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ABSTRACT State of health (SOH) and remaining useful life (RUL) are two major key parameters which
plays a major role in battery management system. In recent years, various machine learning approaches
have been proposed to estimate SOH and RUL effectively for establishing the battery conditions. In the
proposed work establishes an effective method to predict the battery aging process with accurate battery
health estimation with real time simulations and hardware approach. This paper effectively exhibits a process
to estimate SOH and RUL of a Li-Ion 18650 cell which are based on various factors like state of charge,
discharge voltage transfers characteristics, internal resistance and capacity. To identify an optimal SOH and
RUL machine learning based estimation approach, various battery’s statistical models are developed and
implemented on a standalone hardware platform. The experimental results in this real time application shows
that SOH is predicted by deep neural network approach which are found to be within the accepted error rate
of £5% and long short time memory neural network model estimates a battery’s RUL effectively with an
accuracy of £10 cycles. This approach exhibits various machine learning models in an realistic hardware
platform which establishes optimal battery life.

INDEX TERMS Battery management system, deep neural network, Li-ion batteries, long short time memory,

state of health, remaining useful life, state of charge.

LIST OF ABBREVIATIONS
BMS - Battery Management System resistive-
capacitive (RC).
LSTM- Long Short Time Memory.
SOH -  State of Health.

SOC- State of Charge.

RUL -  Remaining useful life.

VTC- Discharge Voltage Transfer characteristic.
DNN -  Deep Neural Network.

I. INTRODUCTION

Li-ion Batteries (LiB) is one of the primary energy storage
units widely used in many electrical and electronic applica-
tions due to its high life cycle, high capacity, high energy
density and high specific energy. Majority of the devices
are powered by a Li-ion based cell or battery with varying
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capacity for many applications including cell phones, space-
craft, electric vehicles. When compared to other types of
batteries, Li-ion batteries require more advanced monitoring
system to ensure safe operation of the battery with the help
of battery management system (BMS). Various functions of
BMS strongly depends on the complexity of the specific
application. Understanding and analyzing the remaining life
expectancy of the battery are greatly important to ensure
proper functioning of them. An optimal method of battery
life estimation for a Li-Ion cell [1] are needed to make effi-
cient use of most of the electronic appliance. As example,
single batteries in cell phones uses simple technique which
estimates the battery states by measuring voltage, current and
temperature of the battery. However, for complex application
like electric vehicle, BMS requires advanced algorithms to
accurately estimate various battery states along with afore-
mentioned battery parameters. The state of health (SOH)
parameter is an indication of current health of a battery with
respect to the unused state and can be predicted by using the
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battery cycle, measured voltage, measured current, measured
temperature, ambient temperature, load current, load voltage
and capacity. The remaining useful life (RUL) indicates the
durability of the battery, which gives the number of charge
and discharge cycles using SOH [2]. Each application has its
own load capacity that drains the battery in a variable rate.
Thus, by proposing an efficient intelligent method to find
the state of health and remaining usage life of the battery
increases the efficiency of the system in a larger aspect can
be established.

Various models have been proposed to estimate SOH and
RUL by analyzing the aging process of lithium batteries in
literature. This includes different parameters ranging from
the physical measurement to the analytical model. The bat-
tery is constructed as a resistive-capacitive (RC) circuit that
takes internal resistance, time, voltage into consideration and
a continuous time analysis is done to predict its life [3].
In [4], a novel SOH estimator by using the partial constant-
voltage (CV) charging data is suggested. A novel model-
based voltage construction method for robust SOH estimation
of lithium-ion batteries using incremental capacity analysis
are proposed in [5] and [6]. The RUL of the Li-Ion battery
is estimated by measuring the growing DC resistance of
the battery [7]-[9] while on usage. The precise prediction
of SOH of Li-ion batteries performed using probabilistic
neural network (PNN) is to avoid unexpected malfunction
of cells [10]. To predict the SOH, experimental dataset are
obtained by using constant current and constant voltage meth-
ods with continuously charging and discharging of the bat-
tery. The PNN is trained on 100 pieces of battery cell and the
last 10 pieces are utilized for verifying and testing the model.

A dynamic long short-term memory (DLSTM) based
model is proposed for RUL prediction of Li-Ion batteries in
satellite [11]. An indirect health indicator (HI) on the basis
the Spearman correlation analysis method is extracted from
the battery discharge voltages, and polynomial fitting is used
to establish relationship between Indirect HI indices and the
capacity of the battery. A data driven prognostic Deep Neural
Networks (DNN) are used to estimate the SOH and the RUL
of the battery based on a battery dataset obtained from the
NASA Prognostics Center of Excellence (PCoE) database
with acceptable accuracy range [12], [13]. A Coulomb count-
ing method combined with back propagation neural net-
work (BPNN) approach is used to calculate the SOC first and
then SOH is computed based on the dataset is acquired with
the hardware using a PIC based controller [14].

A novel quantum behaved particle swarm optimiza-
tion (QPSO) based Support Vector Regression (SVR) method
is used to estimate the remaining capacity of Lithium-Ion
battery with a root mean square error (RMSE) of 1.5-1.8%
based on the starting cycle of battery [15]. A deep learning
approach has been applied to estimate RUL based on the
battery features extracted from the NASA dataset separately
for charging and discharging of battery at a particular inter-
val [16]. With the help of principal component analysis and
an auto encoder model 15 layers of data are fused together
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followed by data normalization. Then the model is trained
by using deep neural network model with rectified linear
unit (ReLLU) as the activation function. Unlike conventional
neural network approach, an independent recurrent neural
network (IndRNN) is used for estimating the SOH of the
Li-ion battery under variable load conditions [17]. The exper-
imental results prove that the IndRNN system delivers better
performance than Gated Recurrent Units (GRU) and Long
Short Time Memory (LSTM).

In this work, an Extended Kalman Filter (EKF) based filter
takes the battery measurements as input and provides the
SOC of the battery [18]-[20]. A batch of optimized OCV
values and pairing SOC values are utilized as input for a
parameter varying approach based algorithm, which revises
the SOH function. An equivalent circuit model is created
for the battery and the constant current of the charging and
discharging profiles are considered to approximate the Open-
circuit voltage (OCV)-SOC function [21]. An Independent
Component analysis model is used to apply the capacity
model of battery to directly define the dependence of OCV on
SOH estimation. It proposes an unrequired learning method
with parameters to changes based on maximum capacity to
estimate SOH. A brute force nearest neighbor search is used
to predict the long-term evaluation of aging characteristics
that serve as an important benchmark for SOH and RUL pre-
diction proposed in [22]. The Lithium ion Battery is described
as an equivalent RC model and altered into a mathematical
model by using least squared method and forgetting factor
recursive least square algorithm and then Laplace transform is
used on the equations. A discrete space state equation is used
to get the relation between state variables and SOC. Then
Dual Extended Kalman Filter (DEKF) algorithm is used to
approximate SOH of the battery. In DEKF using ampere hour
integral priori estimation of SOH is done using the ohmic
resistance and SOH is calculated [23].

An efficient particle filter for any kind of probability
distribution is used to predict and estimate SOC and SOH
for a Lithium ion Phosphate battery.an open circuit volt-
age hysteresis is modelled by multimodal probability func-
tion to estimate SOC [24]. The results are validated for
photovoltaic profile, electric vehicle profile and nondeter-
ministic behaviour. To estimate the capacity in batteries a
popular regression technique called the least square estima-
tion based weighted ordinary least square and weighted total
least square (WTLS) proposed to consider all the errors and
variances into consideration and are used to calculate the SOC
for an EV profile [25]. From this value SOH or capacity
are further estimated by using WLTS approach [26]. Partial
charge voltage and current is used to estimate SOH applying
support vector machine (SVM) with kernel function as radial
basis function (RBF) [27]. For the SVM model, identification
of optimal kernel parameter is done by grid search method but
estimation precision can be affected by various factors like
sampling rate and error, temperature and other factories.

A multilayer perceptron model is used to predict the
SOH of the battery by generating the data with the help of
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simulated model of an equivalent circuit model [28]. Time
series classification is used with a windowing technique for
the obtained data, which is then trained in a multi-layer
model with SoftMax function as top layer. Dynamic driven
Neural network model with exogenous inputs is designed
for estimating SOC and SOH [29]. A combination of Back
propagation with multilayer perceptron is used for the train-
ing model for SOC and SOH. A Global feedback theorem is
used which increases the robustness and computational intel-
ligence. A snapshot-based approach is used where there is a
layer of LSTM followed by a polling layer to estimate SOH of
the battery using Urban Dynamometer Drive Schedule [30].
Three different model are used which compromise of both
unidirectional and bidirectional LSTM. A RUL prediction
framework is developed with LSTM and three-fold cross vali-
dation (CV) is employed in the testing and training process to
get the best statistical model. The online calculation process
conducts the RUL predictions using the obtained best model
on a battery model developed with the help of Centre for
Advanced Life Cycle Engineering (CALCE) dataset [31].

A neural network degradation model is used to predict
the RUL along with bat-inspired particle filter [32], [33].
The particle filter is optimized by using random uniform
distributed function. To predict the RUL state space equation
is calculated for which the state is updated by the particle
filter and then the RUL is predicted by neural network. Some
of the common issues found in various previous work that
has been carried related to estimation of SOH and RUL of an
Li-Ion battery are mentioned as

(1) Effectiveness of most of the SOH and RUL algo-
rithm proposed in existing literatures are verified only
through simulation but failed to implement it on a real-
world hardware platform

(2) There is no unified hardware platform implemented
to analyze and validate the effectiveness of various
machine learning models for SOH and RUL of Li-ion
battery

(3) Different authors use different datasets to train and
validate their approach hence it is difficult for other
researchers to verify the effectiveness of the proposed
approach and apply it to their application

In this work, various battery models are developed and
supported with a hardware setup to validate the efficiency
of the proposed system and implemented on the hardware.
However, compared to other models which had been consid-
ered for study, the statistical models are found to be modified
to different batteries and they also can perform with the
characteristics of the real time aging process diagnosis in an
effective way. Therefore, in order to overcome the above men-
tioned research gap, this research work is aimed to develop,
analyze and compare various machine learning models by
porting into the hardware computational device in order to
identify an optimal SOH and RUL estimation approach for
a single Li-ion battery thereby estimation accuracy of each
statistical model is verified in a more practical way. The key
contributions of this research work are,
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(i) Implementation of most commonly used machine learn-
ing approaches related to SOH and RUL estimation on
one common hardware platform thereby recommenda-
tion made to researchers the most suitable approach for
real-world implementation.

(i1) The effectiveness of various machine learning models
for SOH and RUL has been analyzed based on its per-
formance metric to suggest an optimal SOH and RUL
estimation approach.

(iii) As NASA’s battery dataset is the most commonly used
dataset for SOH and RUL estimation, a method to iden-
tify and extract vital battery parameters is proposed and
utilized to develop various machine learning model for
an uncompromised comparison.

The rest of the paper is organized into following sec-
tions. Section II shows the system model explaining the
proposed methodology with the hardware implementations.
Section III exhibits the model implementations with the
analysis of Machine learning approaches with practical
approaches. Section IV depicts the results and discussions of
the model with machine learning (ML) analysis with hard-
ware approach. Section V completes with the conclusion and
future work approaches.

Il. PROPOSED METHODOLOGY

The proposed design follows a step-by-step methodology.
At the onset, NASA datasets for the 5 batteries are converted
from mat to CSV format using python script. Then the data
is cleaned by using algorithms specific to the fields of our
interest. Then in the process optimization is done where the
search for parameters which requires to minimize or max-
imize our function are done. Furthermore, in the process,
a suitable predictive algorithm like Artificial Neural Network
(ANN), Recurrent Neural Network (RNN), Convolutional
Neural Network (CNN), Deep Neural Network (DNN), Lin-
ear Regression (LR), LSTM is used to train the data. Then
the model is tested using another dataset and the results are
validated. From the dataset acquired from NASA prognostics
center, the data indicates that the battery degradation process
is stochastic in nature. The data is segregated into charge
and discharge cycles and numbered by the cycle. The initial
analysis phase consists of implementing existing benchmarks
methods. The proposed models include LSTM, GRU, ANN,
CNN with varying parameters including Current, voltage,
capacity, impedance.

The data acquisition design approach is shown in Fig.1 The
hardware is designed such that it obtains the real-time dataset
with the values of various parameters used for the prediction
of SOH and RUL. The dataset was collected manually from
‘Panasonic NCR18650B’ batteries using a setup consisting
of voltage and current sensors. This method is more similar
to a case where this research might be applied where there
are interferences from external factors like wind, ambient
temperature and noise which might result in better results
compared to the existing methods which require precise data
measurements and isolated an environment. It consists of
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various sensors connected to Arduino which then acquires the
data and sends it to Raspberry Pi to be stored as CSV which
is later used by the trained model to train and test for the
SOH and RUL, to measure the current, voltage and internal
resistance of the battery at a particular value and store it.

The stand-alone hardware where the entire work is imple-
mented is the Raspberry Pi. The Raspberry Pi is used to train
the model and test the efficiency of the model for the real-time
datasets of the test battery. A hardware model is developed
with sensors and controllers to acquire the data and create
datasets for the test battery that is used to test the developed
model on hardware. Two voltage sensors and a current sensor
forms the hardware along with the load resistors and the
battery in this system.

The battery is connected to a combination of resistors to get
a combined resistance of 5. Voltage sensor 1 is connected
to the battery to measure the voltage in the battery with load.
After the combination of resistors, the current sensor ACS712
is connected in series which completes the circuit and to get
the current drain by the battery in the circuit. The voltage
sensor 2 is connected across the combination of resistors to
get their voltage drop across them. This drop in voltage is
used to calculate the battery’s internal resistance.

The hardware implementation of the proposed system is
presented in Fig. 2. The voltage sensor is used to measure the
voltage across resistors, it must be connected in the polarity
corresponding to the current flow. The current sensor works
in a different mechanism unlike the voltage sensor that just
takes the value across the voltage divider and maps the value
and points out the voltage measured. The current sensor takes
around 150 samples for a reading and takes it average to
accurately get results. The average of 150 samples is con-
verted as a digital value from analog inputs by multiplying
it 5 as 5.0V is the input and dividing it by 1024 as it is 10-bit
precision. The resulting value is subtracted from 2.5V which
is considered as offset and it is divided by 0.066 as 66mv is
the rise in input when 1A current flows via it.

|
DT

Voltage
Sensor

=,
‘\‘ =

Li-ion ¥

Battery &

Current Arduino Raspberry
Sensor Uno Pi
Load [
Resistor
Voltage
L Sensor
S
i T "
L

FIGURE 1. Hardware design.
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FIGURE 2. Hardware implementation.

The Voltage sensors are connected to AQ and Al pins of
the Arduino Uno board and the current sensor is connected
to A5 pin of the Arduino board. The internal resistance of
the battery is measured by modelling the battery as shown
in Fig. 3. Without connecting any load, the battery voltage is
measured which is open circuit voltage. When there is zero
current flow, the voltage drop is zero. So, the open circuit
voltage is equal to ideal battery voltage. This drop is analyzed
by the Internal resistance. Internal resistance is calculated as
shown in Fig. 4. The voltage drops across the resistors when
added up found to be equal to the voltage of the ideal voltage
of the battery. The voltage drops across the internal resistor
and the current through it in the system.

The Arduino is connected to the universal serial bus (USB)
port in Raspberry Pi 3 as in Fig. 5 in a serial interface which
is an Asynchronous communication mechanism between
the both boards. The data is generated at rate of 700ms from
the Arduino side. There is a slight delay of around 10% in the
serial communication as it is asynchronous. The Raspberry Pi
is configured using a header less connection using shell script
and it is Wi-Fi enabled to make it be accessed in a wireless.

FIGURE 3. Battery model.

In the Raspberry Pi the serial port is continuously moni-
tored and the value out of it is taken as a string that is basically
separated by spaces. It is then processed by the python csv
libraries and it is then stored as a column-based comma
separated values (CSV) file in the Raspberry Pi which has
time, Voltage, Current, Internal resistance and total current
drawn. The dataset is collected for each discharge cycle for a
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FIGURE 5. Arduino to raspberry Pi communication.

battery until the open circuit voltage drops just below 2.70V
in the entire hardware set up.

IIl. SYSTEM IMPLEMENTATION

In this research work, the battery model is developed based
on NASA’s battery ageing data set which is a highly rec-
ommended and most commonly used dataset by many
researchers for SOH and RUL estimation [34]. In the dataset,
a set of four Li-ion batteries were able to run through in
three different operational profiles -charge, discharge, and
impedance at room temperature. The charging is done at
a constant current of 1.65A followed by constant voltage
after a threshold. This dataset is used for the prediction of
both the remaining charge (for a given discharge cycle) and
RUL The model is mainly trained on main features like
Voltage, current, impedance and Capacity (for RUL). Among
the available battery samples, training is done using batteries
B0005, B0O006, BOO18 and the battery BO0O07 is used to
validate the trained model. This indicates that 75% of data
is used for training and the remaining 25% is used for testing
which is the most acceptable ratio of training and testing data
for developing machine learning models. Also, it is necessary
to highlight that each battery sample consists of good enough
data samples to represent the battery ageing process. In order
to achieve better accuracy, all necessary parameters required
to develop various battery models are considered during the
training process. Initially all the datasets are converted from.
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mat to.csv file format using python script. The NASA dataset
are present as a.mat file. As the data is converted, the data
is cleaned according to the required parameters needed for
our training. After cleaning of all the data, the summary of
battery 5,6,7,18 is plotted based on all the factors included
in the dataset and each parameter are noted and analyzed for
further usage. To train the model the data from the battery
are analyzed. So, for the benchmark in the hardware set up,
commonly used models like ANN, CNN, RNN and DNN
and other models like LSTM [35]-[38] for forecasting are
implemented. Training is done using battery BO005, B0O006,
B0018 and the battery BO0OO7 is used to test the trained model.
To analyze the predictors better, the change in capacity for
every cycle for all the three battery is plot to see the trend
of change in each battery are represented in Fig. 6. From
the analysis a generally decreasing trend with a few irregular
peaks in-between is observed clearly.

A. CONVOLUTIONAL NEURAL NETWORK

CNN is based on a unique and special type of linear operation
known as convolution. CNN are basically neural networks
that use convolution functions in place of some other general
matrix multiplication and similar function in at least one of
their layers. A convolutional neural network also called con-
vnet at least consists of an input and an output layer, as well
one or more multiple hidden layers of one or more types.
The hidden layers typically are a series of convolutional
layers that convolute with a multiplication matrix function
or other dot product. The activation function is commonly a
rectified linear unit (ReLU) layer, and is followed by many
other layers such as normalization layers, pooling layers, and
fully connected layers as shown in Fig. 7. Typical ways of
generally avoiding overfitting are regularization, and adding
some form of method of measurement of weights in the
network are done to the loss function. The steps in CNN
are shown in Fig. 8. Although CNN is the most preferred
choice for coupling factor analysis such as classification and
segmentation in image applications, in recent years CNN is
also employed for SOH and RUL estimation [39], [40].

20 Battery 5
Battery 6
Battery 18

0 20 0 60 80 100 120 140 160 180 200
Cycles

FIGURE 6. Battery 5,6,18 plotted (capacity vs. cycle).
This is mainly due to the ability of the CNN model to cap-

ture local capacity regeneration, thus improving the overall
prediction accuracy of the model. In addition, pooling and
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FIGURE 8. Steps in CNN.

dropout layers helps to improve the training speed of the
model and avoid overfitting in a deep network.

B. RECURRENT NEURAL NETWORK

RNN is a type of artificial neural network in which con-
nections between nodes form a directed graph along a time-
based sequence. This allows it to exhibit temporal dynamic
behavior. RNNs can be considered a method for forecasting in
this case. RNNs can use their set internal memory to process
different lengths of input sequences. RNN architecture is
explained in Fig. 9. RNNs have variants like fully recurrent,
independently RNN, Elman and Jordan networks, LSTM
and others. Any common LSTM unit is composed of a cell,
an output gate, input gate and a forget gate. The cell stores
values from random time periods and the three other gates
manage the flow of information in and out of the cell.

C. DEEP NEURAL NETWORK

A DNN is an ANN with multiple hidden layers between the
input and output layers. DNNs are composed of multiple
levels of nonlinear operations, such as neural nets with many
hidden layers” [41]. Like shallow ANNs, DNNs can also
model complex non-linear relationships between different
parameters. The model is trained using multiple hidden layers
(DNN) [42]-[45] having different method of weight initial-
ization and activation functions. In this process, a model is
trained with 5 layers and in which 4 layers are of dense as
shown in Fig. 10. The model is trained on 217 parameters.
ReLU is the activation function for the layers of dense and
then at last the results are compiled using Adam Optimiza-
tion. There are large number of core types of layers present
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for Standard Neural Networks. Some of the most useful types
chosen are:

o Dense Layer: Fully connected layer with highest

demand and most useful Layer.

o Dropout Layer: Layer setting the fraction and minuet

values to zero helping in reducing overfitting.

o Merge Layer: It helps to combine input from different

model and resulting to one single model.

For transforming the summed weight input from one node
into activation of the node activation functions are used. The
Rectified Linear Activation function is a piecewise linear
function that will result the input directly if it is positive
(x > 0), otherwise, it will output as zero. ReLU has become
one of the most used activation functions for many types of
neural networks because a model that uses this is easier to
train and often achieves better performance.

As the model with different layers and activation function
is defined, it needs to be compiled. While compilation it has
to keep note of the attributes to be taken care of like Loss
functions, Metrics and optimizers.

1) MODEL OPTIMIZERS

Model optimizer is a search technique used to update the
weight in the model. Optimizer are object with self-defined
argument and learning rate [46] but as of the market Adam
Optimizer is the best gradient descent optimizer present there.
As the optimization algorithm can make difference between
good result by minutes, hours or days choosing the best
optimizer is a great task.

2) ADAM OPTIMIZER

Adam optimizer is the extension of stochastic gradient It is
different from the stochastic gradient procedure to update
network weight iterative used while training data. It maintains
a single constant learning rate for all the weight updates
which improves performance on problem with the sparse
gradient. Adam used advantages of the two gradient decent
that are Adaptive Gradient Algorithm (AdaGrad) and Root
Mean Square Propagation (RMSProp) [47]-[50] which are
algorithms with constant learning rate which means the
algorithm perform perfectly on online and non-stationary
problems.

Output Layer

‘ Hidden Layer

Input Layer

Timestep

FIGURE 9. RNN architecture.
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FIGURE 10. DNN architecture.

Model: "sequential_8"

Layer (type)

Output Shape

Param #

dense_32 (Dense) (None, 8) 64
dense_33 (Dense) (None, 8) 72
dense_34 (Dense) (None, 8) 72
dropout_8 (Dropout) (None, 8) ]
dense_35 (Dense) (None, 1) 9

Total params: 217
Trainable params: 217
Non-trainable params: @

FIGURE 11. Model architecture for SOH and DNN.

Hence, a model with all the multiple hidden layers were
build which include the best suitable functions and algorithm
and keeping all the different constrain in mind. The resultant
model as shown in Fig.11 was compiled using the best opti-
mizer present and the resultant model was used to predict the
SOH of the testing battery dataset and the final result was
noted for accuracy and further conclusion.

D. LONG SHORT TIME MEMORY

An LSTM has a similar control flow as a recurrent neural
network. It processes data passing on information as it prop-
agates forward. The differences are the operations within the
LSTM’s cells as shown in Fig. 12. The core concepts are the
cell state, and various gates. It consists of a forgot gate which
decides if the information must be kept or discarded. Then to
update the cell state we have the input gate. Then the sigmoid
function is applied on the gate with the previous hidden state.
Then the cell state is calculated. At the end an output gate is
used to decide what the next hidden state is.

Then the new cell stare is carried over to the next time step.
To estimate the RUL, a similar model is obtained with Adam
optimizer and uses back propagation for the same. A total
of 1124201 parameters are considered for training. It consists
of 4 LSTM layers,4 dropout layers and a dense layer the
architecture of model shown in Fig. 13.

IV. RESULTS AND DISCUSSIONS
The sensors are calibrated and are used to collect the data.
The collection has been implemented as step-by-step method.
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FIGURE 12. LSTM architecture.
Model: "Sequential 2"
Layer (type) Output Shape Param #
1stm_4 (LSTM) (None, 1@, 200) 161600
dropout_5 (Dropout) (None, 10, 200) [}
1stm_5 (LSTM) (None, 10, 200) 320800
dropout_6 (Dropout) (None, 10, 200) [}
1stm_6 (LSTM) (None, 10, 200) 320800
dropout_7 (Dropout) (None, 10, 200) [}
1stm_7 (LSTM) (None, 200) 320800
dropout_8 (Dropout) (None, 200) [}
dense_5 (Dense) (None, 1) 201
Total params: 1, 124, 201
Trainable params: 1, 124, 201
Non-trainable params: @

FIGURE 13. Model architecture for RUL using LSTM.

First the data are verified by only using Arduino for verifica-
tion. Fig. 14 shows the data obtained in the serial monitor of
Arduino. the data is in the order of time taken, Voltage across
the battery with load, Current drawn by the battery, internal
resistance of the battery and the cumulative capacity. Each
of these battery parameter plays a vital role in determining
SOH and RUL hence they all considered in developing the
battery model. There are minor fluctuations in the reading of
the voltage and current and readings are not strictly increasing
or decreasing due to some extra resistance put in by the wires
and other components. These fluctuations does not exhibit a
problem when considering the data for one whole discharge
cycle. Thereby, the Arduino are connected to Raspberry Pi in
a serial port and the reading were verified. In order to generate
a dataset required to perform the estimation of SOH and RUL
in the proper format a.csv file is created by appending the
values received serially from Arduino. Otherwise, the training
and testing process involved in developing the battery model
can’t be achieved.

Fig. 15 shows the result of python script indicates the
values that is got from its serial port separated by spaces.
Fig. 16 shows a data which is stored in the Raspberry Pi as a
csv file with all the variable in it. The battery model used for
predicting SOH was trained using BO006 only. The trained
model resulted to a new SOH values which was compared to
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the original i.e. actual SOH. Fig. 17 shows the comparison
results of actual SOH and predicted SOH under its first run.
From this result, it can be inferred that actual and predicted
SOH maintain a lesser error percentage during the initial
battery cycle (up to 25). Later, the developed battery model
failed to maintain a minimum error percentage between the
predicted SOH value and the actual SOH value. In order
to verify the effectiveness of the DNN model, RMSE was
calculated and the error was found to be around 9.088% in
its second run as shown in Fig. 18, which implies that the
accuracy of the DNN prediction is close to 91%. Here, actual
SOH is represented as SOH and estimated SOH is denoted
as NewSOH. Also from the result shown in Fig. 18 it shows
that the DNN model tries to achieve the best accuracy from
the beginning by matching the predicted SOH value near to
its estimated SOH value.

Similarly, the DNN model were trained on BO005, BO006,
BO0018 battery dataset and battery BOOO7 was used to predict
the model’s accuracy. The error was found out to be around
5.9% as shown in Fig. 19 which means the accuracy of the
model is around 94%. This gave an improved SOH result over
previous tries due increase in the number of battery samples
considered for training the battery model for SOH prediction
hence significant improvement was made on the accuracy
level. Although during the initial battery cycle, this battery
model struggles to maintain minimum RMSE later it achieves
better performance with an approximately 5.6% as error rate.

Fig. 20 presents the SOH estimation of various machine
learning models which includes ANN, CNN, RNN, LR and
DNN. Table 1 presents the accuracy of different learning
models in terms of RMSE value. From the obtained results
it can be inferred that DNN delivers better performance than
other learning models by predicting the SOH value very
close to the actual SOH value. Meanwhile, LR yields the
worst accuracy when compared to others with an error rate
of 18.9% which is very high and not suitable for real-world
implementation. The number of hidden layers in DNN also
influence the model’s accuracy. With a number of hidden
layers as one and two, the DNN model exhibits under fit with
large error. However, with three hidden layers the DNN model
achieves the best fit as shown in Fig 21.

T V | Ri C
146668 3.47 0
147340 3.47 0
148013 3 0
148684 3 0
149356 3 0
150028 3.47 0
150700 3.47 0.92 77.24 35.34
151372 3 0
152044 3 0
152716 3 0
153388 3 0
154060 3 0

FIGURE 14. Sensor readings recorded in Arduino (T = Time, V = Voltage,
I = Current, RI = Internal resistance, C = cumulative capacity).

Also, it is essential to mention that beyond three hid-
den layers, the DNN model encounters over fit condition.
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T v | RI C
b'5001 3.66 0.25 63.91 2.54\r\n'
b'5672 3.61 ©.26 60.61 2.86\r\n’
b'6344 3.61 0.24 60.61 3.04\r\n'
b'7016 3.61 0.25 64.89 3.29\r\n'
b'7688 3.61 0.25 60.61 3.54\r\n'
b'8359 3.61 0.24 60.61 3.78\r\n'

b'9631 3.59 0.25 61.07 4.03\r\n’
b'9703 3.64 0.25 64.39 4.28\r\n’
b'10375 3.61 0.25 60.61 4.53\r\n’

FIGURE 15. Running of python script in raspberry Pi to generate dataset.

T WV I Ri C

960" ]b'3.56' b'0.39° |b65.89° b'0.39"
b'1641' |b'3.58" b'0.39" bBO.77 b'0.78
b2313° |b'3.64° b'0.38 b7752 b'1.16
b'2984° |b'3.52° b'0.39° b58.14° b'155
b'3656' |b'3.50" b'0.38' bBO.77 |b'1.04
b'4329° |b'3.64° b'0.35 |b6439 b229°
b'5001" |b'3.66" b'0.25° b63.91' b'2.54'
b5672' |b'3.61' b'0.26' bB0.61' b'2.80'
b'6344° |b'3.61° b0.24' b6061 b'3.04
b7016' |b'3.61' b'0.25° b'64.89° b'3 29
b'7688' b'361' b'025 b6061" b'3 54"

FIGURE 16. Data stored as a csv in raspberry Pi.

1 Actual SOH
A Predicted SOH
0.9 VN
\=4{l
o 08 AN
o S
@ A\
0.7 y -
0.6 -
0 25 50 75 100 125 150 175
Cycles

FIGURE 17. First run SOH predicted for BO006 using DNN.

(50285, 1)

cycle SoH NewSoH
0 1 1.000000 0.%5%172
1 2 0.5%49%9%0 0.556460
z 3 0.98%185 0.953311
3 4 0.98%1e5 0.953253
4 5 0.9828%8 0.%4%%508
5 6 0.989%9467 0.953456
& 7 0.98%075 0.953246
7 8 0.967304 0.%41484
8 9 0.9669%3%7 0.%41313
9 10 0.%61625 0.8%38410
Root Mean Square Error: 0.09088712307694548

FIGURE 18. Predicted SOH and RMSE for second time prediction of B0006
using DNN.

TABLE 1. RMSE for various algorithms in SOH estimation.

LR ANN
0.189 | 0.141

RNN
0.094

CNN
0.165

DNN
0.059

RMSE

The results for each layer’s accuracy of the DNN model
along with the error difference under each layer is presented
in Table 2. For finding out the RUL an efficient model of
LSTM is employed, and the result was found to be as shown
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(50285, 1)

Cycle SOH NewSoH
b 1 1.000000 1.045082
1 2 0.994492 1.040318
2 3 0.994506 1.040699
3 4 0.994563 1.041457
4 5 0.993865 1.041479
5 6 0.994526  1.043849
6 7 0.994121 1.043126
7 8 0.994953 1.042896
8 9 0.988704 1.036756
9 10 ©.988895 1.037450
Root Mean Square Error: 0.05986816859511503

FIGURE 19. Predicted SOH and SOH, RMSE value of battery B0007.

4 Actual SOH

- CNN Prediction
DNN Prediction

+ LR Prediction
RNN Prediction
ANN Prediction

SOH(%)

——
x *u,;&‘:
50
0 20 40 60 80 100 120 140 160
Cycles
FIGURE 20. SOH prediction using different approaches.
1.1
— Actual SOH
1.05 Predicted SOH
1 [
-/ /‘\\
i 0% AN
=) T
H 09 ~ \
085 NI
ke LW
0.8 AN
o TN
0.75 —~—
0 25 50 75 100 125 150 175

Cycles

FIGURE 21. Result with 3 hidden layers in DNN.

in Fig. 22. From Fig. 22, it can be inferred that the LSTM
model makes its best efforts to match the predicted RUL
cycle with the actual cycle of battery fail condition. As RUL
prediction is based on the previously predicted SOH, the error
is not always the same and it is dependent on the previous
prediction. Although the RUL error range is inconsistence
when the same learning model is made to run at different time
instances, the performance of the LSTM model is much better
than other learning models. Fig. 23 illustrates the error for the
same RUL prediction under different instances with 3 cycle
error difference for the best case and -8 cycle error difference
as the worst case. This main objective of this research work
is to develop, analyze and compare various machine learning
models on hardware in order to identify an optimal SOH
and RUL estimation approach for a single Li- ion battery
hence the computation complexity involved is very negligi-
ble. This can be verified by running the model at different
time instant, and the system is able to provide the estimation
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result instantly. However, if the given approach is extended
for alarge volume of LiB like a battery pack or battery module
then the computation complexity may increase. Since each
battery model delivers SOH and RUL prediction result with
different time duration at different time instance hence it is
not presented in the result section. However, all machine
learning models are able to deliver the estimation result
within less than 1 second. Hence, it can be concluded that the
computation time cost involved in various machine learning
models implemented is insignificant. In this research work,
NASA’s battery aging process dataset collected is utilized to
construct the battery model using various data-driven based
machine learning algorithms. From the dataset, vital battery
parameters which influences battery health conditions such
as voltage, current, impedance and capacity are considered to
develop the battery model. Since data-driven based approach
is applied in this research work, irrespective any battery
dataset is employed, the procedure followed will remains the
same irrespective of any battery chemistries.

— Actual Data
Predicted Data

1.8
1.7;
1.6
1.5

Capacity

14
1.3

0 20 40 60 80 100 120 140 160

FIGURE 22. RUL prediction.

The Actual fail at cycle number: 128
The predictionfail at cycle number: 131
The error of RUL= 3 Cycles(s)

The Actual fail at cycle number: 128
The predictionfail at cycle number: 128
The error of RUL= -8 Cycles(s)

FIGURE 23. Error in RUL prediction.

TABLE 2. RMSE for different hidden layers in DNN SOH estimation.

Hiljil(;g:lbfg)?irs RMSE diffel:?:ll;(c)z (%)
1 0.09088 -
2 0.06750 2.33
3 0.05986 0.76
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V. CONCLUSION

This main objective of this research work is to develop,
analyze and compare various machine learning models on
hardware platform in order to identify an optimal battery life
estimation approach for Li-ion battery. In order to achieve this
objective, a unified standalone hardware is developed using
a Raspberry-Pi and various machine learning models such
as LR, ANN, CNN, RNN, DNN and LSTM are analyzed
by determining SOH and RUL. To verify the effectiveness
of each learning model, models were tested against a real-
world data acquired from a Panasonic NCR18650B battery.
From the obtained experimental results, it can be concluded
that DNN learning model outperforms other learning model
in SOH estimation with maximum RMSE error of 5.9%.
Similarly, by considering SOH and battery capacity as a key
feature, RUL of the battery is predicted. Although, RUL error
range is inconsistence when same learning model made to
run at different time instances, the performance of the LSTM
model is much better than other learning model. The main
limitations of the above approach are it is verified only on a
single battery cell hence computation complexity and compu-
tation time involved is very negligible. However, if the same
approach are followed for battery pack or battery module it
may increase. To overcome this limitation, a better hardware
setup can be used in ideal conditions to increase the rate
of prediction and decrease the prediction time with faster
computational mechanisms.
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