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ABSTRACT This work proposes a novel solution to relocalize the SLAM tracking based on spherical
cameras. It focuses on the imaging method of spherical camera, the feature extracting algorithm and the
relocalization of SLAM tracking based on the 3D reconstruction. In the imaging method, we design a
new camera containing eight fish-eye lenses, and then we propose a calibration method to calibrate the
eight fish-eye lenses spherical camera; To get the high-performance feature points of panoramic image,
we propose a network based on a separate network to extract local feature accurately and quickly. With
the correct key points obtained by the feature extracting method, we reoptimize the SLAM tracking after
the maximum posteriori estimation usually applied in common back-end SLAM to relocalize the SLAM
tracking. The experiment results show that the calibration method achieved 0.973 reprojection error, lower
than the commonmethods like Zhang’s or DLT. The inlier rate andmatching time of proposed SimpGeoDesc
are all better than the reference models ContextDesc and GeoDesc. With the correct feature points, SLAM
tracking is clearer and more steadily with our relocalization method. That is the solution of relocalization
of SLAM tracking proposed in this work is effective. The AR application of the relocalization proves the
feasibility of our propose relocalization method.

INDEX TERMS Camera relocalization, calibration, local feature descriptor, spherical camera, SLAM
tracking.

I. INTRODUCTION
Camera relocalization refers to estimate the 6-DoF (Degree
of Freedom) camera pose from an image with respect to a
known environment. It is widely used in computer vision
and robotics applications, like Simultaneous Localization
andMapping technology (SLAM), Augmented Reality (AR),
and navigation. One convenient solution is to use advanced
hardware, such as LIDAR (Light Detection And Ranging),
Bluetooth, and GPS (Global Positioning System), etc., but
this kind of method is affected by the weather, the light
and the signal, etc. seriously. Another popular method just
uses an RGB sensor to relocalize the camera pose, known
as visual relocalization. This paper focuses on the relo-
calization of SLAM tracking with the RGB sensor. The
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traditional visual relocalization methods usually find simi-
lar images in the database through image retrieval [1], [2]
first and then compute the relative poses of the retrieved
images [3]–[5]. Though the performance is good, the retrieval
process costs too much time to match the query image
against all the database images. Some works are based on
the structure to establish the correspondences between 2D
image pixels and 3D scene points and then solve camera
poses by PnP ( Perspective-n-Point) algorithms [6]–[8]. And
some recent researchers proposed CNNs-based approaches,
they have shown great success in image-based localization,
like PoseNet [9] and its variants [10]–[12]. These methods
learn to regress the absolute camera poses from the input
images through a CNN. Though they are efficient, the accu-
racy falls behind the structure-based methods. What’s worse,
researchers find that almost all of these existing methods
cannot be used in SLAM tracking to relocalize the camera
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well for the challenge of reducing the accumulated errors of
SLAM tracking due to the local information during the back-
end optimization.

On the other hand, SLAM [12] is used to describe the
process of a carrier carrying a sensor to estimate its position
and pose in an unknown environment. And it is widely used
in many fields with the development trend of autonomous,
miniaturized and intelligent unmanned systems represented
by Micro Aerial Vehicle (MAV) and Automated Guided
Vehicle (AGV), the application scenarios of the autonomous
navigation system are also gradually expanding frommilitary
fields such as material delivery, battlefield reconnaissance,
and cooperative operations to civil fields such as warehouse
management, disaster relief, urban security, resource explo-
ration and power line patrol. SLAM will become more and
more important with the development of artificial intelligence
(AI), and all these SLAM applications require it can auto-
matic navigate correctly. However, the current SLAM sys-
tems are challenging at accuracy and stability. To solve these
problems, besides improving the compute ability, reducing
the accumulated errors during the movements of the camera
(used in SLAM) is very important. The current back-end
optimization can release some errors, but it still exists serious
drift. Aiming to get a good performance of the SLAM system,
we propose a new relocalization approach to reoptimizes the
back-end after the maximum estimation. The contributions
are summarized as:

(1) a new camera calibration approach for a spherical
camera with multi-fisheyes, making sure the consistency of
the panoramic images and the seamless splice of panoramic
image stitching and providing the panoramic images to
extract correct feature points;

(2) a local feature descriptor model SimpGeoDesc, which
is suitable for panorama matching and can get accuracy fea-
ture point. The accuracy and informative feature points lay
the foundation of relocalization of SLAM tracking;

(3) a new idea to relocalize the camera poses to correct the
SLAM tracking error based on the local feature information
from the SFM sparse point clouds and the global scene infor-
mation

In the following parts, we discuss the relationships of
our approaches with the previous works and then describe
the technical details of our relocalization solution, finally
claim the relocalization of SLAM tracking performance with
experiments and practical application.

II. RELATED WORK
A. CAMERA CALIBRATION
Generally, there are two methods to calibrate the camera,
per-pixel models and interpolation [13]–[17]. But the nar-
row field of view (FOV) lense’ calibration methods cannot
calibrate the wide FOV lenses, like fish-eye lenses, which
consists of several refractions and reflections in the imaging
formation process as a result of large number of optical ele-
ments. With the increase requirement of wide FOV cameras,

works [18], [19] research the fisheye’s calibration, [18], [19]
implied an unrealistic constraint on the entrance pupil loca-
tion, which impacted the parameter’s sensitivity and correct-
ness, then, in order to relax the single viewpoint assumption
constraint, [20] proposed a formation model by taking into
account the variation of the entrance pupil using thin lens
modeling and presented a calibration procedure for the image
formation to estimate the entrance pupil parameters using
nonlinear optimization procedure with bundle adjustment.
Furthermore, the work [21] described an approach for the
self-calibration, the collinearity equations of the pinhole cam-
era model are augmented with five radial lens distortion terms
to correct the severe barrel distortion, weighted relative ori-
entation stability constraints are added to the self-calibrating
bundle adjustment solution to enforce the angular and posi-
tional stability of the camera. But all of them cannot calibrate
our designed 8 fish-eye camera well. In order to calibrate
correctly our spherical camera, we propose a new method by
adding the distortion angular with regression mechanism.

B. LOCAL FEATURE
Local features have become a staple in computer vision
with the introduction of SIFT [22]. Typically, they involve
three distinct steps: key-point detection, orientation estima-
tion, and descriptor extraction. Other renowned solutions are
SURF [23], ORB [24], and AKAZE [25]. SIFT [22] has
been proven to be the most robust among the other local
invariant feature descriptors with respect to different geo-
metrical changes [26]. Almost all these traditional methods
are based on the cues designed artificially, and the cues
do not always exist in the images. So, the learning-based
methods are studied to learn the descriptor of features with
CNNs (convolutional neural networks), and current descrip-
tors are usually trained on precropped patches, typically
from SIFT keypoints (i.e., Difference of Gaussians or DoG).
They include Deep-desc [27], TFeat [28], L2-Net [29], Hard-
Net [30], SOS-Net [31], and LogPolarDesc [32], and the
majority of them are trained on the same dataset [33]. Further-
more, recent works use extra cues, such as geometry or global
context, including GeoDesc [34] and ContextDesc [35]. And
there also have been multiple seeks to learn keypoint detec-
tors separately from the descriptor, including TILDE [36],
TCDet [37], Quad-Net [38], and KeyNet [39]. A substitute
is to treat this as an end-to-end learning problem, a trend that
started with the introduction of LIFT [40] and also includes
DELF [41], SuperPoint [42], LF-Net [43], D2-Net [44], and
R2D2 [45]. But all these traditional and CNN-based methods
are used to process perspective images, and they perform
not well on panoramic images. On one hand, the existing
models cannot deal with the wide FOV and the distortion in
panorama, especially, in the two poles of panoramic images.
On the other hand, the lack of labeled panoramic images
unenabled the learning-based networks. In order to take use
of the rich information and wide FOV of panoramic images,
we do many works to extract the efficient feature descriptor
of panoramas with learning methods. Inspired by the idea
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of adding geometry and global context information to the
network in [34][35], we first extract the initial feature with
SIFT [22] as the input of our framework, and then add the
separate network after the input referring to mobileNet[46],
thus, we propose the SimpGeoDesc to extract the panoramas’
descriptor.

C. CAMERA RELOCALIZATION
Visual place recognition methods and 3D model based local-
ization algorithms are the twomain classes of camera relocal-
ization. Visual place recognition methods find similar images
in the database through image retrieval [1], [2], [47] and then
computes the relative poses with the retrieved images [4], [5].
They have good generalization to unseen scenes, but the
retrieval process needs to match the query image against all
the database images, which can be costly for time-critical
applications. Structure-based localization methods explic-
itly establish the correspondences between 2D image pix-
els and 3D scene points and then solve camera poses by
PnP algorithms [6]–[8]. However, descriptor matching is
expensive and time-consuming procedure making camera
relocalization complicated problem for large scale scenes.
In order to accelerate this stage, Active Search [48], [49]
and its variants [50]–[53] eliminate correspondence search as
soon as enough matches have been found. Recently, CNNs-
based approaches PoseNet [9] and its variants [610]–[12]
which learn to regress the absolute camera poses from the
input images through a CNN have achieved great success.
They are simple and efficient but generally fall behind the
structure-based methods in terms of accuracy, as validated
by [54]–[56]. and then researchers utilize a Scene Coordinate
Regression model to predict pixels coordinate [57]–[59] or
CNNs [54], [55], [60] with ground truth scene coordinates
to improve the correspondence of structure-based methods.
And the accuracy of camera relocalization is a very important
factor in SLAM which attached more and more attentions
recently. The first SLAM system MonoSLAM [61] used an
extended Kalman filter (EKF) as the back-end and tracks very
sparse feature points on the front-end. And PTAM [62] was
the first solution to use nonlinear optimization instead of fil-
ters and the main solution for later SLAM systems. After that,
Oriented FAST and Rotated BRIEF (ORB)-SLAM [63], [64]
extended the system to three-thread structure (tracking, map-
ping, loop detection), since on, many SLAM systems were
proposed, such as PL-SLAM [65]–[67], fisheye-SLAM [68],
multicol-SLAM [69], VO-SF[70] combines visual odome-
try, k-means, and scene flow and reconstructs a 3D model
of the rigid scene, and so on. Except these indirect meth-
ods, large-scale direct monocular SLAM (LSD-SLAM) [71]
and direct sparse odometry (DSO) [72] are the represen-
tative direct works, and there is also semi-direct monocu-
lar visual odometry (SVO) [73]. Furthermore, in order to
deal with the wide FOV spherical images, [74] proposed a
panoramic image pose calculation method, after that, many
works turn to research the panorama SLAM, like the early
phase [75]–[77], and the recent works [78]–[80] focus on

panoramas or omnidirectional visual SLAM. But drift or
accumulate error in the optimization are still the challenge.
In this work, we propose a new method to relocalization
the camera pose based on SFM point clouds in the SLAM
tracking.

III. METHODS AND MATERIALS
This section introduces the main three processes of relocal-
ization, the imaging model of spherical cameras, the local
feature based on deep learning and the relocalization of
SLAM.And the processes are shown in FIGURE 1.

FIGURE 1. The process of our works.

A. IMAGING SOLUTION OF SPHERICAL CAMERAS
The spherical cameras imaging model provides the funda-
mental of relocalization, which describes our spherical cam-
era setup and its calibration method.

1) SPHERICAL CAMERA SETUP
We designed a camera called 4DKanKan Pro [81], composed
of 8 fisheye lenses (4 in up group and 4 in down group).
In each group, the angle of two adjacent lenses is 90 degrees,
while the horizontal and vertical FOV of the fish-eye lens is
140 degrees 200 degrees. When stitching the eight fish-eyes
panoramic images to a spherical image, the horizontal over-
lap FOV is 50 degrees, and the vertical overlap FOV is
40 degrees. For the uniform distribution of the four fisheyes
in each group, the intersection of straight lines at the optical
centers of four lenses is set as a virtual optical center of the
four lenses. The distance from the virtual optical center to the
lens is designed to be 35mm because of the physical size of
the lens itself. The camera setup is shown in FIGURE 2.

In this paper, we use the spherical camera to obtain
panoramic images, based on the panoramic images,
we extract local feature for the 3D sparse and dense recon-
struction [82]. In the 3D reconstruction, we computed the
depth with the stereo vision, so we design our camera setup
with up and down groups fish-eye lenses and the horizontal
and vertical FOV should be 360 degrees and 180 degrees
separately. So, it needs four lenses in each group. The reason
is, the used fish-eye lenses’ horizontal and vertical FOV is
140 degrees and 200 degrees, the vertical FOV is enough,
but in horizontal direction, it need some overlaps to stitch the
fish-eye images, and experiments find that when the overlap
degree is equal or more 50 degree, the stitching result is best,
so, the appropriate fish-eye lens number can be calculated
by the formula 360/(140-50)=4, that is to say, it needs four
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FIGURE 2. 4DKanKan Pro[81] structure.

fish-eye lenses and they can just be set on the coordinate axis.
The resolution of fish-eye lens is 4608∗3456 and the spherical
camera resolution is 8192∗4096.

2) SPHERICAL CAMERA CALIBRATION
a: THE CALIBRATION PATTERNS
The calibration object is a plurality of uniformly distributed
black and white chessboard, see FIGURE 3, every nine chess-
boards compose a group, and they arrange a straight line,
there are four groups in total, and the four groups are evenly
distributed in a cylindrical space with a radius of 1.5 meters,
that is, the angular of two adjacent groups is 90 degrees when
calibration is performed, the camera is located at the center
of the circle of the horizontal section of the cylinder on the
ground to shoot, and a series of images are acquired. Each
two adjacent images both in horizontal and vertical directions
form a pair, with these pairs of images, we can perform the
calibration.

FIGURE 3. The calibration patterns.

b: CALIBRATION
When to calibrate the camera, we first detect the corner
according to [83], then, the camera captures the image pairs of
the chessboards, after that, it projects the chessboard corners
from the current frame to the reference frame, and calculates
the distance of each pair of corners, finally, optimizes the
internal and external parameters through cost function. The

cost function is defined as:

F = min
N∑
i=1

[(uicur − u
i
ref )

2
+ (vicur − v

i
ref )

2] (1)

where uicur is the abscissa of the i
th point of the current frame

projected on the reference frame, vicur is the ordinate of the i
th

point of the current frame projected on the reference frame,
uiref is the abscissa of the i

th point of the reference frame on
the reference frame, and viref is the ordinate of the i

th point of
the reference frame on the reference frame.

c: UNDISTORTION
With the distortion table of fish-eye lenses, we simulate a
nonlinear model defined as:

θundistort =

9∑
i=0

Ci ∗ θ idistort (2)

where θundistort is the distortion angular, Ci is the coefficient
of θ idistort , θ

i
distort is the i exponential of distortion angular θ in

the distortion table. Furthermore, wemodify the cost function
(equation 1), adding the distortion equation (2) to define the
final cost:

cos t = min
N∑
i=0

(I iref − π (Tc2rπ−1I icur )) (3)

where I iref is the reference frame of ith pair features, and I icur
is the current frame of ith pair features, Tc2r is the translation
from the current frame to reference frame with the initial
parameters (K, R, T). π is distortion function to project
the image coordinate to camera coordinate with the internal
parameters, and π−1 is in contrast with π , representing the
projection from the camera coordinate to image coordinate.

In this work, we initialize the internal parameter as follows:
focal is the theory value provided by the camera supporter, cx
is half of the width, and cy is half of the heigh. R is 90 degrees
according to the framework of the camera; T is set according
to the distance of the optic center between 3.5cm and 15cm.

To get the minimal cost, we take about five times images
of chessboards. For every pair of images left and right or up
and down, we compute the cost, and i is iterative among each
matching feature, and loop the process with the five times. For
the 8 lenses, we get 12 minimal costs to get the accurate K,
R and T. We have implemented the calibration, the raw and
calibrated images can be seen in FIGURE 4, (a) is the raw
image shot by one fish-eye lens with 140 degrees horizontal
and 200 degrees vertical FOV. (b) is the calibrated image, it is
an equirectangular image with arcs in the two sides.

3) PANORAMIC IMAGE STITCHING
The stitching process of panorama with the calibrated multi-
fish eye camera shows in FIGURE 5, with which, we stitch all
the 4 gaps of 4 fish-eye images in each group, and an indoor
scene’s images stitched result is shown in FIGURE 6, after
the ‘‘imaging’’ step, we can get the stitched equirectangular
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FIGURE 4. The raw image and calibrated image.

FIGURE 5. The process of stitching panorama from multi-fish images.

images, which is clear and fluent. Though there is a little
discontinuous, eg. the 1/3 and 2/3 horizontal of the stitched
image for some objective factors, such as the fish-eye lens
structure and craft and the light. The structure causes the
optical centers of the 8 fish-eye lenses camera cannot be
completely coincident, leading to some position error of the
stitched images. The craft causes the sensitivity of each lens
is different, and the light of different views are also distinct,
leading the color of splice may be inconsistent. In order to get
continuous spherical image, we process the stitched image
with optical flow shown in FIGURE 6.

B. LOCAL FEATURE BASED ON THE SEPARATE NETWORK
FOR PANORAMIC IMAGES
The local feature descriptors based on learning have achieved
significant improvement in recent years. However, most
of these methods perform not well on panoramic images.
To meet our image-based camera relocalization and 3D
reconstruction requirements and other applications based on
panoramic images, we propose an efficient local feature
descriptor learning model based on CNN by transferring the
model trained on perspective images to panoramic images.

To get more comprehensive and accurate feature descrip-
tor, for lacking labeled panoramic image dataset, we started
with studying global feature descriptor methods, such as the
high-performance ContextDesc [35], a global augmentation
model trained on the GL3D [34], a dataset generated from
perspective images, and we transferred it to the panoramic
images directly, it performed poorly. Analyzing discovers
the reasons lie in: (1) in the geometric context augmentation
model, the geometric context coordinates are encoded into
the feature representation, but the coordinate of panoramic
key-point is different a lot from the coordinate of perspective

key-point. (2) in the visual context augmentation model,
it extracts high-level visual information from perspective
images with a ResNet [84] model, but for the panoramic
image, the visual information is not distributed uniformly for
its different distortions on different locations. That is, it is
unreasonable to use the interpolation method proposed in
ContextDesc [35] to get visual information and take it as a
kind of augmentation on panoramic images. So, the augmen-
tationmodel (ContextDesc [35]) trained on GL3D [34]cannot
transfer to panoramic images seamlessly. Now that the effi-
cient global model cannot suit the panoramic images for the
above reasons, we turn to study the local feature methods. For
the high performance of ContextDesc [35], we furthermore
researched its one baseline model-GeoDesc [34], a model
also trained on GL3D [34], and we transferred GeoDesc [34]
to panoramic images dataset directly too, the experiment
results show that though the accuracy can be acceptable,
the cost time is too long, which cannot meet the real-time
computing requirement in practical application. To speed up,
we simplified the GeoDesc [34] using six separable convo-
lution layers to replace the original feature descriptor and
proposed a simply local feature descriptor network fitting
panoramic images (called SimpGeoDesc), and the frame-
work of SimpGeoDesc is shown in FIGURE 7. The Simp-
GeoDesc contains six layers, and in each layer, it consists of
a MobileNet [46], a BN and a Relu layer. The input refers
to GeoDesc [34], including an image, key-points, and the
descriptor extracted by the SIFT [22] patch-based.

In practical application, before extracting the feature
descriptor, we preprocess the panoramic images by just tak-
ing the middle part of the panoramic image avoiding the
poles’ serious distortion impact, but its horizontal angle is
360 degree which differs from the perspective image. Exper-
iments show that our proposed local feature descriptor Simp-
GeoDesc model can extract the feature of panoramic image
high-efficient, for the only six layers network, it is faster
than GeoDesc [34] without losing accuracy, even in mobile
phones, its computing cost can be accepted, e.g., with an
image of 2048*1024 pixels, the feature extraction process
costs about 1500 ms, and with an image of 640*480 pixels,
the feature extraction process costs about 200 ms (including
the SIFT [22] extraction process). Furthermore, we have
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FIGURE 6. The process of stitching 4 fisheye images to a panoramic image and optical flow.

FIGURE 7. The framework of SimpGeoDesc.

proved that the performance decreased a lot with less than
six layers in the network, and the experiment results can be
seen in FIGURE 21.

C. RELOCALIZATION OF THE SLAM
TRACKING BASED ON SFM
Generally, the camera pose is calculated in the common
SLAM system with local feature, leading to the drift or error.

What’s worse, the error will cumulate with time going by,
to correct the drift is still a challenge in SLAM. The fusion
of spherical camera and IMU have improved the perfor-
mance of SLAM tracking while cannot meet the requirement
of some strict environment application. Inspirited by the
SFM, we furthermore reoptimize the tracking with the global
feature information from the SFM point clouds. It firstly
reconstructs the sparse point clouds with SFM, then with
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FIGURE 8. The SFM process.

the point clouds as the ground truth, it corrects the track-
ing camera poses through some extracted keyframes from
SLAM to implement the relocalization. We test the pro-
posed approach in practical application and get good visual
performance.

1) SPARSE 3D RECONSTRUCTION OF SCENES WITH SFM
Based on SimpGeoDesc, the local feature descriptor
extracted model proposed above, we get the matched
key-points and then triangularine the matched key-points to
get the 3D point and the camera pose. In the triangulariza-
tion process, it first calculates the 3D point based on the
2D matched key-points extracted from the stereo images
captured by 4DKanKan Pro [81] in the first location, and
then, with the 3D point and the matched key-points of the
subsequent images captured in the following-up locations,
it computes the camera pose of the subsequent images. Also,
many 3D points compose the sparse point clouds. The process
of SFM is shown in FIGURE 8.

In order to explain the process of computing the 3D point
and camera pose in detail, we take an example to describe
the SFM process illustrated in FIGURE 9. FIGURE 9 shows
that supposing we reconstruct a scene based on SFM with
4DKanKan Pro [81], for the three points A, B, and C of the
scene, the camera begins to shoot at the first location to get the
stereo images 1 and 2 (in FIGURE 10), and then, the camera
shoots continue in subsequent locations to get the image 3, 4
and etc., with feature extracting model-SimpGeoDesc, we get

FIGURE 9. Triangularization the matching key-points to get 3D points and
camera poses.

FIGURE 10. A panoramic image of an office.

the matched key-points, taking the blue lines (the view ray) to
explain, 1a,2a,3a and 4a are the matched key-points from dif-
ferent images captured in different locations. With 1a and 2a,
we can calculate the 3D point A based on the triangularization
method. Furthermore, thanks to the calibrated stereo camera,
we can compute the camera pose of the beginning shooting
location, that is the camera pose of images 1 and 2. After that,
with the 3D point (A), matched key-points (3a, 4a) and the
begin shooting camera pose, we can compute the following-
up camera poses of images 3 and 4, etc. The green and red
lines represent the other points of the scene that are similar to
point A. Many such 3D points (A, B and C) will compose the
sparse point clouds. In the practical application, we take the
first matched key-points feature descriptor as the 3D point’s
descriptor, e.g., taking the feature descriptor of 1a as the 3D
point A’s descriptor.

With the above SFM process, we reconstruct an office
scene ( FIGURE 10). In order to reconstruct better, we take as
many possible as images of the scene, e.g., about 600 images,
and then, extract feature descriptors with SimpGeoDesc and
match them to get the matched key-points, finally, calcu-
late about 50000 3D points which compose the sparse point
clouds of the office scene, the point clouds are shown in
FIGURE 11. In FIGURE 11, the red points are the point
clouds reconstructed from the yellow or colorful block (the
images captured by 4DKanKan Pro [81]) with SFM. The
yellow blocks stand for the shooting view is back to us and
the colorful blocks are the contractible of the images captured
facing us. From FIGURE 10 and FIGURE 11, we can see the
point clouds are very similar to the scene, which proves the
pose estimated by the feature points is accurate.
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FIGURE 11. The SFM reconstruction based on panoramic images (FIGURE 10).

2) RELOCALIZATION TO OPTIMIZE THE SLAM TRACKING
The classical SLAM location is usually based on the local
pose, and the local pose introduces error to the location of
SLAM, what’s worse, with the tracking increasing, the error
will accumulate, leading to the tracking drift. In order to
accurately locate the camera and break through the limitation
of the local pose, we take the SFM reconstruction point clouds
and camera poses based on triangularization as the global
pose information. That is, we serve the point clouds and
camera poses obtained by SFM as the ground truth in the
SLAM tracking, and the process is shown in FIGURE 12.
Adding the relocalization step (the green block) in the back-
end optimization after maximum posteriori estimation based
on the common SLAM framework.

In the relocalization process, there are two main steps,
extracting the keyframe from the SLAM tracking and match-
ing the key points to get the accurate camera pose of
the keyframe, and the relocalization process is shown in
FIGURE 13.

FIGURE 12. The framework of SLAM tracking with relocalization.

a: EXTRACTING FRAME
It refers to extracting keyframes from the SLAM tracking
at intervals of time or distance. The first step is to extract a
keyframe from the a marching camera of SLAM, then extract
the feature descriptors with SimpGeoDesc, and match the
key points of the keyframe from SLAM and the point clouds
of SFM. The extracted keyframe served as the reference
substance of the current SLAM tracking.

b: MATCHING KEY-POINTS
After getting the keyframe of SLAM tracking and extracting
the key-points with SimpGeoDesc model from the keyframe,
with the Fast Approximate Nearest Neighbor Search Library
(FLANN) algorithm [47], the SLAM system matches the
keyframe’s key-points and the key-points of point clouds
obtained from SFM, with the matched key-points, we get the
camera pose based on the classical PNP algorithm [8]. For the
ground truth camera pose, we can get the accurate camera
pose of the keyframe from SLAM tracking. The matching
and getting camera pose process is shown in FIGURE 14.
The green blocks emphasize the matched key points and the
accurate camera pose derivation.

IV. EXPERIMENTS
This section experiments three main parts of the relocal-
ization of SLAM tracking based on spherical cameras. The
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FIGURE 13. The process of relocalization of SLAM tracking.

FIGURE 14. The detailed process of the relocalization based on extracted frame from SLAM.

FIGURE 15. The calibration result of three methods.

TABLE 1. The reprojection error of 3 different calibrations (pixel: 5472∗3648).

spherical camera calibration, the local feature descriptor
model and the relocalization solution.

A. CAMERA CALIBRATION
To prove the performance of our calibration method, we cal-
ibrate the multi-fish eyes of 4DKanKan Pro [81] with the
traditional Zhang’s [85], DLT [86] and our method separately
with chessboards. Due to the spherical camera of 4DKanKan

Pro [81] structure, the calibration pattern may not face us
correctly, the image captured by 4DKanKan Pro [81] is
5472∗3648 pixels, and the calibration results are shown in
FIGURE 15 and TABLE 1.

In FIGURE 15, the blue points distributed in the chess-
board corner are the ground truth, and the red points are the
calibration reprojection. (a) is the Zhang’s [85] calibration
reprojection, (b) is the DLT [86] calibration reprojection, and
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FIGURE 16. The indoor office and market scenes.

(c) is our method’s result. The first line images are the big
resolution of the green boxes of second line images. From
FIGURE 15, we find that neither Zhang’s [85] nor DLT [86]
cannot reproject the red points to the blue points correctly,
what’s worse, it deviates a lot from Zhang’s [85] method.
In contrast, our proposed calibration method can reproject the
red points to blue points almost exactly. Furthermore, TABLE
1 also indicates the same conclusion. The calibration param-
eters are also shown in the table, and from TABLE 1, we can
see the reprojection errors of Zhang’s [85] and DLT [86]
are obviously. And the reprojection error of our method is
0.973, which can meet our practical application well. The
time is a little more than the other methods, for our solution
considers various kind of illumination condition and the angle
of inclination, leading to slightly time complexity.

B. LOCAL FEATURE DESCRIPTOR BASED
ON PANORAMIC IMAGES
1) EXPERIMENT ENVIRONMENT
We provide the matched feature numbers and time cost
of matching features between left and right image pairs.
To compare the speed and accuracy of the three meth-
ods (ContextDesc [35], GeoDesc [34] and SimpGeoDesc),
we set the number of patches as 512, and the image pixel
is 2048*1024. From plenty of experiments, we select two
group scenes, indoor and outdoor scenes. The indoor scenes
contain office, market, stairway, and roughcast house. Gener-
ally, office and market scenes can represent the commonly
used scenes, even the large scenes in computer vision, the
scenes of stairway and roughcast house are always similar
and contain whitewall or contexture less feature, which easily
leads to wrong matches. The outdoor scenes contain two dis-
tant scenes and two near scenes, and the difference between
two distant or near scenes is that the objects are or are not
like the background. When the object is like the background,
it increases the feature extraction difficulty. With these

different scenes, we test the different models and compare the
performances.

2) EXPERIMENT RESULTS
We test the three models trained on GL3D [34] on indoor
and outdoor scenes separately, and in order to display the
effects, we provide the matching results of the three models
tested on each scene, and the experiment results tested on four
indoor scenes are shown in FIGURE 16 and FIGURE 17.
Moreover, the experiment results test on outdoor scenes is
shown in FIGURE 18 and FIGURE 19. The red lines indicate
the correct matching features, and the green lines indicate the
wrong matching features. The evaluation of matching results
for descriptors extracted with different models is listed in
TABLE 2, TABLE 3. Both for the cases indoor and out-
door scenes, the matching feature number and inlier rate of
SimpGeoDesc is similar with GeoDesc [34], better than Con-
textDesc [35]. However, the speed of SimpGeoDesc is about
1.5 times as fast as GeoDesc [34] and even three times that
of ContextDesc [35]. It also indicates that ContextDesc [35]
cannot be transferred to panoramic images directly though it
performs well on perspective images. Additionally, we find
the performance will drop rapidly when the layer number
is less than 6, and the performance changes little when the
layer number is 10∼6, and the experiment results are shown
in FIGURE 20. So, in order to reduce the time cost, we utilize
the 6 layers separate convolution in SimpGeoDesc.

3) CAMERA LOCATION APPLICATION
In order to prove the performance of our proposed Simp-
GeoDesc model furthermore, we apply the model on cam-
era location applications. We select three different scenes,
including the indoor office, outdoor scenes, and stairway
scene. The camera location results are shown in FIGURE 21.
In FIGURE 21, the top line is the camera location results with
descriptors extracted by ContextDesc [35] model, and the
following line are the results of our SimpGeoDescmodel. The
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FIGURE 17. The indoor roughcast house and stairway scenes.

FIGURE 18. The outdoors near scenes.

red rectangular in the top line labels the overlap location point
in (a) and (b) groups, but in fact, the real distance between the
overlap point is more than 1.5 meters. The blue rectangular in
the group (c) distributes in two lines indicates the number of
location points, and in the up line, it only calculates 34 points
comparing the down line’s 78 points and the real number
of the stairway points is 78. Additionally, though there are
overlaps both in two lines in the group (c), it thus illustrates
the stairway scene structure. So, in the stairway scene, the
number can prove the model’s effects. In order to explain
the performance clearly, we statistic the point number of
the three scenes located by ContextDesc[35] and our Simp-
GeoDesc separately, and the result is shown in TABLE 4,
from TABLE 4, we find there almost no overlaps points
located by our modes in the group (a) and (b) comparing with
ContextDesc [35], and the point number located by our model
is nearly twice of the point number of ContextDesc [35].
Up to now, we claim that not only the matching key-point but
also the camera location with feature descriptor both prove
the effectiveness of our SimpGeoDesc model.

C. RELOCALIZATION BASED ON LOCAL
FEATURE WITH SFM
In this part, we introduce the experiment environment and
the relocalization results. In order to display the relocaliza-
tion performance furthermore, we apply the relocalization on
augmented reality (AR), so we also introduce the preliminary
works of 3D dense reconstruction used in relocalization inAR
in this section.

1) EXPERIMENT ENVIRONMENTS
To evaluate the performance of our relocalization method,
we do many experiments, and at last, we select two types
of classical scenes, an indoor scene (office) and an outdoor
scene (technical park). The experiments prove that when the
interval of time is 5 seconds, and the interval distance is
5meters, the tracking fits the real road best. In the experiment,
we have integrated the SLAM system into the mobile phone,
and experiment results show that the system can support most
cell phones on the current market. In this work, we select the
Xiaomi 10 as the mobile set.
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FIGURE 19. The outdoors distant scenes.

TABLE 2. Evaluation of matching results for different models tested on the different indoor scenes.

On the other hand, we display the relocalization perfor-
mance by applying it on AR, in the AR process, it utilizes
the 3D dense reconstruction, and the dense reconstruction
environment is ubuntu 18.04 with GTX 1080 i7-8700. 16GB.
Before SLAM tracking, the 3D dense reconstruction has been
done.

2) THE PRELIMINARY 3D RECONSTRUCTIONS
The relocalization is based on the SFM 3D reconstruction and
in the AR application, we utilize the scenes’ 3D dense recon-
struction. So, before the relocalization experiments, we in
advance reconstruct the 3D model, containing the SFM and
3D dense reconstruction.

a: SFM
Reconstructing the sparse point cloudswith the classical SFM
process but based on our feature descriptors extraction algo-
rithm (SimpGeoDesc). The selected two scenes are indoor
(FIGURE 10) and FIGURE 22 (outdoor), the reconstructed

spare point clouds with SFM are shown in FIGURE 11
(indoor) and FIGURE 23 (outdoor). In FIGURE 11 and
FIGURE 23, the red points compose the point clouds, and
the yellow and colorful blocks are the images captured
by the 4DKanKan Pro to reconstruct the point clouds.
And in these images, colorful images are shot facing us
and yellow images are shot back to us. In the two fig-
ures, we also provide the high-resolution images or mag-
nify images of the green boxes shown in the following
line in the same figure, which show the good performance
of the SFM reconstruction with the extracted feature with
SimpGeoDesc.

b: 3D DENSE RECONSTRUCTION
The dense reconstruction result is the digital model of a
scene contrasting with sparse 3D reconstruction. The dense
reconstruction process is shown in FIGURE 24 according to
Cui [87]. In this paper, we mainly utilize the 3D dense model
to AR application, and in order to prove our solution can suit

VOLUME 9, 2021 159775



Q. Chang et al.: Relocalization of SLAM Tracking Based on Spherical Cameras

TABLE 3. Evaluation of matching results for different models tested on the different outdoor scenes.

FIGURE 20. The inlier rates of different layer numbers.

FIGURE 21. The camera location results with extracted descriptor by SimpGeoDesc (ours). From left to right are
(a) indoor office scene, (b) outdoor scene and (c) stairway scene.

outdoor scene well, we choose the park (FIGURE 22) as the
test scene. And the 3D dense reconstructions of the selected
outdoor (FIGURE 22) is shown in FIGURE 25. Addition-
ally, besides the depth estimation and surface reconstruction,

we estimate the pose information firstly with SFM. When
getting the dense point clouds, we fuse the dense point clouds
with the camera poses obtained from SFM to get an effective
3D model.
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TABLE 4. The location number with two models on the same scenes.

FIGURE 22. The outdoor scene (park).

FIGURE 23. The SFM reconstruction of outdoor scene based on panoramic images.

3) RELOCALIZATION BASED ON SFM
a: EXPERIMENT RESULTS
With the SFM reconstruction point clouds obtained in
advance and the extracted keyframe from the SLAM tracking,

we match the key points of the keyframe and the point clouds
of SFM to get the correct pose of the current keyframe.
The relocalization results of the selected two scenes are
shown in FIGURE 26 (indoor) and FIGURE 27 (outdoor).
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FIGURE 24. The process of dense 3D reconstruction of our solution.

FIGURE 25. The 3D dense reconstruction model of outdoor scene (park).

FIGURE 26. The indoor scene relocalization results based on a frame.

In FIGURE 26 and FIGURE 27, the red points are the sparse
point clouds reconstructed with SFM, the colorful and yellow
blocks are the images captured by 4DKanKan Pro [81] during
SFM reconstruction, the image on the top right corner is the
extracted keyframe from SLAM, and the high resolution of
the point clouds in FIGURE 26 and FIGURE 27 are shown in
FIGURE 11 and FIGURE 23 separately, (see the green box
parts in FIGURE 11 and FIGURE 23). From FIGURE 26 and
FIGURE 27, we find that the keyframes are relocalized to the
sparse point clouds correctly both in the indoor and outdoor
scenes.

b: COMPARATIONS
In order to illustrate the performance of our proposed relocal-
ization solution, we compare our model with the VO-SF [70]
on the outdoor scene, and the results are shown in FIGURE 28
and FIGURE 29, FIGURE 28 is the far point result and
FIGURE 29 is the near point result. Both are the one relo-
calized pose from the frame (FIGURE 22), whose shoot view
is some of left, so, when to relocalize, it matches the extracted
frame with the point clouds come from the image captured at
some of left view. In FIGURE 28 and FIGURE 29, the first
line is the relocalization result of VO-SF [70], the second line
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FIGURE 27. The outdoor scene relocalization results based on 3D model with an extracted frame
(FIGURE 22).

FIGURE 28. The relocalization results (far point) before and after based on the 3D model
with extracted frame (FIGURE 22).

is the relocalization result of our solution. From FIGURE 28,
in the second line, we find that the matched image’s rotation
angle is almost the same as the extracted frame (FIGURE 22)
in our solution, what’s more, the matched image’s position is
on the tracking of the SLAM. But in contrast, in the first line,
the relocalization result of VO-SF [70], the rotation angle is
large, nearly vertical direction, what’s worse, it is offtrack
from the SLAM tracking. The near point FIGURE 29 can
prove these consequences more clearly. And the similar result
in the indoor scenes. Additionally, plenty of experiments
find that the average positional error and angular error is

about 3∼5cm and 1 degree compared with 30∼50cm and
10 degrees error of before relocalization. Thus, we can draw
the conclusion that our solution can relocalize the SLAM
trackingwell by reducing the drift (or accumulate errors) with
the global information to reoptimize the back-end of SLAM.

4) AR APPLICATION WITH THE RELOCALIZATION
OF SLAM TRACKING
a: APPLICATION ENVIRONMENT
To display the relocalization performance, besides the relo-
calization results, we also apply the relocalization in the AR
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FIGURE 29. The relocalization results (near point) before and after based on the 3D
model with extracted frame (FIGURE 22).

FIGURE 30. The relocalization result based on SLAM with spherical camera.

application. From several experiments, we selected the AR
effects of the outdoor scene (FIGURE 22). To implement
the AR effect well, we have reconstructed the 3D sparse

and dense model in the preliminary works. And every 5 sec-
onds or 5 meters, we extract one keyframe from SLAM
tracking.
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b: EXPERIMENT AND THE RESULTS
The detail process is that it first extracts a keyframe from
the SLAM tracking every 5 seconds or 5 meters and then
extracts the key-point from the keyframe, after that, it matches
those key-points of the keyframe and sparse point clouds to
get the correct camera pose of the keyframe, finally, with the
correct camera pose to amend the SLAM tracking whether
there have been accumulated errors or not, which makes sure
the SLAM tracking validity. In order to validate the effects
of AR application with our proposed relocalization solution,
we utilize it on the outdoor scene (FIGURE 22), and in
the AR application, it renders a virtual robot placing in the
reconstructed 3D model which fused with the real building
nicely, and the results are shown in FIGURE 30, we take 3
SLAM tracking points to show in FIGURE 30: (a) the track-
ing point 1, (b) the tracking point 2, (c) the tracking point 3.
In the figure, the red box is themoving camera (ormobile set),
the green box is the virtual robot role rendered out, and the
blue box is part of the dense 3D reconstruction of the scene in
FIGURE 22. As the camera (or mobile set) moves, the view
of robot changed naturally and the movements of the robot
are fluent. And the whole virtual scene is stability during
the movement process. The video of the SLAM tracking is
available at https://github.com/qlchang/research.

c: ANALYZATIONS
From FIGURE 30, we find that when the camera (mobile set)
moves (red rectangular), the virtual robot’s (green rectangu-
lar) relative position is invariable, and the 3D model fused
with the real scene (building) (blue rectangular) is almost
a unified entity. What’more, from the vedio, we find that,
even though the SLAM drifts, the relocalization can correct
it. The results prove that our proposed relocalization solution
is highly efficient and robust.

V. CONCLUSION
The proposed relocalization of SLAM tracking mainly con-
tains three parts, the imaging model of spherical camera, the
local feature extracting network SimpGeoDesc and the relo-
calization method based on 3D reconstruction. First, in the
imaging model, we not only design a new spherical camera
with eight fish-eye lenses but also propose a new calibration
method to deal with the distortion according to the structure
of the camera, and the experiment results prove that our cal-
ibration is applicative for our eight fish-eye lenses spherical
camera, which provides the fundamental for the relocaliza-
tion. Second, based on GeoDesc [34] and ContextDesc [35],
we propose a local feature extraction model, which trans-
fers the model trained on the perspective image dataset to
panoramic image dataset, though its performance dropped a
little compared with ContextDesc [35], and consistent with
GeoDesc [34], it is muchmore computing effective compared
with ContextDesc [35] and GeoDesc [34]. Finally, based on
the effective SimpGeoDesc, we can get the correct point
clouds and 3D reconstruction, and the point clouds provide

the ground truth for relocalization. In order to prove the per-
formance of our relocalization solution, we provide the ‘‘AR
application’’, the stable and clear AR results proves the per-
formance of our relocalization method again. Additionally,
our relocalization solution can not only optimize the SLAM
tracking, but also can be used in many scenes which need to
location accurately, our solution has strong universality.

Though the performance of our proposed relocalization
solution is good, there is still room to improve. In future work,
we will first focus on the fundamental feature descriptor, and
improve the accuracy computational efficiency of keypoints
extraction and matching on panoramic images.
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