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ABSTRACT This paper deals with FeedBack/ FeedForward (FB/FF) control of double pendulum gantry
crane systems with payloads taking values over arbitrarily large intervals. The new proposed 2DoF control
architecture is aimed at: 1) to speed up the horizontal payload transportation while minimizing the tracking
error with respect to a desired trajectory; 2) to minimize the sway angles amplitude. The main features of
the control design procedure are: 1) the dynamic output FB control is designed in order to ensure the robust
stability of the closed loop system and the steady-state exact payload positioning; 2) the FF control action is
given by the optimally weighted sum of the two contributions due to FF Plant Inversion (FFPI) and FF Closed
Loop Inversion (FFCLI) control schemes; 3) the optimal robust FF control input is obtained as the solution
of a min max optimization problem that can be solved offline with numerically efficient procedures; 4) the
provided analytical closed form of the FF input in terms of a linear combination of polynomial B-splines
basis functions allows an easy implementation on commercial devices.

INDEX TERMS Gantry crane, 2DoF control, trajectory tracking, model inversion, B-spline input shaping.

I. INTRODUCTION
The two main control requirements for a gantry crane system
are: 1) a fast and very accurate point-to-point payload transi-
tion, 2) the minimization of the sway angles amplitude.

Reconciling these two opposite control specifications calls
for particular control techniques that can be summarily clas-
sified as FF, FB and FB/FF techniques.

FF open-loop techniques are mainly based on input-
shaping algorithms [1]–[9] and are the most used both for
their simplicity and because they do not require sensors for
measuring the sway angles. However, these techniques are
sensitive to external disturbances and parametric uncertain-
ties. FB control techniques [10]–[14] reduce these incon-
veniences exploiting the information carried by sway angle
measures but may produce a slow overall response due to
the input delay in the FB loop [15]. Recent FB control
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techniques [16], [17] have been proposed to also handle actu-
ator deadzones/constraints.

To avoid the need of velocity sensors, the recent FB control
methods proposed in [18] and [19] realize the output action
without involving any velocity signals, which are replaced by
suitably constructed auxiliary signals.

The 2DoF structure of a combined FB/FF action introduces
significant advantages: the FB controller enhances robustness
and damping properties, the FF control reduces the payload
oscillations forcing the closed-loop system with a suitably
shaped reference input [20]–[25]. An extensive review of
both linear and non linear crane control techniques can be
found in [15], [26]. Very recent references based on a linear
approach can be found in [27]–[29].

The present contribution situates in the category of 2DoF
FF/FB, where the FF input is obtained through a dynamic
inversion procedure [30]–[33].

Control techniques based on linear (or linearized) model
inversion have already been successfully used for the open-
loop control of oscillatory systems [4] and applied to a single
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pendulum crane model in [34]. The method proposed in [35]
is applied to a single oscillatory mode gantry crane and the
command input is determined assuming null initial condi-
tions and inverting the transfer function of nominal linearized
closed loop system. Reference [36] proposes the application
of a simplified input-output inversion technique for the open-
loop control of an overhead crane modeled as a double pen-
dulum. Underlying assumptions are negligible zero dynamics
and null initial conditions. The inversion procedure is applied
to the nominal plant and robustness with respect to possible
model uncertainties is tested ‘‘a posteriori’’ by simulations.
As in [4] and [34]–[36], reference is here made to a linearized
model to allow the application of optimization methods with-
out excessive numerical complications.

The main differences with respect to the two latter refer-
ences consist in: 1) the proposed approach does not require
either the exact knowledge of the plant or null initial condi-
tions, 2) the robustness requirement is ‘‘a priori’’ taken into
account in the control design procedure, 3) the minimization
of the sway angles amplitude is addressed.

The method proposed in this paper follows the lines
of [37], [38]: the FF input is shaped through an offline inver-
sion procedure based on an optimality criterion.

The important novelties are: 1) a new and more general
2DoF control architecture is here proposed, 2) to take into
account payloads taking values over arbitrarily large inter-
vals, a min-max optimization approach is adopted: the knowl-
edge on the payload bounds is exploited to define an optimal
robust FF action with reference to the worst case scenario,
3) the FF input is parametrized as a B spline function.

Point 1 deserves some considerations.
The most widely used 2DoF control schemes for

inverse control can be classified as FF Plant Inversion
(FFPI) architectures (see e.g. [33], [39]–[44] and references
therein), or FF Closed Loop Inversion (FFCLI) architec-
tures (see e.g. [35], [45]–[48]). With reference to some SISO
plants, the performances of the two architectures are dis-
cussed and compared in [49]–[53]. For example, in disk drive
applications FFCLI seems to provide better settle time per-
formance than FFPI under low frequency parametric uncer-
tainty [49]. For high-speed scanning probemicroscopes, FFPI
tends to have better positioning performance than FFCLI,
[50]. In atomic force microscope applications, the FFCLI
yields better tracking performance than FFPI even in the
presence of model uncertainties, [51]–[53].

As each of the two architectures has advantages over the
other depending on the specific problem, it would be very
useful to define a more general 2DoF control architecture
optimally combining the FFPI and FFCLI control actions
independently of the particular application. Unfortunately,
this problem can not be solved with the guidelines stated
in the above papers because they refer to some definite
applications and their qualitative nature makes it difficult any
generalization.

The inversion procedure proposed in this paper is a way to
settle the issue because the resulting FF control law is always

given by an optimal combination of the FFPI and FFCLI
control actions independently of the particular application.

For this reason the new inversion procedure is referred to
as FF Optimally Balanced Inversion (FFOBI).

The design of the FFOBI architecture proposed in this
paper can be summarized in the two following steps.

Step 1. Given a linearized state-space model of a double
pendulum gantry crane where the payload may take values
over a given bounded interval, a full-state observer based FB
controller is designed to guarantee the robust stability of the
closed-loop system 6f . Only the cart displacement measure
is assumed to be available.

The controller is also endowed with an internal model of
constant signals. The observer provides a virtual measure of
the two swing angles, of their derivatives and of the cart
velocity, making superfluous the relative sensors. The internal
model needs to guarantee an exact steady-state tracking.

The extension of Step 1 to the case of payloads taking
values over arbitrarily large, bounded intervals is discussed
in Section V.A.

Step 2. 6f is forced by two inputs r1(t) and r2(t) affinely
depending on the outputs s1(t) and s2(t) of two FF input
estimators IE1 and IE2 simultaneously operating according
to the FFCLI and FFPI schemes respectively. The two signals
s1(t) and s2(t) are computed so that the corresponding r1(t)
and r2(t) minimize a worst-case quadratic cost functional of
the transient tracking error and of the sway angles amplitude
and are searched in the linear space generated by polynomial
B-spline basis functions of a fixed degree.

Remark 1. It is here stressed that the purpose of the paper
is not designing the FB controller (Step 1). As far as the FB
controller can be well designed, it is well known that for a sig-
nificant improvement of the transient tracking performance, a
2DoF control structure should be used (see e.g. [54]). Hence,
the major breakthrough of this paper is precisely to define a
new approach for the design of the precomputed optimal FF
control input (Step 2) acting in the proposed 2DoF control
scheme. 4

Remark 2. Parametrizing s1(t) and s2(t) as polynomial
B-splines involves significant advantages deriving from the
following properties: 1) B-spline functions are continuously
differentiable universal approximators which admit a parsi-
monious parametric representation, 2) B-splines functions
belong to the convex hull defined by the relative control
points [55]. Property 1 significantly reduces the number
of parameters (the control points) with respect to which
the functional is minimized and simplifies the minimization
problem by reformulating it as a robust least square estima-
tion problem (see Section IV.B.1 ). Property 2 guarantees the
asymptotic internal stability of the overall control scheme
(see Remark 8 in Section IV.B.1 ). The resulting optimal
FF action is given by the optimal balance of the two con-
tributions produced by FFPI and FFCLI control schemes
because the estimated control points univocally define the
corresponding polynomial B-splines and hence the corre-
sponding inputs to 6f , r1(t) and r2(t). The weights of the
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FIGURE 1. Sketch of a gantry crane.

two contributions are given by the 2-norms of the estimated
B-splines. 4

Remark 3. A preliminary simplified version of the above
outlined method has been applied to a single pendulum
model [56]. The main substantial improvements introduced
here are: 1) a double pendulum model is considered, 2)
the payload is allowed to take values over arbitrarily large
intervals, 3) the sway angle minimization problem is taken
into account, 4) the real time implementation of the proposed
offline optimization procedure is discussed. 4

The paper is organized in the following way. Some
preliminaries are recalled in Section II. The FFOBI control
architecture and problem statement are given in Section III.
The solution procedure is explained in Section IV. Some
extensions are discussed in Section V. Several numerical sim-
ulations are reported in Section VI. Some concluding remarks
are reported in Section VII.

II. PRELIMINARIES
A. THE LINEARIZED GANTRY CRANE MODEL
Reference is here made to the gantry crane system shown in
Fig. 1 whose linearized state-space model is derived under
the following usual assumptions (see e.g. [15], [57], [58]):
1) point-masses cart and payload, 2) horizontal movement of
the payload on the x− y plane, 3) the rope is stretched and its
elasticity is in fact negligible.

The system shown in Fig. 1 consists of a concentrated
payload and a hook with relevant mass. In the model, x
represents the position of the cart, F is the force applied to
the cart,m,m1,m2 are the mass of the cart, of the hook and of
the payload respectively and cc, c1, c2 are the viscous friction
coefficients of the cart, of the first and of the second cable,
respectively. The variables θ1 and θ2 are the hook and payload
angles with respect to the vertical line. The lengths of the first
and of the second cable are denoted as l1 and l2 respectively.
Using Lagrange method the following equation is obtained:

M (q)q̈+ C(q, q̇)q̇+ G(q) = τ (1)

where q
4
=
[
x θ1 θ2

]T and τ
4
=
[
F 0 0

]T .
The mathematical expression of M (q), C(q, q̈) and G(q)

can be easily derived from the system of equations (3)

in [36]. By linearizing (1) around the equilibrium point
θ1 = θ2 = 0 and θ̇1 = θ̇2 = 0, the following state space
representation is obtained

ẋp(t) = Axp(t)+ Bu(t) (2)

yL(t) = CLxp(t) (3)

ym(t) = Cmxp(t) (4)

where xp
4
=
[
x ẋ θ1 θ̇1 θ2 θ̇2

]T
∈ Rn, n = 6, (5)–(8), as

shown at the bottom of the next page, yL(t) ∈ Rq, q = 1,
is the controlled output, ym(t) ∈ Rs, s = 1, is the measured

output and u(t)
4
= F ∈ Rv, v = 1, is the control effort. Note

that the controlled output yL(t) (the payload position) does
not coincide with the measured output ym(t) = x(t), (the cart
position), because, to avoid additional sensors, it is assumed
that the sway angles

θ1(t) = C1xp(t) =
[
0 0 1 0 0 0

]
xp(t) (9)

and

θ2(t) = C2xp(t) =
[
0 0 0 0 1 0

]
xp(t) (10)

are not measured. This problem can be overcome replacing
yL(t) with its virtual measure ŷL(t) = x(t)+ l1θ̂1(t)+ l2θ̂2(t),
where the angle estimates θ̂1(t) and θ̂2(t) are provided by a
full state observer. The observer also allows the reconstruc-
tion of the velocity signals ẋ(t), θ̇1(t), θ̇2(t) which are usually
difficult to obtain in practice.
The payload mass m2 may take values on a given interval

I
4
= [m−2 , m+2 ] of arbitrary amplitude. Defining the unit

simplex 32
4
= {α ∈ R2 s.t. α1 + α2 = 1, α1, α2 ≥ 0}, the

dynamical matrix of the linearized state space model (2)-(4)
can be expressed in the following form:

A(α) ∈ A 4= {A(α) : A(α) =
2∑
i=1

αiAi, α ∈ 32} (11)

namely A(α) is an element of the polytopic setA given by the
convex hull of vertices Ai.
It can be easily verified that ∀m2 ∈ I , (i.e. ∀α ∈ 32) the

two following properties hold:
P1) the pairs (A(α),B) and (Cm,A(α)) are, respectively,

reachable and observable,

P2) the system matrix
[
sI − A(α) B
−CL D

]
of the triplet

(CL ,A(α),B) relating the control input u(t) to the controlled
output yL(t) has rank = n + v = n + 1 at s = 0, ∀α ∈ 32,
namely the triplet (CL ,A(α),B) has no transmission zeros at
s = 0, ∀α ∈ 32.
For ease of notation in future developments, the fol-

lowing assumption is momentarily introduced: A1) the
amplitude of the interval I is such as to guarantee that
6 ≡ (Cm,CL ,A(α),B) is robustly stabilizable by a unique
observed based controller. The existence of such an interval
is guaranteed by the above properties. Assumption A1 will
be removed in Section V.A where the extension to the case
of arbitrarily large I will be considered.
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Property P2 also implies that the stabilized closed loop
system 6f is able to track constant input signals with a
null steady-state error provided the stabilizing controller is
also endowed with an internal model of such a class of
signals [60].

B. B-SPLINE FUNCTIONS
A polynomial, B-spline time function is defined as a linear
combination of polynomial B-splines basis time functions
and control points:

s(t) =
∑̀
i=1

ciBi,d (t) ∈ R, t ∈ [t̂1, t̂`+d+1] ⊆ R, (12)

where the ci’s are real numbers representing the control points

of s(t), the integer d is the degree of the B-spline, the (t̂i)
`+d+1
i=1

are the non decreasing knot points and the Bi,d (t) ∈ R are the
B-spline basis functions which can be computed by the Cox-
de Boor recursion formula [55]. An equivalent representation
of s(t) in (12) is

s(t) = Bd (t)c, t ∈ [t̂1, t̂`+d+1] ⊆ R, (13)

where c
4
= [c1, . . . , c`]T and Bd (t)

4
=
[
B1,d (t), . . . ,B`,d (t)

]
.

Convex hull property. Any value assumed by s(t), ∀t ∈
[t̂j, t̂j+1], j > d , lies in the convex hull of its d + 1 control
points cj−d , . . . , cj. 4

Smoothness property. Suppose that t̂i < t̂i+1 = · · · =
t̂i+m < t̂i+m+1, with 1 ≤ m ≤ d + 1 then the B-spline
function s(t) has continuous derivative up to order d − m at
knot t̂i+1. This property implies that the spline smoothness
can be changed using multiple knot points. It is common

choice to set m = d + 1 multiple knot points for the initial
and the last knot points and to evenly distribute the other ones.
In this way (12) assumes the first and the final control points
as initial and final values. 4

For a p-component vector s(t) = [s1(t), . . . , sp(t)]T ,
a compact B-spline representation can be used

s(t) = B̄d (t)c̄, t ∈ [t̂1, t̂`+d+1], (14)

where B̄d (t)
4
= diag [Bd (t), . . . ,Bd (t)] and c̄

4
=[

c1T , . . . , cpT
]T . Each ci

4
=
[
ci,1, . . . , ci,`

]T , i = 1, . . . , p,
is defined as in (13). The dimensions of c̄ are (p` × 1). The
dimensions of the block diagonal matrix B̄d (t) are (p× p`).
Remark 4. From (13) it is apparent that, once the degree

d and the knot points t̂i have been fixed, the scalar B spline
function s(t), t ∈ [t̂1, t̂`+d+1], is completely determined
by the corresponding vector c of ` control points. There is
no systematic way to fix the degree of a B spline. In the-
ory the higher the degree the better. In practice, pertinent
literature [55] suggests that cubic splines represent a good
compromise between computational complexity and model-
ing accuracy. 4

C. THE ROBUST LEAST SQUARES PROBLEM
Given an overdetermined set of linear equationsDf ≈ g, with
D ∈ Rr×m, g ∈ Rr , subject to unknown but bounded errors:
‖δD‖s ≤ ρ and ‖δg‖s ≤ ξ , the robust least squares estimate
f̂ ∈ Rm is the value of f minimizing

min
f

max
‖δD‖s≤ρ, ‖δg‖s≤ξ

‖(D+ δD)f − (g+ δg)‖, (15)

where ‖ · ‖s denotes the spectral norm.

A =



0 1 0 0 0 0

0 −
cc
m

g(m1 + m2)
m

c1
l21m

0 0

0 0 0 1 0 0

0
cc
l1m

−
g(m1 + m2)(m1+ m)

l1m1m
−
c1(m1 + m)

l31m1m

gm2

l1m1

c2
l1l22m1

0 0 0 0 0 1

0 0
g(m1 + m2)

l2m1

c1
l21 l2m1

−
g(m1 + m2)

l2m1
−
c2(m1 + m2)

l32m1m2


(5)

B =



0
1
m
0

−
1
ml1
0

0


(6)

CL =
[
1 0 l1 0 l2 0

]
(7)

Cm =
[
1 0 0 0 0 0

]
(8)
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FIGURE 2. The FFOBI control scheme for the gantry crane model.

As shown in ( [59], p. 206), problem (15) is equivalent to
minimizing a sum of Euclidean norms

min
f
‖D f − g‖ + ρ‖f ‖ + ξ (16)

Possible constraints on f of the kind

f ≤ f ≤ f̄ (17)

can be taken into account by imposing all the scalar linear
inequalities deriving from the above vector constraint.

III. THE FFOBI CONTROL SCHEME AND PROBLEM
STATEMENT
The new 2DoF control scheme proposed in this paper is
shown in Fig. 2 where, without any loss of generality, a uni-
tary FB from the virtualmeasure ŷL(t) of the controlled output
is assumed. The two blocks IE1 and IE2 are two FF input esti-
mators operating according to the FFCLI and FFPI schemes
respectively. The inputs of both FF filters are the desired
output yd (t) to be tracked and an estimate x̂f (0) of the initial
state of6f . The outputs of IE1 and IE2 are the two B-splines
s1(t) ∈ Rq (q = 1) and s2(t) ∈ Rv (v = 1) respectively. The
two scalars µ1 and µ2 are two binary variables. The FFOBI
control scheme optimally combining the FFCLI and FFPI
architectures corresponds to µ1 = µ2 = 1. If µ1 = 1 and
µ2 = 0, then r1(t) = yd (t) + s1(t) and r2(t) = 0, so that
the FFCLI is obtained, while µ1 = 0 and µ2 = 1 give
r1(t) = yd (t) and r2(t) = s2(t), so that the FFPI is obtained.
For µ1 = µ2 = 0, the 2DoF control scheme reduces to the
usual 1DoF FB control scheme with no FF action.

The block 6f is the FB connection of the polytopic lin-
earized Gantry Crane model 6 = (Cm,CL ,A(α),B) with an
LTI robustly stabilizing dynamic output FB controller.

A detailed description of the FB controller structure and
the resulting state space representation (Cf ,Af (α),Bf ) of the
closed loop system 6f are given in section III.A.

Before formulating the problem statement, the following
definitions and notation are introduced. The desired output
trajectory yd (t) for the payload transition yL(t) is partitioned

in a transient and steady state component as follows:

yd (t) =


yd,t (t), t ∈ [ 0, ty )

4
= Ty

ỹd , t ≥ ty
yd,t (t−y ) = ỹd

(18)

where yd,t (t) and ỹd denote the transient and steady state
behavior of yd (t), respectively, Ty is the time interval over
which yd,t (t) is required to converge towards ỹd . The desired
transient response yd,t (t) is pre-specified on the basis of
common requirements for point to point payload positioning
like a fast and smooth transition towards the desired steady
state value ỹd .

Also the signals s(t)
4
= [sT1 (t), s

T
2 (t)]

T and r(t)
4
=

[rT1 (t), r
T
2 (t)]

T are partitioned in a transient and steady state
components defined as follows:

si(t) =


si,t (t), t ∈ [ 0, tr )

4
= Tr , tr ≥ ty

s̃i(t), t ≥ tr ,

si,t (t−r ) = s̃i(tr ),

(19)

i = 1, 2, and

r(t)=



rt (t)
4
=

[
rt,1(t)
rt,2(t)

]
=

[
yd (t)+ µ1s1,t (t)

µ2s2,t (t)

]
, t ∈ Tr

r̃(t)
4
=

[
r̃1(t)
r̃2(t)

]
=

[
yd (t)+ µ1s̃1(t)

µ2s̃2(t)

]
, t ≥ tr

rt (t−r ) = r̃(tr ),
(20)

Remark 5. The time instant tr has to be sufficiently large to
guarantee that rt (t−r ) = r̃(tr ) (namely si,t (t−r ) = s̃i(tr ), i =
1, 2) and the actual controlled output yL(t) under the action
of rt (t) has almost achieved the desired set point ỹd . 4

Definition 1. The optimal combination of FFPI and FFCLI
is the one giving a minimum 2-norm tracking error and a
minimum 2-norm sway angles. 4

By the above definition, the problem of finding the optimal
FF control law acting in the FFOBI scheme can be restated
as the following equivalent Robust Almost Exact Output
Tracking (RAEOT) problem.
(RAEOT) Let 6f ≡ (Cf ,Af (α),Bf ) be a robustly asymp-

totically stable closed loop system. Given a desired yd (t)
defined as in (18), it is required to find a FF control input
r(t) defined as in (20) satisfying the following conditions
∀Af (α) ∈ Af :
Transient condition: rt (t) is a continuous function

smoothly converging to r̃(tr ) over Tr and yielding: 1) an
actual controlled output yL(t) which is an optimal approxi-
mation (in the robust least square sense) of yd (t), t ∈ Tr , 2)
minimal sway angles θ1(t), θ2(t).
Steady-state condition: r̃(t) yields a tracking error e(t) =

yd (t)− yL(t), asymptotically converging to zero.
Boundedness condition: r(t) is uniformly bounded for any

uniformly bounded yd (t).
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A. THE STATE SPACE REPRESENTATIONS OF THE FB
CONTROLLER AND OF THE CLOSED LOOP SYSTEM
The dynamic output FB controller includes a full state
observer 6o of xp(t) and the internal model 6c of constant
signals. The observer 6o has the form

˙̂xp(t) = Āx̂p(t)+ Bu(t)+ L(ym(t)− Cm x̂p(t)) (21)

where Ā is the assumed nominal dynamical matrix of 6 and
L is the observer gain matrix.

Recalling that ŷL(t)
4
= x(t)+ l1θ̂1(t)+ l2θ̂2(t) is a measure

of the actual controlled output provided by6o, the state-space
representation of 6c is

ẋc(t) = Acxc(t)+ Bc(r1(t)− ŷL(t)) (22)

where xc ∈ R, Ac = 0 and Bc = 1, [60].
The control effort u(t) forcing the gantry crane model 6 is

given by

u(t) = −Kx̂p(t)+ Kcxc(t)+ r2(t) (23)

The state space representation (Cf ,Af (α),Bf ) of the closed

loop system 6f with xf (t)
4
= [xTp (t), x

T
c (t), x̂

T
p (t)]

T
∈ Rnf ,

nf = 2n+ 1 and r(t)
4
= [rT1 (t), r

T
2 (t)]

T results to be

ẋf (t) =

 A(α) BKc −BK
−BcCm Ac −Bc(CL − Cm)
LCm BKc Ā− LCm − BK

 xf (t)
+

 0 B
Bc 0
0 B

 r(t) (24)

yL(t) =
[
CL 0 0

]
xf (t) (25)

where, analogously to A(α), also Af (α) ∈ Af
4
={

Af (α) : Af (α) =
∑2

i=1 αiAf i, α ∈ 32

}
. How to compute

the controller gain matrices L, Kc and K , which guaran-
tee the robust stability of the closed loop system 6f given
by (24)-(25), is explained in section VI.A. 4

IV. COMPUTATION OF THE FF CONTROL INPUT
In accordance with definition (20), this step is performed
through a separate computation of the steady state r̃(t) and
transient rt (t) components of r(t).

A. COMPUTATION OF THE STEADY-STATE COMPONENT
As by A1) 6f is robustly asymptotically stable, then, by P2,
the steady-state and boundedness conditions can be auto-
matically satisfied as a direct consequence of endowing the
dynamic output FB controller with the internal model of
constant signals, [60]. Recalling the assumption of a unitary
FB, it is enough to choose s̃1(t) = s̃2(t) = 0, for t ≥ tr ,
which, by (20), implies r̃(t) = [ỹd , 0]T .

B. COMPUTATION OF THE TRANSIENT COMPONENT
The transient component rt (t) of r(t) is obtained as the solu-
tion of a min-max optimization problem where the quadratic
cost functional also includes the quadratic norm of the sway
angles. For real time applications, this problem must nec-
essarily be solved offline. As the payload is not ‘‘a pri-
ori’’ known, robustness with respect to parametric uncer-
tainty must be considered an essential feature of the solving
procedure.

The optimization problem is numerically solved imposing
to rt,1(t) = yd (t) + µ1s1,t (t) and to rt,2(t) = µ2s2,t (t) the
structure deriving from the assumption of modeling the tran-
sient components of s1(t) and s2(t) respectively as polynomial
B-spline functions given by (14).

The parameter vector defining rt (t) is computed as the
solution of the constrained optimization problem defined
beneath.

Let Tr
4
= [0, tr ) be partitioned as Tr =

⋃nr
k=1 Tk , where

Tk
4
= [tk−1, tk ), k = 1, . . . , nr , with tk

4
= k1 and 1

4
=

tr
nr

are disjoint sub-intervals such that: t0 = 0, tnr = nr1 = tr .
The transient rt (t) is determined from the off-line min-

imization of the following quadratic cost functional of the
augmented residual vector e(tk |0) given by (27) evaluated
over the transient interval Tr

Jα
4
=

nr∑
k=1

eT (tk |0)Qe(tk |0), Q=

Qy 0 0
0 Q1 0
0 0 Q2

 > 0

(26)

e(tk |0)
4
=
[
eyL (tk |0) eθ1 (tk |0) eθ2 (tk |0)

]T (27)

eyL (tk |0)
4
= yd (tk )− yL(tk |0) (28)

eθ1 (tk |0)
4
= θ1,d (tk )− θ1(tk |0) (29)

eθ2 (tk |0)
4
= θ2,d (tk )− θ2(tk |0) (30)

yL(tk |0)
4
= Cf eAf (α)tk x̂f (0)

+

∫ tk

0
Cf eAf (α)(tk−τ )Bf rt (τ )dτ (31)

θ1(tk |0)
4
= Cf ,1eAf (α)tk x̂f (0)

+

∫ tk

0
Cf ,1eAf (α)(tk−τ )Bf rt (τ )dτ (32)

θ2(tk |0)
4
= Cf ,2eAf (α)tk x̂f (0)

+

∫ tk

0
Cf ,2eAf (α)(tk−τ )Bf rt (τ )dτ (33)

where eyL (tk |0) is the predicted tracking error between
the desired yd (tk ) and predicted payload position yL(tk |0).
An analogous definition holds for the remaining components
eθi (tk |0), i = 1, 2 of the augmented residual vector where
the desired θi,d (tk ), i = 1, 2 are null functions. According to

(9)-(10) the matrices Cf ,i are defined as Cf ,i
4
=
[
Ci 0 0

]
, for

i = 1, 2. The explicit dependence on α of e(tk |0) has been
omitted for simplicity of notation. By definition of rt (t) and
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according to (14) one has

rt (t) =
[
rt,1(t)
rt,2(t)

]
=

[
µ1B̄d1 (t) 0

0 µ2B̄d2 (t)

] [
c̄1
c̄2

]
+

[
yd (t)
0

]
4
= B̃(t)c̃+ yd (t) (34)

where the integers d1 and d2 indicate the degrees of the scalar
B spline functions composing rt,1(t) and rt,2(t) respectively.

The dimensions of c̃
4
=

[
c̄1
c̄2

]
are (q`1 + v`2) × 1 = (`1 +

`2)×1. The dimensions of the block diagonal matrix B̃(t) are
(q+ v)× (q`1 + v`2) = 2× (`1 + `2).

By (31)-(34), defining the augmented vector ȳd (tk )
4
=

[
yd (tk ) θ1,d (tk ) θ2,d (tk )

]T and matrix C̄f
4
=

 Cf
Cf ,1
Cf ,2

 a com-

pact expression of e(tk |0) results to be given by

e(tk |0) = ȳd (tk )− C̄f eAf (α)tk x̂f (0)

−

∫ tk

0
C̄f eAf (α)(tk−τ )Bf B̃(τ )dτ c̃

−

∫ tk

0
C̄f eAf (α)(tk−τ )Bf yd (τ )dτ (35)

The input function rt (t), t ∈ Tr , affinely dependent on
s1,t (t) and s2,t (t), is robustly estimated minimizing the worst
case error due to the ‘‘a priori’’ uncertainty on the exact
payload value m2 ∈ [m−2 m+2 ]. More precisely rt (t), t ∈ Tr ,
is obtained solving off-line the following Min-Max Con-
strained Optimization (MMCO) problem

min
c̃

max
α∈3l

Jα (36)

subject to c̃min ≤ c̃ ≤ c̃max. (37)

where Jα , by (26), is defined over [0, tr ) and the correspond-
ing minimizing c̃ defines rt (t) over the same interval.

Remark 6. The constraints (37) on c̃ =
[
¯cT1
¯cT2

]T
are

chosen so as to impose the convergence of the smooth func-
tions s1,t (t) and s2,t (t) to the respective null steady state
components within Tr according to (19). Consequently the
convergence of rt (t) towards r̃(t) is guaranteed.
Exploiting the convex hull property of B spline functions,

a simple way to assure this convergence is to impose a null
value to the last (di+ 1) control points of each c̄i defining the
respective B spline function si,t (t), i = 1, 2. As for the first
`i− (di+1) control points of each c̄i, they are allowed to vary
within a prescribed arbitrarily large interval. 4

1) OFFLINE SOLUTION OF THE MMCO PROBLEM
This section shows how the MMCO problem stated in
Section IV.B can be reformulated as a robust least square
problem. The starting point is to rewrite the closed loop

dynamical matrix Af (α) as Af (α)
4
= Āf + δAf (α), α ∈ 3l

where Āf is the nominal closed loop plant. Using the matrix
identity e(A+E)t = eAt +

∫ t
0 e

A(t−s)Ee(A+E)sds and replacing
A and E with Āf and δAf (α) respectively, one has

e(Āf+δAf (α))t = eĀf t +
∫ t

0
eĀf (t−s)δAf (α)eAf (α)sds. (38)

Then, by (38), the predicted e(tk |0) given by (35), can be
rewritten as

e(tk |0) = ȳd (tk )− C̄f eĀf tk x̂f (0)

− C̄f

[∫ tk

0
eĀf (tk−s)δAf (α)eAf (α)sds

]
x̂f (0)

−

∫ tk

0
C̄f eĀf (tk−τ )Bf B̃(τ )dτ c̃

−

∫ tk

0
C̄f

[∫ tk−τ

0
eĀf (tk−τ−s)δAf (α)eAf (α)sds

]
×Bf B̃(τ )dτ c̃

−

∫ tk

0
C̄f eĀf (tk−τ )Bf yd (τ )dτ

−

∫ tk

0
C̄f

[∫ tk−τ

0
eĀf (tk−τ−s)δAf (α)eAf (α)sds

]
×Bf yd (τ )dτ (39)

or, equivalently,

e(tk |0) = (b(tk |0)+ δb(tk |0))− (D(tk |0)+ δD(tk |0)f

(40)

where

b(tk |0)
4
= ȳd (tk )− C̄f eĀf tk x̂f (0)

−

∫ tk

0
C̄f eĀf (tk−τ )Bf yd (τ )dτ (41)

D(tk |0)
4
=

∫ tk

0
C̄f eĀf (tk−τ )Bf B̃(τ )dτ (42)

δb(tk |0)
4
= −C̄f

[∫ tk

0
eĀf (tk−s)δAf (α)eAf (α)sds

]
x̂f (0)

−

∫ tk

0
C̄f

[∫ tk−τ

0
eĀf (tk−τ−s)δAf (α)eAf (α)sds

]
×Bf yd (τ )dτ (43)

δD(tk |0)
4
=

∫ tk

0
C̄f

[∫ tk−τ

0
eĀf (tk−τ−s)δAf (α)eAf (α)sds

]
×Bf B̃(τ )dτ (44)

f
4
= c̃ (45)

Define the following vectors and matrices

e
4
= [eT (t1|0), . . . , eT (tnr |0)]

T

b
4
= [bT (t1|0), . . . , bT (tnr |0)]

T

δb
4
= [δbT (t1|0), . . . , δbT (tnr |0)]

T (46)

D
4
= [DT (t1|0), . . . ,DT (tnr |0)]

T

δD
4
= [δDT (t1|0), . . . , δDT (tnr |0)]

T

Q
4
= diag[Q, . . . ,Q], (47)
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From (41)-(45), it is evident that only δb and δD are depend-
ing on α. This dependence is now explicitly reintroduced to
better clarify the formulation of the MMCO problem as a
robust least square problem.

Exploiting the above defined vectors and matrices,
equations (41)-(45) can be expressed in the compact form

e(α) = (b+ δb(α))− (D+ δD(α))f ,

and functional Jα in (26) can be written as Jα = e′(α)T e′(α),

where e′(α)
4
= Q1/2e(α). Also defining b′ + δb′(α)

4
=

Q1/2(b + δb(α)) and D′ + δD′(α)
4
= Q1/2(D + δD(α)),

it is evident that the MMCO problem is equivalent to
the constrained minimization of the squared 2-norm of the
worst-case weighted residual e′(α). Namely the MMCO
problem (36), (37) is equivalent to solve the following
Box-Constrained Robust Least Square (BCRLS) problem

min
f

max
‖δD′(α)‖s≤ρ ‖δb′(α))‖s≤ξ

‖(D′ + δD′(α))f − (b′ + δb′(α))‖ (48)

subject to fmin ≤ f ≤ fmax (49)

where (48) is of the kind (15) which, in turn, is equivalent to
minimizing (16), and (49) is of the kind (17).

Remark 7. The numerical calculation of ρ and ξ can be
greatly simplified taking into account the following:
1 As the term ξ of (16) is independent of f , it cannot be

minimized. Hence it can be removed from the objective
function. This, in turn, implies that in (48) only the upper
bound ρ on ‖δD′(α)‖s needs to be determined. This
avoids computing the involved r.h.s. of (43).

2 The calculation of ρ can be entirely executed
off-line by performing a gridding on the parameter
vector α ∈ 32. 4

Remark 8. The internal asymptotic stability of the proposed
FFOBI control scheme is a direct consequence of the internal
asymptotic stability of 6f and of the way r(t) is computed,
which evidently implies the uniform boundedness of r(t) for
any uniformly bounded yd (t). 4

V. SOME EXTENSIONS
A. REMOVING ASSUMPTION A1
In the case of arbitrarily large uncertainty intervals I

4
=

[m−2 , m
+

2 ], a unique dynamic FB controller stabilizing the
entire uncertainty range may not exist. In this case, a simple
solution to the robust stabilization problem is to partition I
into sufficiently small subintervals Il , l = 1, . . . , l̄. Over
each Il the linearized uncertain plant is robustly stabilized
by a unique corresponding dynamic FB controller which also
guarantees exact asymptotic tracking. It can be also seen that
the smaller the amplitude of each Il , the smaller the state
estimation error due to the observer. The existence of these
controllers is guaranteed by properties P1 and P2. The proper
FB controller to be actually applied is selected once ameasure
of the payload is available.

B. REDUCING THE UNCERTAINTY ON THE MIN-MAX
OPTIMIZATION PROBLEM
In the case of a large ‘‘a priori’’ uncertainty on the actual
payload, the min-max optimization-problem may yield con-
servative results due to solutions which are far from being
optimal. As a consequence a degraded tracking performance
can be obtained. This drawback can be greatly reduced
arguing similarly to Section V.A. Each subinterval Il , l =
1, . . . , l̄, over which the plant is robustly stabilized by a
unique FB controller, is itself partitioned into subintervals I (j)l ,
j = 1, . . . jl . Then, the offline procedure of Section IV.B.1 is
applied over each I (j)l assuming a nominal closed loop dynam-
ical matrix Ā(j)f ,l , corresponding to the middle point of each

I (j)l . This procedure provides
∑l̄

l=1 jl different possible FF
inputs rt (t) obtained as offline solutions of as many min-max
optimization problems. The advantage is that over each I (j)l ,
the corresponding optimization problem (48),(49) is solved
with reference to a parametric uncertainty with a reduced
upper bound ρ(j)l .

VI. SIMULATION RESULTS
Similarly to very recent papers [65]- [67] only numerical
simulations are here reported. Their purpose is to put in
evidence the two main appealing features of the proposed
method: its generality of application and its robustness with
respect to parameter variations.

With reference to the linearized gantry crane model of
Section II.A, the following values of the physical parameters
are taken from [36], Table 1: l1 = l2 = 3 (m), m = 100 (kg),
m1 = 10 (kg), cc = 0.1, (Ns/m), c1 = c2 = 3, (Nms/rad)
and g = 9.8 (m/s2). Unlike [36], m2 is here allowed to

take values in the interval I
4
= [m−2 ,m

+

2 ] = [5, 15](Kg).
Consequently, the vertex matrices of the polytopic dynamical
matrix (11) result to be

A1

=


0 1 0 0 0 0
0 − 0.001 1.47 0.0033 0 0
0 0 0 1 0 0
0 0.0003 − 5.39 − 0.0122 1.6333 0.0111
0 0 0 0 0 1
0 0 4.9 0.0111 − 4.9 − 0.0333


A2

=


0 1 0 0 0 0
0 − 0.001 2.45 0.0033 0 0
0 0 0 1 0 0
0 0.0003 − 8.98 − 0.0122 4.9 0.0111
0 0 0 0 0 1
0 0 8.16 0.0111 − 8.16 − 0.0185

.

The nominal Ā corresponds to the centroid of the polytope A.
The proposed 2DoF control scheme is required to drive
the controlled output yL(t) (payload position) from 0 to 10
according to the desired output trajectory yd (t) shown in
Fig. 6 (red dashed line) and to minimize the sway angles θ1(t)
and θ2(t). The desired output trajectory is defined according
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to (18), where the transient component yd,t (t) is the S-shaped
function given by yd,t (t) = 10ȳ(t, τ ) where ȳ(t, τ ) is the
normalized transition polynomial function reported in (14)
of [35] and τ is the transition time which coincides with ty
in (18).

A. STEP 1: DESIGN OF THE GAIN MATRICES OF THE
ROBUSTLY STABILIZING DYNAMIC OUTPUT FB
CONTROLLER.
The step by step procedure used to compute the gain matrices
of the FB controller, defined in section III.A, is reported
beneath:

1 Applying the transformation matrix T
4
=

0 0 I
0 I 0
I 0 −I

 to

the closed loop state vector xf one has x̃f
4
= Txf

4
=[

x̂Tp xTc xTp − x̂
T
p
]
and the corresponding closed loop

dynamical matrix Ãf (α) = TAf (α)T−1 has the form:

Ãf (α) =

 Ā− BK BKc LCm
−BcCL Ac − BcCm
A(α)− Ā 0 A(α)− LCm


2 The closed loop dynamicalmatrix Ãf (α) can be rewritten

as Ãf (α) = Â(α)− B̂K̂ with

Â(α) =

 Ā 0 LCm
−BcCL Ac − BcCm
A(α)− Ā 0 A(α)− LCm

 , B̂ =

B0
0


and K̂ =

[
K −Kc 0

]
.

The above equations are exploited to apply a sort of sepa-
ration principle. LMI conditions are used to compute the
gainmatricesL,K andKc. The feasibility of the obtained
LMI conditions is guaranteed by A1).

3 The observer gain matrix L is chosen such that
A(α)− LCm is quadratically stable ∀α ∈ 32. From
[61], the LMI conditions to be satisfied with respect to
the unknowns S = ST > 0 and Z are:

SAi − ZCm + ATi S − C
T
mZ

T < 0, i = 1, 2.

The resulting gain matrix L is given by L = S−1Z . The
following matrix

L =
[
8.63 39.34 25.98 − 86.11 − 10.21 96.06

]T
has been found.

4 Once L has been designed, the gain matrix K̂ =[
K −Kc 0

]
is chosen such that Ãf (α)

4
= Â(α) − B̂K̂

is quadratically stable ∀α ∈ 32. From [61], the LMI
conditions to be satisfied with respect to the unknowns

P = PT =
[
P1 0
0 P2

]
> 0 and Y = [Y1 0] are:

PÂTi − Y
T B̂T + ÂTi P− B̂Y < 0, i = 1, 2

where Âi
4
=

 Ā 0 LCm
−BcCL Ac −BcCm
Ai − Ā 0 Ai − LCm

 are the vertex

matrices of Â(α).
The resulting gain matrix K̂ is given by K̂ =[
[K −Kc] 0

]
= YP−1 =

[
Y1P
−1
1 0

]
. The following

matrices have been found:

K = 105
[
0.27 0.57 −4.17 1.35 −0.49 −0.95

]
Kc = 6.09 · 103.

B. STEP 2. COMPUTATION OF THE FF CONTROL INPUT
SOLVING THE RAEOT PROBLEM
As stated in Remark 5, rt (t) has to be defined over a suffi-
ciently large transition interval Tr

4
= [0, tr ). A practical way

to fix a lower bound on tr is: tr ≥ ts, where ts is the settling

time relative to the output of the nominal 6̄f
4
= (Cf , Āf ,Bf )

forced by r(t) = [yd (t) 0]T . In this case the value tr = 20 ≥
ts = 18 has been chosen.
The steady-state component r̃(t) can be directly obtained

as explained in section IV.A. In this case one has r̃(t) =
[ỹd , 0]T = [10, 0]T , ∀t ≥ tr . By (26), as Tr = [0, tr ) with
tr = 20, choosing 1 = 0.01 one has nr = 2000.
As the plant is stabilized by a unique FB controller over

the whole uncertainty interval I = [5, 15] then, according
to section V.A, one has l̄ = 1, so that I ≡ I1, and the
symbol I will be used in the sequel of this section. Accord-
ing to section V.B, I is in turn partitioned into subintervals
I (j), j = 1, . . . , j1. In this case j1 = 20 subintervals of
the same amplitude M = 0.5 have been chosen. Over each
subinterval I (j), j = 1, . . . , 20, the respective offline FF input
r (j)t (t) has been computed as the solution of the associated
BCLRS problem (48),(49). Each of the 20 BCLRS problems
has been solved with reference to a closed loop dynamical
matrix Ā(j)f corresponding to the middle point of each I (j),

j = 1, . . . , 20 and to the weight matrix Q
4
= diag[Q, . . . ,Q]

where Q = diag[1, 2, 2] is chosen. The BCRLS problems
have been numerically solved using the software Yalmip [62].

The transient components s(j)1,t (t) and s(j)2,t (t) of r
(j)
t (t)

4
=[

r (j)t,1(t)

r (j)t,2(t)

]
4
=

[
yd (t)+ µ1s

(j)
1,t (t)

µ2s
(j)
2,t (t)

]
have been modeled as two

scalar B spline functions of order d1 = d2 = d = 3
and `1 = `2 = ` = 100 (number of control points). The
corresponding `+d+1 = 104 knot points t̂i have been chosen
according to the smoothness property recalled in Section II.B.
The chosen values of j1, d and ` guarantee a sufficient degree
of uncertainty reduction as well as of smoothness and approx-
imation continuity with a relative ease of solution of the
corresponding BCRLS. However, as the BCRLS problem
is solved offline, higher values of j1, d and ` can be chosen
without compromising the on-line implementability of the
overall FFOBI method. As q = 1 and v = 1, by (34) it
directly follows that over each interval I (j), j = 1, . . . , 20,
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TABLE 1. The value of ρ(j ), of the average execution time T (j ) (s) and of

the 2-norms of the precomputed B spline functions s(j )
1,t (t) and s(j )

2,t (t),

over Tr = [0,20) for each subinterval I (j ), j = 1, . . . ,20.

c̃(j)
4
=

[
c̄(j)1
c̄(j)2

]
∈ R`1+`2=200, B̄(j)

d1
(t) has dimensions 1× `1 and

¯cB
(j)
d2 (t) has dimensions 1 × `2. According to Remark 6 and

recalling definition (45), the following constraints on f (j) =[
f (j)1
f (j)2

]
4
= c̃(j) =

[
c̄(j)1
c̄(j)2

]
are set: f (j)min ≤ f (j) ≤ f (j)max with

f (j)min = −f
(j)
max =

[
f f
]T , with f = 1000

[
1
0

]
, where 1

and 0 are column vectors of 1 and 0 elements of dimensions
(`− d − 1)× 1 and (d + 1)× 1 respectively.
Table 1 reports the 2-norms of the B splines s(j)1,t (t) and

s(j)2,t (t) computed for t ∈ Tr = [0, 20) for each subinterval I (j),
j = 1, . . . , 20. The same table also reports the average exe-
cution time T (j) (measured with tic-toc functions of Matlab)
required to compute s(j)1,t (t) and s

(j)
2,t (t) composing the transient

FF input r (j)t (t) for j = 1, . . . , 20. The last column of Table 1
report the values of the corresponding ρ(j). The values of the
estimated control points are not reported for brevity.

C. THE RESULTS OF NUMERICAL SIMULATIONS
This section illustrates in detail the results of several numer-
ical simulations under three different Operating Conditions
(OPs). All the simulations have been performed apply-
ing the FB/FF control law to the nonlinear gantry crane
model given in (1) using Matlab/Simulink software (Release
R2018b,Simulink 9.2). To evidence the differences among the

TABLE 2. The 2-norms of the tracking error eyL (t) 4= yd (t)− yL(t) and of
the sway angles θ1(t) and θ2(t) over Tr = [0,20).

FIGURE 3. OP 1 The two B splines s1(t) and s2(t) composing the FF input
r (t), t ∈ [0, 7] ⊂ Tr , for m2 = 5 (solid black line), m2 = 10 (dashed blue
line) and m2 = 15 (dot-dashed black line) starting from θ1(0) = 0.01 and
θ2(0) = 0.001.

various curves, only the first part (the most significant) of the
simulation is reported in all the figures. Namely each diagram
is truncated at the time instant from which the steady state is
practically attained.

1) OP 1: UNCERTAIN PAYLOAD m2 ∈ I 4= [5, 15] (Kg),
ty = τ = 4.21 (s) AND NON NULL INITIAL CONDITIONS
This group of simulations refer to different values of the
payload: m2 = 5 ∈ I (1) = [5, 5.5], m2 = 10 ∈ I (11) =
[10, 10.5] and m2 = 15 ∈ I (20) = [14.5, 15]. For the
three chosen values of the payload, the corresponding FF
control input r (j)(t) (j = 1, 11, 20) of the kind (20) has been
used to force the robustly stabilized closed loop system 6f
starting from the following non null initial values of the sway
angles θ1(0) = 0.01 and θ2(0) = 0.001. Initial non null
values of the sway angles have been chosen to account for
a possible initial misalignment between payload and cart and
between payload and hook. The 2-norms of the tracking error

eyL (t)
4
= yd (t)− yL(t) and of the sway angles θ1(t) and θ2(t)

over Tr = [0, 20) for m2 = 5, m2 = 10, and m2 = 15 are
reported in Table 2.

The B spline functions composing the FF input r(t) for
m2 = 5, m2 = 10 and m2 = 15 are depicted in Fig. 3.
The sway angles trajectories are shown in Figures 4 and 5
respectively. The controlled output trajectories yL(t) of 6f
corresponding tom2 = 5,m2 = 10 andm3 = 15 are reported
in Fig. 6. The maximum absolute value of the tracking error
is 0.485 attained at time t = 1.59 (s) for m2 = 5.
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FIGURE 4. OP 1 The behavior of the sway angle θ1(t), t ∈ [0, 7] ⊂ Tr , for
m2 = 5 (solid black line), m2 = 10 (dashed blue line) and m2 = 15
(dot-dashed black line) starting from θ1(0) = 0.01 and θ2(0) = 0.001.

FIGURE 5. OP 1 The behavior of the sway angle θ2(t), t ∈ [0, 7] ⊂ Tr , for
m2 = 5 (solid black line), m2 = 10 (dashed blue line) and m2 = 15
(dot-dashed black line) starting from θ1(0) = 0.01 and θ2(0) = 0.001.

Fig. 6 evidences that all trajectories are almost overlapping.
This means that the payload variation does not lead to an
appreciable degradation of the output tracking performance.
This is a direct consequence of the fact that the FF input
has been robustly calculated taking ‘‘a priori’’ into account
the payload uncertainty interval. Differently, Fig. 7.a) in [36]
evidences a not negligible degradation of the output tracking
performance in terms of max oscillation of the payload for
τ = 1+ T1+T2

2 = 4.21(s), l1 = 3 and m2 ∈ [5, 15].

2) OP 2: exact KNOWLEDGE OF THE PAYLOAD,
ty = τ = 4.21 (s), AND NULL INITIAL CONDITIONS
In order to perform a fair comparison with [36], this simula-
tion has been performed assuming an exactly known m2 and
null initial conditions (all the other model parameters are set
as in OP 1). As in [36], the value m2 = 10(Kg) is chosen.
As m2 = 10 ∈ [5, 15], the same robust FB controller
designed in section VI.A can be used. As [36] does not deal

FIGURE 6. OP 1 The desired output trajectory yd (t) (red dashed line) and
the controlled output yL(t) of 6f , t ∈ [0, 7] ⊂ Tr , for m2 = 5 (solid black
line), m2 = 10 (dashed blue line) and m2 = 15 (dot-dashed black line)
starting from θ1(0) = 0.01 and θ2(0) = 0.001.

with the problem of minimizing the sway angles, the FF input
must be now computed taking into account that
• both e(tk |0) given by (27) and Q reported in (26) reduce
to e(tk |0) = eyL (tk |0) and Q = Qy respectively.

• the BCRLS problem given in (48)-(49) reduces to a
classic least square problem (ρ = ξ = 0) of the form

min
f
‖D′f − b′‖

subject to fmin ≤ f ≤ fmax

The behavior of the controlled output yL(t) of 6f is despited
in Fig. 7. The 2 norm of the output tracking error over
Tr = [0, 20) is 0.6257. The maximum absolute value of the
tracking error is 0.0522 attained at time t = 2.1 (s).
The comparison of Fig. 7 with the first subfigure of Fig. 5

in [36] (see dashed orange line) shows that the proposed
FFOBI and the simplified input output inversion procedure
in [36] provide comparable output tracking performance.

3) OP 3: LIKE OP 2 BUT NON NEGLIGIBLE ZEROS
DYNAMICS.
OP 3 aims to highlight the applicability of the proposed
method also in the case of non negligible zero dynamics.
To this purpose a double pendulum crane model with higher
friction coefficients is considered. The values c1 = c2 =
50 are chosen (all other model parameters and the initial
conditions are set as in OP 2). This implies that the system
zeros (see formula (21) in [36]) occur at smaller frequencies
and hence the assumption underlying the simplified inver-
sion procedure is no longer valid and consequently the FF
command given by (23) in [36] cannot be used. Differently,
the proposed FF/FB control action can be recomputed on
the basis of the different parameters values of the double
pendulum crane model. As the value of the payload is exactly
known, Step 1 of section VI.A is executed setting all the
vertex matrices Ai of A(α) equal to the nominal dynamical
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FIGURE 7. OP 2 The behavior of the desired output trajectory yd (t) (red
dashed line) and of the actual controlled output yL(t) (solid line) of 6f
over [0, 5] ⊂ Tr starting from θ1(0) = θ2(0) = 0.

FIGURE 8. OP 3). The behavior of the desired output trajectory yd (t) (red
dashed line) and of the actual controlled output yL(t) (solid line) of 6f
(dot dashed line) over [0, 5] ⊂ Tr .

matrix Ā (matrix corresponding to m2 = 10). The following
controller gain matrices are obtained:

K =
[
601 529.5 − 284.6 572.8 219.8 469.9

]
Kc = 198.3.

and

L =
[
1.32 2.60 − 0.13− 1.69 0.44 − 0.41

]T
The FF input is recomputed applying the classical least
squares algorithm as in OP 2. The trajectory of the controlled
output yL(t) of 6f is reported in Fig. 8. The 2 norm of
the output tracking error over Tr = [0, 20) is 0.7093. The
maximum absolute value of the tracking error is 0.06 attained
at time t = 2.3 (s).

Remark 9. Future developments of the present approach
will concern the setup of an experimental platform. 4

D. SUGGESTIONS AND COMMENTS FOR REAL TIME
IMPLEMENTATION
Recent literature shows how sophisticated control algorithms
(e.g. LQR, MPC, nonlinear control) for oscillatory mode
systems can be successfully implemented in real time even
introducing hard real time constraints on embedded micro-
controllers setting a closed loop cycle of 20ms, [63].

Such an order of magnitude of sampling time is considered
suitable for the gantry crane system, and is widely feasible on
commercial micro-controllers.

The features of the proposed control algorithm for gantry
crane systems that make it suitable for real time implemen-
tation on micro controllers are: 1) the transient FF input
rt (t) is obtained as the solution of a min max optimization
problem that can be solved offline with numerically efficient
procedures; 2) as rt (t) has an analytical expression in closed
form, it can be generated very easily by means of a function
written in any standard language (e.g C , C ++); 3) only the
computation of the FB control action needs to be performed
on line. The output dynamic FB controller given by (21)-(23)
includes a Luenberger state observer of dimension 6, the
internal model of a scalar constant signal and the computation
of the scalar control effort.

A real time Luenberger observer of dimension 4 has
already been implemented in [64] on an STM32F0 micro-
controller, belonging to the ST Microelectronics family
of 32-bit micro-controllers. Rather than the outdated and
possibly commercially unavailable F0 series, the higher-
performance STM32F4 series is here suggested as entry level
micro-controller for the proposed control algorithm. The F4
series is more up-to-date, quite inexpensive, and includes
most of the on-chip peripherals useful for control tasks such
as the PWM channels, Timers, ADCs, GPIO and so on.

In a possible experimental set up, themicro-controller must
be able to perform the following operations: to manage the
data gathering from sensors, to acquire the value of the FF
input, to solve the discretized version of equations (21)-(23)
and to generate the control signal forcing the actuator, within
the closed loop cycle time chosen for the gantry crane system.

VII. CONCLUSION
This paper has presented a new approach to the robust FB/FF
control of double-pendulum gantry cranes where the payload
can take values over a given arbitrarily large interval. The
merits of the proposed method can be summarized in the fol-
lowing four points: 1) the FB controller is designed exploiting
only the measure of the cart displacement, 2) the overall feed-
forward action is given by an optimally weighted combina-
tion of FFPI and FFCLI control schemes, 3) the FF action can
be computed offline as the solution of a robust least square
problem, 4) an analytical expression in closed form of the FF
input is provided in terms of a linear combination of polyno-
mial B-splines basis functions. Point 1 answers the criticism
raised against the technical complexity and economic cost of
FB control. Point 2 answers the fundamental longstanding
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question concerning the best choice for the inversion scheme
to be applied in FB/FF control. Points 3 and 4 allow an easy
and real time implementation of the overall robust FF/FB
controller on commercial devices. The numerical results con-
firmed the validity of the approach.

As a final remark it is mentioned the the present approach
can be extended to the case of polytopic uncertainty affecting
any other physical parameters of the considered gantry crane
system. However, if this uncertainty also affects the con-
trolled output matrix CL (4) and the input matrix B (6), then
the calculation of ρ would require the computation of a very
large number of terms. This is due to the replacement of Bf
and Cf with Bf + δBf (α) and Cf + δCf (α) respectively, in all
terms of (39). The consequent calculations would not be con-
ceptually difficult but very long and tedious. For simplicity of
exposition, this situation has not been considered here. There
is also another reason: while it reasonable to assume that a
given gantry crane should be able to work with a payload
taking values over a very large interval, in general the same
does not hold for the other physical parameters.
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