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ABSTRACT In order to obtain accurate angular position and velocity from resolver signals, Resolver-
to-Digital Conversion (RDC) is necessary. However, there are inevitable harmonics in resolver signals, which
will deteriorate RDC accuracy seriously. Although the harmonics of resolver signals can be suppressed by
using low-pass filters (LPFs), the phase lag of LPFs will result in additional errors in RDC, especially for the
suppression of lower-order harmonics. In this paper, a novel filtering strategy is proposed for resolver signals
by combining two complementary filters (CFs) with a frequency locked loop (FLL). Firstly, CFs are designed
for the sinusoidal and cosinusoidal channels by using the natural orthogonality in the resolver signals. Each
CF consists of two LPFs assisted by the estimated frequency from FLL with a frequency discriminator
and a second-order observer. Secondly, a frequency discriminator is designed to detect the frequency error
between the resolver signals before and after CFs. Thirdly, a second-order observer is designed to estimate
the signal frequency by regulating the frequency error. Compared with conventional LPFs, FLL based CFs
can suppress the low-frequency harmonics without phase lags and can improve RDC accuracy. Simulation
and experimental results demonstrate the effectiveness of the proposed strategy.

INDEX TERMS Resolver-to-digital conversion (RDC), low-pass filter (LPF), frequency locked loop (FLL),

complementary filter (CF).

I. INTRODUCTION

As a kind of shaft angle transducers with high accuracy,
strong reliability, and great ruggedness, resolvers have been
widely used in many harsh environments, such as aerospace,
navigation, ordnance, industrial robots, and electric vehicles,
etc. [1]-[5]. Since resolvers can only output two orthogonal
signals modulated by high-frequency excitation, resolver-
to-digital conversion (RDC) is necessary to obtain rotor posi-
tion and velocity [6]. High accuracy RDC is the key to realize
high performance servo control [7].

However, the accuracy of RDC depends on the quality of
resolver signals, which are usually disturbed by many unex-
pected factors, such as amplitude asymmetry, DC offsets,
quadrature error, and harmonics [8]. The first three factors
do not change with the rotor speed and can be removed
in software-based RDC by using calibration methods in
[9], [10]. Unfortunately, the last factor can not be simply
rejected by using calibration since it varies with the rotor
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speed. Although the resolver structure can be optimized to
minimize harmonic distortion in resolver signals, there are
a certain amount of harmonics owing to manufacturing tol-
erance and non-ideal conditioning circuits [11]-[13]. The
residual harmonics can degrade RDC accuracy to a great
extent. Therefore, suppressing harmonics in resolver signals
is still a challenging task to improve RDC accuracy [14].

Low-pass filter (LPF) is the most common solution to sup-
press harmonics in resolver signals. For example, a 4th-order
Butterworth LPF was adopted in [15] to filter the resolver
signals before the angle tracking loop. In [16] and [17], low-
pass FIR filters were also used to suppress harmonics and
noises in resolver signals. These filters have fixed cutoff
frequency which design is a dilemma in applications. If the
harmonic frequency to be filtered is very low, only a lower
cutoff frequency can be selected, which will cause a large
phase lag in the fundamental component of resolver signals.
To reduce the phase lag caused by LPF, a higher cutoff
frequency should be selected. However, the LPF with higher
cutoff frequency can only reject high-frequency harmonics
and noises in resolver signals.
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To solve the contradiction between the filtering perfor-
mance and the phase lag of LPFs, an auto-tuning high-
pass filter was proposed for the noisy speed output in [18].
By using the high-pass filter, the harmonics and noises in the
speed are estimated first and then subtracted from the unfil-
tered speed. However, the high-pass filter plus the subtraction
are still low pass in essence and the phase lag problem of
LPF can not be avoided. In [19], an adaptive digital PLL
was proposed for magnetic encoders and four LPFs with
adjustable cutoff frequency were designed to remove low-
frequency harmonics from the inputs. In addition, the phase
lag caused by LPFs was compensated by using a frequency-
aided detector. However, the frequency-aided detector needs
the derivatives of the signals which may result in noise
amplification.

Many other methods are also reported to suppress harmon-
ics for resolvers or magnetic encoders. In [18], a peak filter
was proposed to estimate the amplitudes of harmonics in the
speed estimation and then subtract them from the unfiltered
speed of resolvers. In [20], a gradient descent algorithm was
designed to estimate the harmonics in the demodulated angle
and then compensate them in the phase locked loop. However,
it is very difficult to achieve high-precision estimates for all
harmonics. Although the second-order generalized integrator
with FLL in [21] could filter resolver signals without estima-
tion of harmonics, it was an adaptive notch filter in essence
and could not suppress lower-order harmonics as well.

Actually, there is a filtering method without phase
lag reported in many literatures, i.e., complementary fil-
ters (CFs) [22]. The idea of complementary filters is to
remove high-frequency and low-frequency noises in the com-
plementary signals by using low-pass and high-pass filters
respectively. The so-called complementary signals refer to
pair signals containing the same useful information but dif-
ferent noises with low or high frequency. Typically, the com-
plementary signals are measured by two kinds of sensors
with the relationship of differentiation [23], [24]. One can
output useful information containing high-frequency noises,
the other one can output useful information containing low-
frequency noises [25]. By using complementary filters, useful
information can be extracted from complementary signals
without phase delay.

Inspired by complementary filters without phase delay [26],
a novel filtering strategy is proposed for resolver signals in
this paper. Since the pair signals of resolver are only orthogo-
nal, they can be reconstructed to be complementary by using
the information of angular frequency. Thus, complementary
filters can be designed for sinusoidal and cosinusoidal chan-
nels respectively. For the information of angular frequency,
it can be estimated by using the proposed FLL consisting of
a frequency discriminator and a second-order observer. The
frequency discriminator can detect the frequency error before
and after the complementary filters, and the second-order
observer can estimate the angular frequency. By using FLL
based CFs, the low-frequency harmonics can be suppressed
in revolver signals without phase delay.
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The rest sections of the paper are arranged as follows.
In Section II, RDC principles are described and harmonic
effects on RDC accuracy are analyzed. In Section III, FLL
based CFs are proposed. In Section IV, simulation and exper-
imental results are given. Finally, the conclusion of the paper
is made in Section V.
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FIGURE 1. Schematic diagram of software-based RDC.

Il. EFFECTS OF HARMONICS ON RDC

A. RDC PRINCIPLES

The principle of software-based RDC can be shown in Fig 1.
When the resolver is modulated by an excitation signal with
the angular frequency of w,, it can output a pair of amplitude-
modulated signals v} and v} as

. w .
Vi = v 8in 6 cos w,t + —v; cos O sin w,t
We 1
. o .. ey
V. = V1 COS 6 COS wet — — V1 sin 6 Sin wet
We
where 6 and w denote angular position and velocity of the
rotor respectively; vy is the amplitude of the pair signals.
Usually, the excitation frequency w, is designed much higher
than the rotor frequency w. As a result, the second terms in (1)
can be neglected [27] and (1) can be approximated as

*
! 2)
¥ = v cos 6 cos wet

Ve = v1 sin 6 cos w,t
v

In order to reduce the burden of A/D converters in
software-based RDC, synchronous envelope detection is
often used [28]. Ideally, the pair envelope signals after syn-
chronous detection can be obtained as

= in @
{ Vg = V1 sin 3)

Ve = V1 cosf

However, the envelope signals are not ideal in practice
owing to many unexpected factors from resolvers and con-
ditioning circuits. They often contain amplitude deviation,
DC offsets, quadrature error, harmonics, and noises [29].
By using calibration and filtering technology, the non-ideal
envelope signals can be corrected to be symmetric and
orthogonal with low noises and harmonics. After that, the
pretreated signals are sent to PLL to accomplish resolver-
to-digital conversion.
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B. ANALYSIS OF HARMONICS EFFECTS ON RDC
ACCURACY

As overviewed above, the problems of amplitude deviation,
DC offsets, and quadrature error can be easily solved by
calibration. However, it is very difficult to reject all the har-
monics in the envelope signals, especially for the lower-order
harmonics with the frequency near to the rotor velocity. The
residual harmonics will still degrade RDC accuracy seriously.
To analyze the effects of harmonics on RDC accuracy, the
envelope signals are assumed to be symmetric, orthogonal,
and have unit fundamentals. They can be expressed as [30]

o
Vg = sinf + Zk,, sin n@

" )
Ve = cos 0 + an cos né

n=2

where k;, is the coefficient of the nth-order harmonics. Let 0
denote the estimated position from PLL, then phase detection
error of PLL can be derived as

€ =vscos0 — vesinf (®)]

Substituting (4) into (5) gives

g = sin(@ — ) + Z ky sin(nd — ) (6)

n=2

Define the position error as 6=60-0 , then (6) can be
rewritten as

o0
£ = [1 + Y kycos(n — 1)9} sinf

n=2

o
+ Z kysin(n — 10 cosf  (7)
n=2
Since the aim of PLL is to regulate phase detection error &
to be zero, the following equation can be derived from (7) as

&0 ~
> kynsin(n — 1)0 cos 6

sinfh = — "= 8)
1+ ) kycos(n— 1)0

n=2

Since the position error 6 is very small when PLL enters
steady state, cosf ~ 1, sind ~ 4. And also, the harmonic
coefficient k, is far less than 1 when n > 1. Therefore, (8)
can be approximated as

™

A~ — Z ky sin(n — 1)0 )
n=2

From (9), itis clear that the nth harmonic of resolver signals
will cause the (n-1)th harmonic component with the same
coefficient k, in the demodulated position. To attenuate the
harmonic effects on RDC accuracy, LPFs are often adopted
to reduce the harmonic coefficient k, as small as possible.
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However, LPFs can not deal with lower-order harmonics
close to the fundamental frequency. Furthermore, the phase
delay of LPFs will cause additional adverse effects on RDC.
Suppressing harmonics, especially the lower-order ones in
resolver signals, is still an urgent problem to solve in the
design of high accuracy RDC.

IIl. FLL BASED COMPLEMENTARY FILTERS

In order to suppress harmonics in resolver signals, a pair of
CFs assisted by FLL are proposed in this section, as shown in
Fig 2. The function of CFs is to filter resolver signals without
phase delay, while the function of FLL is to provide the
estimated fundamental frequency of resolver signals for CFs.
In FLL, the frequency discriminator is in charge of detecting
the frequency error before and after CFs, while the second-
order observer is in charge of estimating the fundamental
frequency. The FLL based CFs will designed from three parts
as follows.

CF for sinusoidal channel
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FIGURE 2. Schematic diagram of proposed FLL based CFs and PLL.

A. COMPLEMENTARY FILTERS
Owing to the advantages of simple implementation and zero
delay, CFs have been widely used in many fields, such as
attitude estimation, navigation, etc. To suppress harmonics
without additional phase delay, CFs are introduced to filter
resolver signals [31]. However, the pair signals of resolver are
only orthogonal and do not conform to the condition of CFs.
Actually, the pair signals of resolver can be reconstructed to
meet the need of CF design by multiplying the signal with
angular frequency or negative one. Now, we will take the
sinusoidal channel as an example to show the reconstruction
of the pair signals and the design of CF.

Assume the angular frequency is w and 6 = ot,
then the pair signals of resolver after calibration in (4)
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can be rewritten as

o0
Vg = sinwt + Z ky, sin(nwt)

" (10)
Ve = cos wt + Zk,, cos(nwt)

n=2

Taking Laplace transform of (10) gives

o
w nw

Vi(s) = — kn————

s(9) = 3 i > "2+ (hw)?
n=2

o0 (11)

Vo(s) = ——— 4 3k _ s

¢ 2+ w? = "$2 + (nw)?

Exmaine o/(s2 + @?) and s/(s® + ?) in (11), it is clear that
the integral of the latter one multiplied by @ will become the
former one. Therefore, two LPFs can be designed as the CF.
For sinusoidal channel, LPF is 1/(ts + 1); for cosinusoidal
channel, LPF is wt/(ts+ 1), T is the time constant. Thus, the
output of the CF can be written as

1
Us(s) = Vs(S)l'S 1

Substituting (11) into (12) gives

T
Ve(s)—— 12
+ L(S)TSJrl (12)

o
w w
Ufs) = ——— k—
S(S) S2+(,()2 +n§ n52+(}’l(1))2

1
+X_: nsz +(na))2 s+ 1

13)
Taking Laplace inverse transform of (13) gives

o0
. ::‘Cn .
1) = sin wt — S1n t
MS() ]0)+ ](na))

iy 4 1 ;
+Z (= S)sin(rot) ke 7 (14)
— T n

where the symbol * denotes the operation of convolution.

According to (14), it is known that the fundamental com-
ponent can fully pass through the CF. However, there is also
one nth of the nth harmonic in the filter output. The other
harmonics can be effectively attenuated by LPFs with suitable
cutoff frequency or time constant. Even if the cutoff fre-
quency of LPFs is very near to the fundamental component,
no additional phase lags will be introduced.

Although the proposed CF in (12) can effectively filter the
harmonics in (10), the information of the angular frequency w
is not available at this time. Therefore, the estimated angular
frequency wy from FLL can be used instead of w in (12).
Then, the final form of CF for sinusoidal channel can be
obtained as

wrT
+ Ve(s)—L

1
U.(s) = V.
5(5) A(S)Ts-f-l s+ 1

(15)
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Similar to the sinusoidal channel, the CF is also designed
for the cosinusoidal channel as

Uc(s) =

1
Ve(s) —y (16)

+ 1

For the time constant 7 of CFs, it can be tuned according
to the estimated angular frequency wy from FLL. To avoid
frequent variations of 7, a piecewise function of wy can be
designed to adjust t as

1/t = [int(wys /b) + 0.5]b (17)

where int(-) represents a function rounding down to the near-
est integer, b is the interval width of the angular frequency.

According to (17), the cutoff frequency of CFs is chosen as
the center of the interval [kb, (k 4+ 1)b] in which the estimated
angular frequency wy locates, k = 0, 1, 2, - - -. It means
that CFs can suppress harmonics without additional harms
to the fundamental components even if the cutoff frequency
is designed lower than the fundamental frequency.

B. FREQUENCY DISCRIMINATOR

In order to derive the estimation of the angular frequency
wy in (15) and (16) from FLL, a frequency discriminator is
designed to detect the estimation error & of w. Since the
estimation error & will result in certain errors in the output
of CFs, the signals before and after CFs can be used to
construct &¢. For simplicity, only fundamental components
in the pair signals of resolver are considered here. Thus, the
unfiltered signals (11) can be rewritten as

Vy(s) = 0
SO =50
s“ 4+ w
s (18)
Ve = a2

Substitute (18) into (15) and (16) respectively, then the
filtered signals can be obtained as

U(s) w 1 LS wrT

S) =

y P24+w?ts+1 s24+0?Tts+1 (19)
s 1 w wrT

Uc(s) =

2+a?ts+1 2+t 1

Since &f = w — wy, (19) can be changed as

w K T
US(S)=S2+Q)2 —Efs2+a)2 s+ 1 (20)
K w T T
Uels) = 2 + w? +8fs2+a)2 s+1  Ts+1
Substitute (18) into (20), then we have
T
Us(s) = Vs(s) — ¢
IS+ w? + w? Ts + s+ 1 . @
Uels) = V(s)+8f2+w 2541 rs+1

Taking Laplace inverse transform of (21) gives

us(t) = v5(t) — & cos wt * el 22)
Uuc(t) = ve(t) + ep sinwt x /7 — 7T
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Let Ay(t) = us(t) — vs(1), A1) = uc(t) —ve(t) +e7'/7,
then (22) can be modified as
As(t) = ~¢f cos wt *—f:/ 4 3
A(t) =g sinwt *x e
To derive the information of & from Ay(z) and A(?),
the steady-state response of LPF can be used. Denote the
steady-state response of Ay(7) and A.(7) as A¥(¢) and A%(z)
respectively, then the following equation can be achieved
from (23) as

{ A§(t) = —gpAcos(wt + @) (24)

A%(t) = grAsin(wt + @)
where A = 7/y/(tw)? + 1, ¢ = — arctan(ztw).

According to (24), the following equation can be obtained
as

—AS()e(t) + AL(t)vs(t) = erAcos ¢ (25)
According to (25), the frequency error can be

approximated as
o = —AF@ve(t) + AZD)vs(0) 26)

Acos g

C. SECOND-ORDER OBSERVER

By using the frequency error &¢ from the frequency discrim-
inator, a second-order observer can be designed to estimate
the angular frequency wy for CFs. Let wy and o denote the
estimates of angular frequency and acceleration respectively,
then the second-order observer can be designed as

d)f =or + l]Sf @7
& = bey
where /1 and /; are positive observer gains.
Define the errors as &y = w — wy, & = a — ay, then the
error dynamics of the observer can be derived from (27) as

o =& = he (28)
O~lf =q — 128f

Since & = @y and & = @, (28) can be rewritten as

o = & — by
According to (29), the transfer function G(s) from the input
w(s) to the estimation error @y (s) can be obtained as

_ ay(s) . §2

w(s)  S2+hs+h

When the input w(s) conforms to typical power functions,
the final value theorem can be used to calculate the steady
state of the error frequency @y (s), i.e.,

G(s)

(30)

- . . s3a(s)
wr(00) = Slgr(l) sG(s)w(s) = lim 31

s—0 s + hs+ Db

Obviously, the proposed observer can give accurate esti-

mate of the angular frequency without steady-state error when
the frequency is constant or varies with a fixed rate.
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IV. SIMULATION AND EXPERIMENTAL RESULTS
A. SIMULATION RESULTS
To verify the effectiveness of the proposed method, simula-
tion is conducted on the MATLAB/Simulink platform. In the
simulation, the envelope signals of the resolver are directly
generated with harmonics similar to [21]. The harmonic ratios
are set as Table 1. By using the generated envelope signals,
the performance of the proposed method is evaluated under
three conditions, i.e., fixed velocity, fixed acceleration, and
sinusoidal velocity. For comparison purposes, the simulation
results are also given without filter and with a first-order LPF.
In the simulation, the parameters of the proposed method
are chosen as [ = 450, I, = 3000, b = 67 rad/s. The first-
order LPF only has one parameter to be designed, i.e., cutoff
frequency or time constant. To achieve filtering performance
as good as possible by using LPF, its parameter is adjusted
carefully according to different conditions. Furthermore, the
phase lag caused by LPF has been compensated in the demod-
ulated results. A second-order angle tracking observer based
on PLL [6] with the bandwidth of 100 Hz is adopted as
the demodulation algorithm in this paper. In the simulation
curves, LPF and FLL-CF represent the results with the first-
order LPF, and the proposed method respectively.

TABLE 1. Harmonics ratio.

Harmonics order 3rd 5th  11th 13th
v, 0.09 0.11 0.15 0.13

v. 009 011 0.15 0.13

Ratio (%)

1) CASE 1: FIXED SPEED

Set the angular speed @ = 27 rad/s, then the pair envelope
signals of the resolver can be simulated in Fig 3. In this case,
the time constant of LPF is chosen as 0.0159s. According
to (17) and b = 6m rad/s, it is easy to know that the time
constant of CFs is t = 0.106s.

16
‘ ..... [E—
—_ s c
VAN T "\, ¢f" 3

> 0.8 ) ) ) X
3 / N / Y / \'\\
20 " / / N 7
= / Y / N /
£ / / / / ‘;/ /
Z 08 g

L6 0.5 1 15 2 25 3

Time (s)

FIGURE 3. Simulated envelope signals of resolver at fixed speed.

After the envelope signals are filtered by using LPF and
FLL-CF respectively, the filtered signals in sinusoidal chan-
nel are plotted in Fig 4. From Fig 4, it is clear that the phase
lag of LPF is much larger than FLL-CF although the time
constant of LPF is much less than FLL-CF. To demonstrate
the filtering performance of different methods, the unfiltered
and filtered signals in sinusoidal channel are also analyzed by
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16 1 -
S / 0.25 ot
> 08 y : y e
o \ L < o
N \ p) 205 21
= \
E .08 N . = Without Filter
< 7 -~ LPF

16 —FLL-CF

() 0.5 1 15 55 3

Time (s)

FIGURE 4. Unfiltered and filtered envelope signals of sinusoidal channel
at fixed speed in simulation.

using FFT and the spectrums are given in Fig 5. Obviously,
the dominant harmonics in the unfiltered signal conform to
Table 1 and can be suppressed effectively by using LPF or
FLL-CF. However, the amplitudes of the residual harmonics
are much smaller by using FLL-CF than LPE.

To further evaluate the filtering performance of the pro-
posed method, the unfiltered and filtered envelope signals of
resolver are demodulated by PLL. The error curves of the
demodulated position and velocity are given in Fig 6, and the
statistical values of the demodulation errors in steady state
are given in Table 2 and Table 3. In the statistical tables, AVG
and STD represent the average value and standard deviation
respectively. From Fig 6, Table 2, and Table 3, it is known
that the demodulation accuracy can be improved a lot when
the harmonics in the envelope signals are suppressed by using
FLL-CF. Compared with LPF, the standard deviations of the
position and velocity errors with FLL-CF are reduced by
62.8% and 74.9% respectively.

x 10
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in

e
n

Amplitude (v)

=2

123 45678 91011121314151617 181920
x10° Frequency (Hz)
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1 23 456 7 8 9 10111213 141516 17 18 19 20
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e
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00 123456 7 8 910111213 14151617 18 19 20
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FIGURE 5. Spectrums of unfiltered and filtered envelope signals of
sinusoidal channel at fixed speed in simulation.

2) CASE 2: FIXED ACCELERATION

Set the angular speed w = 2w + 7t rad/s, then the simulated
envelope signals of the resolver are given in Fig 7. In this
case, the time constant of LPF is also 0.0159s. Furthermore,
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FIGURE 6. Demodulation errors at fixed speed in simulation. (a) velocity
error. (b) position error.

the time constant of CFs is also 0.106s in the simulation time
of 3 seconds according to (17) and b.

Similar to Case 1, the simulated envelope signals are also
filtered by using LPF and FLL-CF respectively. The unfil-
tered and filtered signals in sinusoidal channel are shown in
Fig 8. Fig 8 also demonstrates that LPF with a smaller time
constant introduces certain phase delay while FLL-CF with a
larger time constant does not.

1.6 ‘ _____ v,—v,
S 08Py x, g - & AN
WAV
= \ A\ AR N ARN N
g 0 ‘\\ i Y ¥ T
RN ZANIAN AV
Z 08 VAN VAV
16 0.5 1 15 2 25 3

Time (s)

FIGURE 7. Simulated envelope signals at fixed acceleration.

VAY

2 25 3

Without Filter
-LPF
—FLL-CF

Amplitude (V)

() 0.5 1 15
Time (s)

FIGURE 8. Unfiltered and filtered envelope signals of sinusoidal channel
at fixed acceleration in simulation.

The filtering performance of the proposed method can also

be demonstrated by comparing the demodulation accuracy
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FIGURE 9. Demodulation errors at fixed acceleration in simulation.
(a) velocity error. (b) position error.

with LPF and without filters, as shown in Fig 9. The AVG
and STD of the demodulation errors in steady state are also
calculated in Table 2 and Table 3. The results also indicate
FLL-CF can improve the demodulation accuracy effectively
owing to its superior performance in harmonics suppression.
Compared with LPF, the standard deviations of the position
and velocity errors with FLL-CF are reduced by 62.7% and
68.6% respectively.

3) CASE 3: SINUSOIDAL SPEED

Set the angular speed w = 47 + 0.57sin(0.57¢) rad/s, then
the simulated envelope signals of resolver are given in Fig 10.
In this case, the time constant of LPF is chosen as 0.00637s.
The time constant of CFs is also 0.106s according to (17).

Amplitude (V)

FIGURE 10. Simulated envelope signals at sinusoidal speed.

Fig 11 shows the unfiltered and filtered signals in sinu-
soidal channel. It can be seen from Fig 11 that LPF filtered
signal lags behind the unfiltered one owing to its retarded
property. On the contrary, FLL-CF can filter the signals with-
out additional delay.
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FIGURE 11. Unfiltered and filtered envelope signals of sinusoidal channel
at sinusoidal speed in simulation.
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FIGURE 12. Demodulation errors at sinusoidal speed in simulation.
(a) velocity error. (b) position error.

The demodulation errors of the position and velocity are
given in Fig 12 and the error statistics are calculated in
Table 2 and Table 3. Similarly, the statistical data also demon-
strate the superior filtering performance of FLL-CF through
demodulation accuracy. Compared with LPF, the standard
deviations of the position and velocity errors with FLL-CF
are reduced by 28.2% and 82.9% respectively.

TABLE 2. Statistical values of position error ().

Fixed Fixed Sinusoidal
Cases .
speed acceleration speed
Without AVG -2.85x107°  -4.39x1072  1.82x1072
filter — grp  6.04 6.79 637
AVG  -3.78x107° -3.38x1072  1.74x1072
LPF
STD 4.54 3.11 5.15
_ -5 -2 -2
FLL-CF AVG -2.72x10 1.01x10 1.06x10
STD 1.69 1.16 3.70

B. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed method through
experimental results, an experimental platform is established,
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TABLE 3. Statistical values of velocity error (°/s).

Fixed Fixed Sinusoidal
Cases .
speed acceleration speed
Without AVG 4.96x10°® 0.362 5.88x1073
filter — gpp 5.72 17.6 11.9
AVG  5.60x10°% 0.298 7.18x1073
LPF
STD 3.77 5.60 8.78
AVG  3.06x10°% 0.122 3.01x1073
FLL-CF
STD 0.947 1.76 1.50

Power Supply

4

FIGURE 13. Experimental platform.

as shown in Fig 13. It consists of a power supply, a drive
board, and a permanent magnet synchronous motor (PMSM)
with resolver. The power supply provides constant voltage
power for the drive board. On the drive board, the syn-
chronous peak sampling method in [28] is adopted to detect
the envelopes of resolver signals first. Then, the calibration
method in [9] is used to calibrate the detected envelope
signals. After the calibrated signals are filtered by LPF and
FLL-CF respectively, they are demodulated to obtain the esti-
mates of position and velocity by using a second-order angle
tracking observer based on PLL. Finally, the closed-loop
control of PMSM is accomplished by using the information
from PLL. In the experiment, the parameters of PMSM and
resolver are listed in Table 4, the parameters of FLL-CF and
PLL are the same as simulation. The time constant of LPF
is designed as 0.0159s. When the motor is driven to rotate
stably with the expected velocity 27 rad/s by the driver board,
experimental curves are plotted in Figs 14-17.

Fig 14 shows the pair signals of resolver after envelope
detection. Fig 15 shows the unfiltered and filtered signals
in sinusoidal channel. It is obvious that the phase delay
of FLL-CF is much smaller than LPF although LPF has a
smaller time constant. The filtering performance of different
methods can be demonstrated by the spectrums of the signal
in sinusoidal channel in Fig 16. It is clear that FLL-CF has
better performance than LPF.
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TABLE 4. Parameters of PMSM and resolver.

PMSM Resolver
Pole pairs 2 Pole pairs 1
Rated velocity 3000 r/min | Excitation frequency 10kHz
Torque constant ~ 0.15Nm/A Phase shift <18°
Phase resistance 8Q Electrical error <10'
Phase inductance 10mH Input impedance 95+14Q
1.6

Amplitude (V)
o o
/‘<
~

=
=N

0.5 1 15 2 25 3
Time (s)

FIGURE 14. Resolver signals after envelope detection in experiment.
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FIGURE 15. Unfiltered and filtered envelope signals of sinusoidal channel
in experiment.

The demodulation results are given in Fig 17 and the
statistics are calculated in Table 5. In Fig 17 and Table 5, the
velocity error (@) is used to reflect the estimation accuracy of
velocity, where ® = w* — &, w* is the expected velocity, @
is estimated velocity. The phase detection error (¢) is used to
reflect the estimation error of position.

TABLE 5. Statistical values of demodulation error in experiment.

Cases ()

a’/s)

-1.06x107% -5.37x10™*

Without AVC

fiter  gp 332 37.0
AVG  -8.11x10* -8.10x10°
LPF
STD 18.4 239
_ -4 -5
PLL.cp AVG 193x10% -398x10

STD 3.56 5.24

InFig 17, itis obvious that the FLL-CF curve has the small-
est fluctuation, which proves that the demodulation accuracy
can be improved most by FLL-CF. In Table 5, compared with
LPF, the standard deviations of the phase detection error and
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FIGURE 16. Spectrums of unfiltered and filtered envelope signals of
sinusoidal channel in experiment.

-+ Without Filter
==-LPF

Velocity error (°/s )

0 0.5 1 15 2 25 3
Time (s)
""" Without Filter
o -=-LPF
~ —FLL-CF
St
o , 3 :
5 i
= - !
=] )
8 TEPEFELE
Q H 3
= - i
Q
4
£-100
=
-150
0 0.5 1 15 25 3
Time (s)

FIGURE 17. Demodulation results curves in experiment. (a) velocity error.
(b) phase detection error.

velocity errors with FLL-CF are reduced by 80.7% and 78.1%
respectively.

V. CONCLUSION

In this paper, a FLL based CF is proposed to solve the problem
of resolver harmonics. In the proposed method, the relation of
natural orthogonality in the pair signals of resolver is utilized
to construct the complementary signal for the design of CFs.

158410

The proposed method has similar properties to conventional
CFs and will not result in phase lags in the resolver signals.
Compared with the conventional low-pass filters, the pro-
posed method has better performance in harmonics suppres-
sion, and will not introduce additional errors in RDC. Both
simulation and experimental results show that the proposed
method has good performance on harmonics suppression.
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