the block scheme used
to describe the considered texture classification system.

We use a pre-trained CNN model from which a feature
vector is obtained for each image of the dataset. The chosen
supervised classifier is the Support VectorMachine with RBF
kernel which is trained on 75% of the images from each class
of the considered dataset and is evaluated on the rest (25%).
In order to benefit from the advantages of the transfer learning
concept and thus to keep the already learnt weights of the
considered network, the classification layers at the end of
the CNN network are removed because they are adapted to
the number of classes on which the training of the CNN was
performed, which is different to that of the current problem.
Thus, pre-trained CNNs are used only for feature extraction
in this work and the SVM is responsible for the classification.
Although an artificial neural network consisting of a fully
connected layer, a softmax layer, and an output layer could
have been used for the classification part, it would not have
surpassed the efficiency of SVM. According to [37], CNNs
are very powerful as feature extractors due to their convolu-
tional base, but less efficient for the classification operation
since the classifier is in this case a linear one. On the other
hand, SVM is better for the classification of more complex
data [37] since by using the RBF kernel the initial feature
space where data cannot be linearly separated is transformed
into another higher dimensional space where the separation
of data classes is possible. Using an SVM classifier on top of
features extracted from CNNs instead of CNN classification
layers provides better results in [38], [39].

The training and test sets are chosen randomly. For feature
extraction, we considered several pre-trained models that are
widely used in practice. They are presented in Table 1. Their
default architecture is given in Appendix in Fig. 20-23. For
these already existing models, the final classification layers
are eliminated, and the features are extracted from several
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TABLE 1. Considered pre-trained models.

different layers in order to observe which are the most rel-
evant for a texture classification task.

All these models were pre-trained on the ImageNet
object-oriented dataset which contains more than a mil-
lion images of objects classified into 1000 classes. Each
pre-trained model requires input images to be of a fixed size,
as given in Table 1. So, if the analysed textured images have
a different size, before using the pre-trained CNN models to
extract the features, the input images are resized. The convo-
lutional base performs convolutional operations by means of
several filters. The weights are the filter values and they are
determined by the number and size of filters. This means that
the weights corresponding to the convolutional base network
do not depend on the size of the input image. So, the con-
volution operation is not influenced by the input image size.
Filter sizes remain the same if the input image size is changed.
However, the size of the feature maps will be different and
that is why the number of neurons for the fully connected
layers is changed depending on the input image size. This
means that retraining is necessary for this situation. Changing
the architecture of the model would require changing the
weights which is done by training and, in this case, the
purpose behind the transfer learning concept would be lost.
So, to be able to rely on this concept, the images are resized
to match the size required by the considered CNN models.
If the difference between the size of the initial images and
that imposed by CNN models is not very large and the aspect
ratio is kept the same (1:1), resizing the images does not bring
artifacts that could negatively influence the performance.

We experiment with the extraction of features from several
layers in the network. After feature extraction, the obtained
feature vectors are fed into an SVM classifier whose param-
eters [40] are chosen through a grid search in order to obtain
the best classification accuracy for each particular experiment
and method.

III. EXPERIMENTAL SETUP
We validate the approach by two different experimental
setups. Firstly, we investigate how transfer learning can be
used in general for the classification of textures when the
CNN models were pre-trained on large object datasets and
what are, in practice, the relevant layers that can be con-
sidered from the hierarchical CNN to extract features from.
Then, we use the results to provide an applied example of
texture classification for the plant disease detection problem
in precision agriculture.

A. TEXTURE DATABASE: OUTEX_TC_00013
For evaluating the proposed method, we used the
Outex_TC_00013 dataset [41] which contains 68 categories
of RGB textured images. There are 20 samples of size
128 × 128 pixels for each class, giving a total number
of 1360 images. We show in Fig. 3 a sample for each image
category. This dataset is challenging because the variability
between different classes is rather small in some cases, such
as the granite categories, the sandpaper ones, or the barleyrice
classes. Therefore, the classification task can be difficult in
such cases especially because the number of samples per class
is limited.

B. PLANTVILLAGE DATASET
For validation of the method, we used the PlantVillage
dataset [42] containing several plant species, some of them
healthy and some affected by different diseases. In [43],
the authors use three versions of this dataset: the original
RGB images, the grayscale version, and the segmented RGB
variant. In this paper, there is considered only the segmented
RGB set. In our experiments, we only considered the seg-
mented RGB images from [43] since the color information
is relevant to this classification problem (as the change in
leaf color can be a sign of a certain disease) and because
the use of the segmented variant excludes any potential bias
that might be caused by the presence of the background
information. Images from this dataset were captured under
different conditions, the plant leaves suffer different rota-
tions and have different shapes. Moreover, there are some
segmentation problems because the leaves are not always
perfectly segmented from the background.We discarded from
the initial dataset the images that were poorly segmented
and could no longer be recognized. We show in Fig. 4 some
examples of images that have segmentation problems, some
of them being kept and some being discarded.

We performed two experiments: plant species identifica-
tion and disease detection. For the plant species identification,
we considered only the categories with healthy plant leaves.
Fig. 5 shows three samples for each considered category for
this experiment and Table 2 shows the 12 classes used in the
plant species identification scenario. For the disease detection
experiment, we considered several setups described in detail
in Table 3. We also show in Fig. 6 some sample images for
each class considered in each setup.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. OUTEX_TC_00013 RESULTS
In the first experiment, we considered extracting the fea-
tures from the last layer located before the classification
layers of the four pre-trained CNN models from Table 1:
ResNet18, AlexNet, Vgg16, and ResNet50. For AlexNet and
Vgg16, the last layer situated before the classification layers
is fully connected (fc7 for both), whereas, for ResNet18 and
ResNet50, the last layer is an average pooling layer (pool5 for
ResNet18 and avg_pool for ResNet50). The pre-training of
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FIGURE 3. Samples for each class of the Outex_TC_00013 dataset.

FIGURE 4. Examples of image samples with segmentation problems: (a) which were kept (b) which were discarded.
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FIGURE 5. Image samples from category: (a) Apple healthy (b) Blueberry healthy
(c) Cherry (including sour) healthy (d) Corn (maize) healthy (e) Grape healthy
(f) Peach healthy (g) Pepper bell healthy (h) Potato healthy (i) Raspberry healthy
(j) Soybean healthy (k) Strawberry healthy (l) Tomato healthy.

TABLE 2. The dataset configuration for plant species identification.

all the models was performed on the ImageNet dataset, [15].
We show in Table 4 the obtained results of the learning trans-
fer from the pre-trained CNNs to the texture classification
problem of the OUTEX_TC_00013 dataset. All feature vec-
tors are normalised using a Z-score approach that is applied
on columns (features are normalised independently from each
other). We feed these feature vectors into the SVM classifier
stage, with the parameters described in the second column
of Table 4. All performance metrics are macro-averaging.
From the results in Table 4, we can observe that the best
performance is obtained by using the features extracted using
the pre-trained ResNet50model. Since the ResNet18 network
achieved the worst classification results, we discarded it in
the next experiments. In terms of time/resource efficiency,

TABLE 3. The setups used for the disease detection experiment.

the fastest feature extraction for all images from the dataset
is performed by the AlexNet model.
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FIGURE 6. Image samples from category: (a) Apple Scab (b) Apple Black Rot (c) Apple
Cedar Rust (d) Apple healthy (e) Cherry healthy (f) Cherry Powdery mildew (g) Corn healthy
(h) Corn Cercospora leaf spot (i) Corn Common Rust (j) Corn Northern leaf blight (k) Grape
healthy (l) Grape Black Rot (m) Grape Black Measles (n) Grape leaf blight (o) Peach healthy
(p) Peach Bacterial Spot (q) Pepper bell healthy (r) Pepper bell Bacterial spot (s) Potato
healthy (t) Potato Early blight (u) Potato Late blight (v) Strawberry healthy (w) Strawberry
Leaf scorch (x) Tomato healthy (y) Tomato Bacterial spot (z) Tomato Early blight (α) Tomato
Late blight (β) Tomato Leaf mold (γ ) Tomato Septoria leaf spot (δ) Tomato Spider mites (ε)
Tomato Target spot (ζ ) Tomato Mosaic virus (η) Tomato Yellow leaf curl virus.

TABLE 4. Experiment 1: The classification results [%] obtained by using the last layers of the pre-trained CNN models.

We were interested to see if the concatenation of the
obtained features using two different models can increase
the classification performance. We concatenated the feature
vectors obtained by using AlexNet, Vgg16, and ResNet50.
Table 5 details the obtained classification scores. The results
achieved in the three cases are similar, the concatenation of
two feature vectors generated using different models being
able to slightly increase the performance. However, the size
of the corresponding feature vectors is larger, which implies
longer processing times.

For the two models, AlexNet and Vgg16, we pooled
the features from the fully connected layers in the

first experiment. However, features extracted from the fully
connected layers aremore specific to the initial task, onwhich
the model was pre-trained, than features extracted from con-
volutional layers [23], [31], [32], [44]. In the third experi-
ment, we also considered extracting features from the last
convolutional layer (actually from the ReLU layer following
the last convolutional layer) for the two models. For AlexNet,
that is the relu5 layer which has 256 feature maps of size
13 × 13. In order to obtain the feature vector in this case,
we averaged each feature map over all spatial locations. The
layer relu5_3 of the Vgg16 model has 512 feature maps
of size 14 × 14. The final feature vector is of size 512,
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TABLE 5. Experiment 2: The classification results [%] obtained by concatenating the feature vectors of AlexNet, Vgg16, and ResNet50.

TABLE 6. Experiment 3: The classification results [%] obtained by considering the last convolutional layers of AlexNet and Vgg16.

TABLE 7. Experiment 4: The classification results [%] obtained by considering several convolutional layers in AlexNet.

obtained after the averaging of the activations over all loca-
tions. We also concatenated the obtained features. The results
are shown in Table 6.We can see from the obtained results the
fact that the performance is marginally decreased by extract-
ing the features from the last convolutional layers. This can
happen because the features learnt by CNN up to that layer
in the architecture are very complex and are more related to
the initial task of object classification on which the network
was pre-trained. Therefore, this validates experimentally that
features from earlier layers in the network are more general
and can be better at describing the texture in the context of
transfer learning.

Consequently, we extracted features from several convolu-
tional layers from AlexNet, ResNet, and Vgg16, the results
being given in Tables 7-9. In all situations, we averaged
each feature map over all spatial locations (the average of all
values contained in the matrix corresponding to that feature
map). We can observe from the obtained results the fact that
extracting features from earlier layers improves the texture
classification performance. This practical observation is in
accordance with the theoretical understanding of CNNs.
Earlier layers depict more general features, like texture struc-
tures, which are not specifically related to the initial clas-
sification problem on which the model was trained. Also,
in terms of performance, the different models trade off feature

extraction time to accuracy and precision as can be seen in the
summary from Table 10.

Considering the model that provided the best performance
(see Table 10) in terms of classification, Vgg16, we dis-
cuss hereafter the choice in the selection of the relevant
layers for the transfer learning problem. For the architec-
ture of the pre-trained Vgg16 model depicted in Fig. 7,
we are interested to observe the features learnt by this model
in earlier layers, such as relu2_1 (which achieves the best
performance in terms of the proposed experiment for tex-
ture classification), in middle layers such as relu3_3 and
relu5_1 and the features ‘‘seen’’ by the CNN model in deep
layers such as relu5_3 (where the classification scores are
worse; see Table 9). We consider a random choice of the
training and test images for which we used the model to
extract features and then classify in the SVM stage and
we show in Fig. 8 a portion of the confusion matrices
obtained for each selection of features corresponding to these
layers.

For class 6 (barleyrice006), we can see from Fig. 8 that
by considering the features extracted from the relu5_3 layer
of the pre-trained Vgg16 model, none of the test images
is correctly classified whereas all test samples (5) are pre-
dicted correctly by using the features extracted from the
relu2_1 layer.
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TABLE 8. Experiment 4: The classification results [%] obtained by considering several convolutional layers in ResNet50.

TABLE 9. Experiment 4: The classification results [%] obtained by considering several convolutional layers in Vgg16.

TABLE 10. Summary of the best performance [%] obtained for the considered pre-trained CNN models.

Therefore, we are interested to observe the features learnt
by the pre-trained Vgg16model from the two layers and other
intermediary layers by considering as input a test image from
this class (barleyrice006). Fig. 9 presents the first 64 obtained
feature maps. For better visualization, the following logarith-
mic transform is applied to all feature maps:

Il = 3× ln(I + 1) (1)

where I is the initial feature map and Il is the feature map
obtained after applying the logarithmic transform.

All images from Fig. 9 present only the positive activations
since they are extracted from ReLU layers. As we can see,
the relu2_1 layer extracts different textural features and most
of the channels show large activations. As we move deeper
into the network, fewer and fewer activations occur. In the
case of relu5_3, most of the feature maps do not contain
activations at all. This happens because the last convolutional
layers explore abstract and complex structures related to the
objects present in the images from the ImageNet dataset that
was used in the pre-training step. So, the feature maps are
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TABLE 11. Experiment 5: The classification results [%] obtained by considering the concatenation of features derived from convolutional layers in the
pre-trained AlexNet, Vgg16, and ResNet50.

FIGURE 7. Pre-trained Vgg16 architecture setup for feature extraction.

FIGURE 8. Confusion matrix portion for the classification of features
extracted using several layers from the pre-trained Vgg16 model.

not activated in most cases and they are not useful for texture
classification. Fig. 10 shows the considered test image along
with three feature maps with large activations for the relu2_1
layer.

We can observe from Fig. 10 the fact that a lower layer
such as relu2_1 is able to extract relevant features for the
considered test image. There is no need to go very deep into
the network for texture classification. Also, in some cases,
pooling features from deeper layers can actually degrade the
performance.

We also concatenated the feature vectors extracted from
the consideredmodels that achieved the best performance and
obtained the results given in Table 11. By concatenating the
feature vectors generated from the pre-trained AlexNet and
ResNet50 models, only a slight increase in performance is
observed compared to the individual scores. The results of
Vgg16 are decreased when performing the concatenation to
other feature vectors.

In order to compare the results obtained using the proposed
architecture for texture feature extraction from pre-trained
CNNs to the performance obtained using handcrafted feature
vectors on the same datasets [12], [45], we show in Table 12

a synthesis of these results. We also consider the AlexNet
and Vgg16 architectures as end-to-end approaches, where
both the features and classification are made by the network.
We directly train the AlexNet and Vgg16 CNNs on the
Outex_TC_00013 dataset in order to observe if the obtained
results surpass a model pre-trained on a large dataset consist-
ing of object categories. The considered training parameters
are given in Appendix. Fig. 11 shows the training progress
on a random partition of the training and test sets for both
networks. We can observe from Table 12 that the pre-trained
AlexNet deep-learning model surpasses the MRELBP oper-
ator [12] which works on grayscale images.

However, when incorporating the colour information pro-
vided by OCCBM3DELBP [45], the pre-trained AlexNet
is outperformed. This comes with the trade-off of much
longer processing times for extracting features using
OCCBM3DELBP, 2223.2 seconds being the average feature
extraction time for all images in the dataset. By training
AlexNet end-to-end on the Outex_TC_00013 dataset, we can
observe from Fig. 11 the fact that the classification accu-
racy on the training set reached up to 100%. However, the
classification scores obtained for the validation set are lower
as the results for the two sets start to diverge around the
25th epoch. The difference is about 25%, meaning that the
network has learnt the data from the training set, but it is not
able to generalize well for new data. This happens because
there is a small number of training images per class. The
same applies to the trained end-to-end Vgg16 model where
the difference between the training and validation accuracy is
even higher, of approximately 36% (probably because there
are more parameters in this case). This is consistent with
the observation that CNNs require large datasets for satisfac-
tory classification results. However, the handcrafted opera-
tors and the pre-trained models work very well even in this
situation.

We can see from Table 12 that the best performance is
achieved by considering the pre-trained Vgg16 model and
by extracting features from the relu2_1 layer. A good com-
promise between classification accuracy and time efficiency
can be obtained by extracting features from the relu3 layer
of the AlexNet model since it is by far the fastest strategy:
the average feature extraction time for all images is 38.55
seconds for the pre-trained AlexNet compared to more than
2 hours for the pre-trained Vgg16 relu2_1 model.
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FIGURE 9. The input image and the first 64 feature maps for the considered layers in the pre-trained
Vgg16 model.

TABLE 12. Comparison to other feature extraction techniques [%].

FIGURE 10. The input image and the associated feature maps with large
activations for the relu2_1 layer of Vgg16.

From the obtained results we can conclude that, even if the
considered models have been (pre)trained on object classes,
they are also efficient for texture classification. Features
extracted from early convolutional layers in the network rep-
resent less complex patterns being mostly related to features
such as the textural content. Moreover, they are more general
and are not related specifically to the initial classification

problem on which the models were trained and, in combina-
tion with classifiers that support small datasets (like SVMs)
provide important and relevant classification scores.

B. PLANTVILLAGE RESULTS
We are interested to evaluate the performance of pre-trained
CNNs on real-world images of plant leaves. For feature
extraction, we consider the pre-trained AlexNet model since
it achieves a promising performance for the texture dataset
compared to the rest of the analysed models in Section IV
A, also being the fastest in terms of processing time. In such
practical applications, the feature extraction time should be as
small as possible for real-time processing and classification.
The relu2, relu3, and relu4 layers were chosen for extract-
ing features using the pre-trained AlexNet model based on
the exhibited performance for the more general, in terms of
texture classification tasks, Outex_TC_00013 dataset. Even if
the pre-trained Resnet50model offered a performance similar

VOLUME 9, 2021 160095



S. Barburiceanu et al.: Convolutional Neural Networks for Texture Feature Extraction

FIGURE 11. The training progress on a random partition of the training and test sets using the AlexNet and Vgg16 end-to-end
architectures.

FIGURE 12. The obtained confusion matrix for one run in the plant species identification experiment.

to that of AlexNet and the pre-trained Vgg16 model proved
to support better classification results for the Outex dataset,
these models, however, did not qualify for consideration for
real-time processing applications. Thus, we did not consider
them for the PlantVillage dataset.

The first experiment consists in the identification
of 12 plant species by considering only healthy leaves.
We compare our results with the results obtained using other

handcrafted feature vectors on the same dataset. The obtained
classification scores are shown in Table 13. The obtained
results show that the pre-trained AlexNet model achieves the
best classification scores by considering the relu3 layer, with
an average feature extraction time of only 321 sec (compared
to OCCBM3DELBP which achieves more than 30 hours).
Fig. 12 shows the confusion matrix computed for one run
(particular random choice of the training and test sets) using
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TABLE 13. Plant species identification results [%].

FIGURE 13. Incorrectly classified samples in the plant species
identification experiment.

the pre-trained AlexNet model and relu3 layer for feature
extraction and an SVM classifier. We also show in Fig. 13
the four incorrectly classified images. We can observe that in
a) and b), the plant leaves are rotated at different angles which
does not allow a complete exposure of the leaf and thus, the
incorrect classification appears. The image from Fig.13 c)
presents some segmentation errors which can be the reason
for the erroneous prediction. The image sample shown in
Fig.13 d) is very similar visually to the training images from
the predicted class and probably, due to the high intra-class
variability for category 3, the misclassification occurs.

The second experiment contains nine setup configurations
used for disease detection in several plant species. We show
in Table 14 the obtained results for all setups in compari-
son to the other handcrafted methods. We can see that the
pre-trained AlexNet model is much faster than the other
ones and also achieves the best classification results for all
setups. For cherries and strawberries, a perfect classification
is obtained. The highest improvement is achieved for the
disease detection of tomato leaves which is one of the most
difficult classification problems due to the high number of
classes (10 classes) compared to the other setups.

Since the lowest scores are obtained for the classification
of corn and tomato, we are going to analyse some of the
incorrectly classified samples for these setups.

In the third setup corresponding to corn leaves, there
are three classes associated with different leaf diseases and
one class of healthy leaves. We show the confusion matrix
obtained for one random partition using the AlexNet relu2
method in Fig. 14. As we can see, 23 samples are misclassi-
fied in this case. We show in Fig. 15 some of these images.

From the total of 23 misclassified samples, 22 were due
to the confusion between two diseases, classes 1 and 3
(Cercospora leaf spot and Northern leaf blight). Even visually

FIGURE 14. The obtained confusion matrix for one run in the disease
detection of corn leaves.

FIGURE 15. Incorrectly classified samples for disease detection in corn
leaves.

in some cases, it is difficult to make a distinction between the
two categories.

The last setup corresponding to the tomato leaves com-
prises images from 10 categories: tomato leaves affected by
nine different diseases and healthy ones. Fig. 16 shows the
computed confusion matrix for one run on this setup by
considering the pre-trainedAlexNetmodel and relu3 layer for
feature extraction and the SVM classifier. We can see that for
this run, there are 82 misclassifications. The true class with
the smallest percentage of correctly classified samples is 2.
We show some misclassified observations in Fig. 17. There
is a high intra-class variability for class 2 and that is why
the classification results are poorer for the images comprised
in this category. However, taking into account the fact that
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TABLE 14. Disease detection results [%].

for this setup there were considered nine different diseases
and images are exposed to various conditions, the achieved
performance is promising.

For each of the two setups corresponding to cherry and
strawberry leaves, there are two categories: healthy and non-
healthy. Fig. 18 presents some image samples. We can see
that even visually the classification task is not challenging
in these cases and therefore perfect classification scores are
obtained.

Table 15 shows the results obtained by other state-of-
the-art methods for different experiments performed on
images from the PlantVillage dataset. We can observe that

no other work obtains better performances for the considered
experiments than the method proposed in this paper.

C. APPLICABILITY OF THE METHOD
The greatest impact of the proposed method is represented by
its applicability for texture classification in cases where large
datasets are not available and time performance approaching
real-time scenarios is required, like, for instance, precision
agriculture. It is in such instances that constructing the model,
and training it can be challenging and may require either
expertise in tailoring the feature extraction step to the task
(and a good understanding of the variability in the data) or,
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TABLE 15. Comparison to state-of-the-art methods for the PlantVillage dataset [%].

FIGURE 16. The obtained confusion matrix for one run in the disease detection of tomato leaves.

if end-to-end deep-learning-basedmodels are used, be depen-
dent on the size of the training dataset. To address this,
we proposed the pre-training of existing popular models (like
AlexNet) on object-based large datasets (ImageNet) and the
use of the description some of the hidden layers in the model
provide as features for an SVM classifier. If the choice of
the SVM classifier is also approached through a grid search,
in order to maximize the classification accuracy, the level of
expertise adapted to the particularities of the texture classifi-
cation task is greatly reduced, together with no increase in the
available dataset size or complexity. Also, by reconsidering
the common processing pipeline for real-time processing
scenarios that can be easily transferred to manned/unmanned
agricultural smart machinery (e.g. tractors, drones, robots,
IoT smart sensor networks, etc.), the classification system
becomes a single image prediction approach where the model
is trained once and then it is stored locally, on the machinery.

We have shown that feature descriptors like MRELBP are
not sufficiently discriminative. Whereas OCCBM3DELBP
and the pre-trained AlexNet model are close in terms of clas-
sification accuracy, they are not in terms of time efficiency.

FIGURE 17. Some incorrectly classified samples for disease detection in
tomato leaves.

FIGURE 18. Examples of healthy and non-healthy leaves of (a) cherry
(b) strawberry.

We show in Fig. 19 the estimated time required to classify
an image from the PlantVillage database on the spot for
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FIGURE 19. Time efficiency comparison between OCCBM3DELBP and the pre-trained
AlexNet model with relu3 layer referenced for feature extraction (the time was
averaged on a random selection of the images from the dataset).

FIGURE 20. The default AlexNet architecture.

FIGURE 21. The default Vgg16 architecture.

FIGURE 22. The default Resnet50 architecture.

the two methods (based on the interpretation of the results
in Section IV B).

The total decision time for the proposed approach
based on the pre-trained AlexNet relu3 layer model is
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FIGURE 23. The default Resnet18 architecture.

approximately 30 ms which can be easily considered for any
real-time case. For the OCCBM3DELBP operator, in addi-
tion to the fact that the feature extraction step takes longer, the
classification is longer too. This happens because the feature
vector in this situation has 4800 values compared to AlexNet
which generates only 384 features, for the same input image.

In the case of the pre-trained AlexNet model with the
relu3 layer used for feature extraction, the required mem-
ory is 216 MB for storing the pre-trained model. For the
SVM train model file, the required memory depends on the
number of generated features and the number of training
images. For example, in the case of the tomato setup, when
considering 13212 training images, 10.2 MB are required to
store the SVM train model file for the AlexNet relu3 layer
(384 features).

V. CONCLUSION
We proposed using a deep-learning-based method for texture
classification with performance compatible with real-time
processing scenarios. We considered using CNNs as feature
descriptors rather than end-to-end classifiers and combine
them with SVMs. To obtain a relevant classification perfor-
mance even for small datasets, we based our work on the
transfer learning concept and adapted to the task popular
CNN models (AlexNet, Vgg16, ResNet) pre-trained on the
very large ImageNet object-based dataset. In the experimental
section, we considered two datasets: a public onewith generic
RGB textures (for initial validation of the proposed approach)
and a dataset from the applied field of precision agriculture
consisting of images with leaves from several plant species
and affected by several diseases (for illustrating the applica-
bility of our work).

We analysed the classification results obtained by extract-
ing features from several different layers of the different CNN
pre-trained models and using them for describing the textures
in the proposed datasets. We showed experimentally that the
extraction of features from early convolutional layers is rele-
vant for texture classification as the generated characteristics
are more general and not necessarily specific to the task,
a result consistent with the theoretical understanding of the
CNNs presented in the literature. We compared the results
with handcrafted features derived for the same dataset and
we concluded that the proposed CNN-based system achieved
the most satisfying overall performance (time and classifi-
cation score). For the PlantVillage dataset, we performed
plant species identification and we proposed nine setups in

the experimental section for disease detection. We compared
the obtained results with the performance achieved using
classical machine-learning texture extractors and end-to-end
deep-learning techniques. The pre-trained AlexNet model
was chosen for feature extraction since it provided a promis-
ing performance in the general texture dataset evaluation
and exhibited the smallest processing time. Thus, for the
PlantVillage dataset, only the pre-trained AlexNet model was
employed since the other considered models didn’t meet the
criteria for real-time processing applications. The proposed
architecture (based on the use of the pre-trained AlexNet
model on the ImageNet dataset and the selection of the relu3
layer as a descriptor together with an SVM classifier whose
parameters were obtained through a grid search) surpasses
the other operators in the considered cases in terms of both
classification performance and processing times, making it a
relevant candidate for real-time processing tasks.

APPENDIX
The training parameters for the end-to-end AlexNet and
Vgg16 networks are given below:

• Solver: Adam [54];
• Mini-batch size: 32 for AlexNet and 16 for Vgg16;
• Number of epochs: 50 for AlexNet and 75 for Vgg16;
• Learning rate: 10−4;
• L2 regularization factor: 10−4;
• Gradient decay rate [54]: 0.9;
• Squared gradient decay rate [54]: 0.999.

For running the tests, we used an Intel Core i7-4510U
2.00 GHz processor and NVIDIA GeForce GT 840M 4GB
video card. The software code was run in Matlab R2020a.
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