IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 28, 2021, accepted November 21, 2021, date of publication November 25, 2021,

date of current version December 17, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3131014

A Two-Fold Machine Learning Approach to
Prevent and Detect l1oT Botnet Attacks

FAISAL HUSSAIN“1, SYED GHAZANFAR ABBAS', IVAN MIGUEL PIRES 23,
SABEEHA TANVEER', UBAID U. FAYYAZ'!, NUNO M. GARCIA“2,

GHALIB A. SHAH!, AND FARRUKH SHAHZAD'

! Al-Khawarizmi Institute of Computer Science (KICS), University of Engineering and Technology (UET), Lahore 54890, Pakistan

2Instituto de Telecomunicagdes, Universidade da Beira Interior, 6200-001 Covilha, Portugal

3Escola de Ciéncias e Tecnologia, University of Tras-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal

Corresponding authors: Faisal Hussain (faisal.hussain.engr@ gmail.com) and Ivan Miguel Pires (impires @it.ubi.pt)

This work was supported in part by the Centro de Competéncias em Cloud Computing (C4) under Grant Operagio
Centro-01-0145-FEDER-000019, in part by the Programa Operacional Regional do Centro (CENTRO 2020) through the Sistema de Apoio
a Investigacdo Cientifica e Tecnolégica—Programas Integrados de IC&DT, in part by FCT/MEC through national funds, in part by
FEDER—PT2020 Partnership Agreement under Project UIDB/50008/2020, and in part by the Al-Khwarizmi Institute of Computer
Science (KICS), University of Engineering and Technology Lahore (UET), Lahore, Pakistan. This article is based upon work from COST
Action IC1303—-AAPELE-Architectures, Algorithms, and Protocols for Enhanced Living Environments and COST Action
CA16226-SHELD-ON-Indoor living space improvement: Smart Habitat for the Elderly, supported by COST (European Cooperation in
Science and Technology). COST is a funding agency for research and innovation networks. Our Actions help connect research initiatives
across Europe and enable scientists to grow their ideas by sharing them with their peers. It boosts their research, career, and innovation.

More information in www.cost.eu.

ABSTRACT The botnet attack is a multi-stage and the most prevalent cyber-attack in the Internet of
Things (IoT) environment that initiates with scanning activity and ends at the distributed denial of ser-
vice (DDoS) attack. The existing studies mostly focus on detecting botnet attacks after the IoT devices
get compromised, and start performing the DDoS attack. Similarly, the performance of most of the existing
machine learning based botnet detection models is limited to a specific dataset on which they are trained. As a
consequence, these solutions do not perform well on other datasets due to the diversity of attack patterns.
Therefore, in this work, we first produce a generic scanning and DDoS attack dataset by generating 33 types
of scan and 60 types of DDoS attacks. In addition, we partially integrated the scan and DDoS attack samples
from three publicly-available datasets for maximum attack coverage to better train the machine learning
algorithms. Afterwards, we propose a two-fold machine learning approach to prevent and detect IoT botnet
attacks. In the first fold, we trained a state-of-the-art deep learning model, i.e., ResNet-18 to detect the
scanning activity in the premature attack stage to prevent IoT botnet attacks. While, in the second fold,
we trained another ResNet-18 model for DDoS attack identification to detect IoT botnet attacks. Overall,
the proposed two-fold approach manifests 98.89% accuracy, 99.01% precision, 98.74% recall, and 98.87%
fl-score to prevent and detect IoT botnet attacks. To demonstrate the effectiveness of the proposed two-fold
approach, we trained three other ResNet-18 models over three different datasets for detecting scan and DDoS
attacks and compared their performance with the proposed two-fold approach. The experimental results
prove that the proposed two-fold approach can efficiently prevent and detect botnet attacks as compared to
other trained models.

INDEX TERMS Internet of Things, IoT botnet, botnet detection, IoT botnet attacks, IoT botnet DDoS attack,
DDoS attack prevention, DDoS attack, IoT DDoS attack, botnet attack, botnet DDoS.

I. INTRODUCTION

Internet of Things (IoT) revolutionized the technology by
enabling real-world objects/things to connect and commu-
nicate with each other over the internet to luxuriate human
life [1], [2]. Over the past few years, the adoption of smart [oT
devices like smart cameras, smart TV, smart wearables, smart

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhibo Wang

163412

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

toys, smart bulbs, etc., is exponentially increasing in our daily
life [3], [4]. Therefore, this new emerging trend in the field
of computing has empowered our everyday life objects to
connect and communicate with each other without human
intervention. Despite the IoT devices are helping us in a lot of
areas, these devices have negligible or very limited security
features [3]. Furthermore, many IoT devices come with a
fixed key or hard-coded default username and password,
which a user cannot change [5]. These security pitfalls make

VOLUME 9, 2021

https://orcid.org/0000-0001-9812-7488
https://orcid.org/0000-0002-3394-6762
https://orcid.org/0000-0001-8649-0781
https://orcid.org/0000-0002-3195-3168
https://orcid.org/0000-0002-5804-3279

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

IEEE Access

it easy for hackers to exploit these insecure IoT devices and
get control over them [4].

The recent trends reveal that the cyber-attacks increas-
ing day by day with the rapid increase of insecure IoT
devices [6]. Among the recently reported cyber-attacks, bot-
net and distributed denial of service (DDoS) attacks are the
most prevalent attacks, which are increased both in frequency
and magnitude over the last decade [4], [6]. A botnet attack
is a cyber-attack in which an attacker first scans a network
to look for weakly secured or vulnerable (IoT) devices. After
analysing the scanning information, the attacker targets vul-
nerable (IoT) devices to install a bot program into them
through malware [7].

The installed bot program connects the infected devices
with a central server or a peer network from where the further
commands are sent to them to perform different malicious
activities like sending spams, flooding DDoS [6], [8], etc.,
from plenty of infected IoT devices over the target server,
website, etc. Once an IoT device gets infected and becomes
part of a botnet, then the attacker uses the infected device to
perform DDoS attacks.

The botnet attack is not only a serious threat to insecure
IoT devices but also a crucial threat to the whole inter-
net [6]. With the advent of the Mirai botnet attack in 2016,
the IoT botnet attacks are continuously escalating [9]. After
the public disclosure of the Mirai botnet source code, many
variants and imitators of Mirai botnet have been evolved [9].
These new variants and imitators have infected millions of
IoT devices [3], [9] and wreaked ever large and catastrophic
DDoS attacks like GitHub [10], AWS [11], etc., over the past
few years.

Nowadays, attackers can easily locate insecure IoT devices
via online services such as Shodan [12], Censys [13], etc.
These online search engine services provide a huge amount
of information to attack insecure IoT devices [9]. By com-
promising the insecure IoT devices, an attacker can perform
several cyber-attacks such as spamming, phishing, DDoS [6],
[8], [9], etc., to wreak havoc against the other resources on
the Internet. Some recent studies exposed that IoT devices
are much prone to botnet and DDoS attacks, as a wide
range of DDoS attacks are performed by compromised IoT
devices [14], [15]. Likewise, Gartner recently predicted that
25% of the cyber-attacks are posed due to the insecure IoT
devices [16].

In order to secure the insecure IoT devices to become a
bot and perform different DDoS attacks, there must be an
efficient security system to detect IoT bots. The existing
botnet and DDoS attack detection techniques are divided
into two categories, i.e., host-based techniques and network-
based techniques [17]. Due to the resource constraint nature
(i.e., limited memory, battery, and compute power) of IoT
devices, the host-based solutions are not feasible for IoT
devices [1], [17]. However, the network-based solution is a
better way to protect the IoT devices and network from these
devastating cyber-attacks. The network-based techniques are
subdivided into three main types [18]-[22]:

VOLUME 9, 2021

1) Signature-based detection method: relies on match-
ing the network traffic with some specific rules defined
in the rule database to detect and prevent potential
attacks.

2) Anomaly-based detection method: analyses the nor-
mal behaviour of network traffic and builds a baseline
profile of each device communicating in the network
Any significant deviation from the baseline is con-
sidered as an anomaly. The anomaly-based detection
method is further classified into two subtypes:

« Statistics-based detection: These methods detect
anomalies based on a statistical distribution of
intrusions.

o Machine learning-based detection method:
detects abnormalities based on packet and payload
features. These methods mainly detect and prevent
potential attacks using machine learning models.

o Knowledge-based detection method: detects
anomalies based on the profile or previous knowl-
edge of a network. The profile or previous
knowledge of the network is generated under dif-
ferent test cases to detect abnormalities in the
network [22].

3) Specification-based detection method: performs
intrusions detection based on the specifications or rules
defined by a user [22].

The major drawback of the signature-based detection
method is that it only detects the known threats for which
the rules are available in its rules’ database [20], [21]. On the
other hand, the stateful protocol-based detection methods
have limited ability to inspect the encrypted traffic. However,
the traffic behaviour analysis, i.e., anomaly detection is very
effective in both analysing the encrypted traffic and detect-
ing the unknown attacks [19]. In case of anomaly detection
methods, the machine learning approach has shown tremen-
dous performance in recent years. The machine learning-
based detection methods are trained on datasets to learn and
distinguish the behaviour and pattern of normal and attack
traffic [20], [21]. Henceforth, by learning the normal and
attack traffic patterns, the machine learning models are use-
ful to detect new botnet and DDoS attacks that are derived
variants or imitators of the existing botnet and DDoS attacks.
The existing botnet attack detection methods detect the botnet
after the IoT devices are compromised by some malware
and start performing malicious activities as directed by the
botmaster. Moreover, the performance of most of the existing
machine learning based botnet detection models is limited to
a specific dataset on which they are trained [6]. This is due to
the fact that different datasets contain different types of botnet
attacks. Further, the features used for detecting botnet attacks
from one certain dataset, are not adequate to efficiently detect
the botnet attacks from other datasets due to the diversity
of botnet attacks [6]. As a consequence, these solutions do
not perform well on other datasets due to the diversity of
attack patterns [6]. However, in order to protect the IoT
devices from being compromised, there is a crucial need for

163413

IEEE Access

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

providing a protection mechanism to safeguard the IoT
devices from botnet and DDoS attacks during the premature
stage (i.e., scanning) of the botnet attack. Therefore, in this
work, we propose a novel two-fold approach to prevent a bot-
net attack during the premature stage (i.e., scanning attack)
and to detect DDoS attack in IoT network in case an attacker
compromises an IoT device and start performing a DDoS
attack. As discussed earlier that an attacker can use the bot-
infected IoT devices to perform different malicious activi-
ties like sending spam emails, flooding DDoS [6], [8], etc.,
however, in this work, we focus on detecting DDoS attacks
performed by bot-infected IoT devices. The proposed two-
fold approach uses a state-of-the-art deep learning model,
i.e., ResNet which is first trained for detecting the scanning
activity and then trained for detecting the DDoS attack per-
formed by the attacker or compromised IoT devices towards
or outside the network.

For preventing the IoT devices and network from IoT
botnet attacks, in the first fold, we trained the ResNet-18 [23]
model for scanning attack detection so that it can detect the
premature attack stage and notify about the malicious attempt
before an attacker goes to further steps for compromising the
IoT devices. On the other hand, in the second fold, we trained
the ResNet-18 [23] model for DDoS attack detection to detect
and mitigate the botnet attack, in case an attacker invades
the scanning attack detection model, install malware on IoT
devices and starts performing DDoS attacks. The key contri-
butions of this work are as follows:

o We analysed the frequently used scanning and DDoS
attack techniques and produced a generic dataset by gen-
erating 33 types of scan and 60 types of DDoS attacks.
In addition, we partially integrated the scan and DDoS
attack samples from three publicly-available datasets for
maximum attack coverage for better training of machine
learning algorithms.

o We proposed a two-fold machine learning approach to
prevent and detect both inbound and outbound botnet
attacks in the IoT network environment. The proposed
two-fold approach prevents [oT botnet attacks by detect-
ing the scanning activity, while it detects the IoT botnet
attack by identifying the DDoS attack.

o Finally, to demonstrate that the performance of the
proposed two-fold approach is not limited to a single
dataset, we trained three ResNet-18 [23] models over
three different datasets and compared their performance
with the proposed two-fold approach for detecting and
preventing IoT botnet attacks.

The rest of the paper is organized as follows: Section II
presents a review of some existing work for botnet attack
detection. Section III describes some background knowledge
needed to understand the botnet attacks basics. Section IV
explains the proposed methodology to prevent and detect IoT
botnet and DDoS attacks. Section V discusses the experi-
mental setup and results of the proposed two-fold approach
to prevent and detect IoT botnet attacks. Lastly, Section VI
concludes the paper.

163414

TABLE 1. List of terminologies and acronyms used in the text.

Notation Description

ANN Artificial Neural Network

C&C Command and Control

CNN Convolution Neural Network

DCNN Distributed CNN

DDoS Distributed Denial of Service

DNN Deep Neural Network

FN False Negative

FP False Positive

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

1P Internet Protocol

IoT Internet of Things

LOF Local Outlier Factor

LR Logistic Regression

MLP Multi-Layer Perceptron

PSI Printing String Information

P2P Peer-to-Peer

RNN Recurrent Neural Network

ResNetDDoS-1 Resnet-18 Model Trained over DDoSLab
Dataset

ResNetDDoS-2 Resnet-18 Model Trained over DDos Samples

of CICIDS-19 Dataset

Resnet-18 Model Trained over DDos Samples
of CICIDS-17 Dataset

Resnet-18 Model Trained over DDos Samples
of Bot-IoT Dataset

Resnet-18 Model Trained over ScanLab
Dataset

Resnet-18 Model Trained over Scan Samples
of CICIDS-19 Dataset

Resnet-18 Model Trained over Scan Samples
of CICIDS-17 Dataset

Resnet-18 Model Trained over Scan Samples
of Bot-IoT Dataset

ResNetDDoS-3

ResNetDDoS-4

ResNetScan-1

ResNetScan-2

ResNetScan-3

ResNetScan-4

SDN Software-Defined Network
SGD Stochastic Gradient Descent
TCP Transmission Control Protocol
TN True Negative

TP True Positive

UDP User Datagram Protocol

Il. RELATED WORK
To date, several techniques have been proposed for bot-
net attack detection. The existing botnet detection tech-
niques are broadly divided into two types, i.e., graph-based
techniques and flow-based techniques [4]. In the graph-
based botnet detection techniques, all the communication
nodes of a network are analysed to detect the anomalies
which communicate differently as compared to the neighbour
nodes [24]. On the other hand, in the flow-based botnet
detection approach, both the inbound and outbound traffic
statistics, i.e., features are monitored by the machine learning
algorithms which detects the botnet attacks based on the
traffic pattern resemblance.

Nguyen et al. [16] proposed a graph-based approach to
detect the IoT botnet via printing string information (PSI)
graphs. The authors used PSI graphs to get high-level features

VOLUME 9, 2021

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

IEEE Access

from the function call graph and then trained a convolu-
tion neural network (CNN), a deep learning model, over
the generated graphs for IoT botnet detection. Likewise,
Wang et al. [24] proposed an automated model named as
BotMark. Their proposed model detects botnet attacks based
on a hybrid analysis of flow-based and graph-based network
traffic behaviours. The flow-based detection is performed
by k-means, which calculates the similarity and stability
scores between flows. While the graph-based detection uses
the least-square technique and local outlier factor (LOF)
which measures anomaly scores. Similarly, Yassin et al. [25]
proposed a novel method that compromises a series of
approaches such as the utilization of the frequency process
against registry information, graph visualization and rules
generation. The authors investigated the Mirai attacks using
the graph-theoretical approach. In order to identify simi-
lar and dissimilar Mirai patterns, the authors used directed
graphs. The proposed approach only focuses on the Mirai
attack.

Almutairi ef al. [27] proposed a hybrid botnet detection
technique that detects new botnets implemented on three
levels, i.e., host level, network level and a combination of
both. The authors focused on focused HTTP, P2P, IRC, and
DNS botnet traffic. The proposed technique consists of three
components: host analyser, network analyser, and detection
report. The authors used two machine learning algorithms,
i.e., Naive Bayes and a decision tree for traffic classifica-
tion. Similarly, Blaise et al. [28] proposed a bot detection
technique named BotFP, for bot fingerprinting. The proposed
BotFP framework has two variants, i.e., BotFP-Clus which
groups similar traffic instances using clustering algorithms
and BotFP-ML is designed to learn from the signatures
and identify new bots using two supervised ML algorithms,
i.e., SVM and MLP. Likewise, Soe et al. [30] developed a
machine learning-based IoT botnet attack detection model.
The proposed model consists of two stages: a model builder
and an attack detector. In the model builder stage, data collec-
tion, data categorization, model training and feature selection
are performed step by step. While in the attack detector
stage, the packets are first decoded and then the features are
extracted in the same way as in the model builder phase.
Finally, the features are passed to the attack detector engine
where artificial neural network (ANN), J48 decision tree, and
Naive Bayes machine learning models are used for botnet
attack detection.

Sriram et al. [31] proposed a deep learning-based IoT bot-
net attack detection framework. The proposed solution specif-
ically considered network traffic flows, which are further
converted into feature records and then passed to the deep
neural network (DNN) model for IoT botnet attack detection.
Nugraha et al. [32] evaluated the performance of four deep
learning models for botnet attack detection by performing
a couple of experiments. The experimental results revealed
that CNN-LSTM outperformed all deep learning models for
botnet attacks detection.

VOLUME 9, 2021

Parra et al. [33] proposed a distributed deep learning
framework based on cloud computing. Their framework is
designed to detect phishing and IoT botnet attacks. Their
model consists of two machine learning models: (1) a dis-
tributed CNN (DCNN) for detecting URL based attacks
directed to a client’s IoT devices, (2) a recurrent neural
network (RNN) and an LSTM network model for detecting
Botnet attacks at the backend. Pektacs and Acarman [34]
performed botnet detection using deep learning on network
flow traffic. The proposed deep neural network was deployed
to classify the traffic as benign or malicious. For making the
performance of the model better, hidden layers and neurons
are investigated. The proposed model has achieved 99% accu-
racy. Likewise, Ahmed et al. [35] proposed a deep learning
model for botnets attacks detection.

Maeda et al. [36] proposed the botnets attack detection
via deep learning on software-defined network (SDN). For
botnet detection, the authors trained the deep learning model
using the data collected on flow-based traffic from the bot-
nets and then evaluated the detection accuracy. The authors
used a multi-layer perceptron (MLP), a deep learning model,
to detect infected IoT devices. Similarly, Meidan et al. [18]
developed a novel IoT botnet attack detection technique
via deep auto-encoder. For the malicious network traffic,
nine [oT devices were infected with well-known IoT bot-
nets, Mirai and BASHLITE. The authors trained deep auto-
encoders separately for each IoT device on both benign and
attack traffic.

Bovenzi et al. [37] proposed a hybrid two-stage intrusion
detection system (IDS) for the IoT environment. Their pro-
posed approach first detects the anomalies from the network
traffic, while in the second stage they classify the anomalies
into attack classes. The authors used a multi-modal deep auto-
encoder for anomalies detection, while used three machine
learning classifiers to classify anomalies detected in the first
stage. Likewise, Mirsky ez al. [39] also used auto-encoders
and proposed a plug and play network IDS, i.e., Kitsune to
detect anomalies on local network traffic using an unsuper-
vised learning approach. The authors used a self-generated
botnet attack dataset and evaluated the performance in both
online and offline modes. Their proposed solution achieved
good performance comparable to offline anomaly detectors.

Table 2 summarizes the distinctive characteristics of the
works discussed above. It can be observed that most of the
existing botnet detection approaches used traffic flow-based
machine learning approaches for botnet attacks detection.
Moreover, most of these solutions do not perform well on
other datasets due to the diversity of attack patterns [6]. How-
ever, these existing techniques only detect the botnet attack
after the IoT devices get compromised and start performing
malicious activities like DDoS attacks. In order to prevent
the IoT devices from being compromised, in this study,
we propose a two-fold approach that detects the attacker’s
malicious activities at the premature stage (i.e., scanning) of
a botnet attack. Moreover, the proposed two-fold approach is

163415

IEEE Access

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

TABLE 2. A review of some existing botnet detection techniques.

Ref. Dataset Approach Technique Attack Type Pre-attack/
Post-attack
Nguyen et al. [16] IoT-PoT [26] Graph-based PSI graphs, CNN IoT botnet Post-attack
Wang et al. [24] Self-collected Hybrid LOF, K-means Botnet Post-attack
Yassin et al. [25] Self-collected Graph-based Directed graphs Mirai attack Post-attack
Almutairi et al. [27] Self-collected Flow-based NB, DT HTTP, P2P, IRC, DNS Post-attack
Blaise et al. [28] CTU-13 [29] Flow-based LR, RF, SVM, MLP Botnet Post-attack
Soe et al. [30] N-BaloT [18] Flow-based NN, DT, NB Mirai , BASHLITE Both
Sriram et al. [31] N-BaloT [18] Flow-based DNN Mirai , BASHLITE Both
Nugraha et al. [32] CTU-13 [29] Flow-based CNN-LSTM, CNN, LSTM, MLP Botnet Post-attack
Parra et al. [33] N-BaloT [18] Flow-based DCNN, RNN, LSTM Mirai , BASHLITE Both
Pektacs et al. [34] CTU-13 [29] Hybrid NN Botnet Post-attack
Ahmed et al. [35] CTU-13 [29] Flow-based NN Botnet Post-attack
Maeda er al. [36] CTU-13 [29] Flow-based MLP Botnet Post-attack
Meidan et al. [18] N-BaloT [18] Flow-based DAE 10T botnets, Mirai, BASHLITE Post-attack
Bovenzi et al. [37] Bot-IoT [38] Flow-based M2-AE, RF, NB, MLP IoT Botnet Both
Mirsky et al. [39] Self-collected Flow-based AE IoT Botnet Both

Where PSI: Printing String Information, CNN: Convolution Neural Network, LOF: Local Outlier Factor, NB: Naive Bayes, DT: Decision Tree, LR:
Logistic Regression, RF: Random Forest, SVM: Support Vector Machine, MLP: Multi-layer Perceptron, NN: Neaural Network, LSTM: Long-short
Term Memory, DCNN: Distributed CNN, RNN: Recurrent Neural Network, AE: Auto-encoder, DAE: Deep AE, M2-AE: Multi-modal AE

also capable of detecting DDoS attacks if a compromised IoT
device starts performing malicious DDoS activities.

lIl. PRELIMINARIES

A. COMPONENTS OF AN IoT BOTNET

In general, a botnet comprises four components. These com-
ponents include the bot program, zombie device, bot-master
and command and control (C&C) server.

The botnet attack starts with the bot-master, which can
be an attacker itself or an automated program written by
the attacker. The bot-master scans the target IoT devices
connected over the internet. Based on the scanning results, the
bot-master exploits the vulnerable IoT devices and installs a
bot program in vulnerable devices. The bot program estab-
lishes a connection with a bot-master or C&C server to
receive the instructions for performing malicious activities.
A brief description of each component is given in the follow-
ing subsections:

1) BOT PROGRAM

A bot program is a malware installed on an infected device
by an attacker. The bot program resides in the victim IoT
device and establishes a connection with the C&C server or
bot-master to receive the instructions for performing mali-
cious activities like sending spams, performing flooding
attacks [6], [8], etc.

2) ZOMBIE DEVICE
A physical victim device, on which a bot program is installed
by the attacker, is called a zombie device. In the IoT scenario,

163416

these devices include smart cameras, smart TVs, smart
wearables, etc.

3) BOT-MASTER

A bot-master or a bot header is the main controller of a botnet.
It can be a hacker or an automated program controlled by the
hacker to organize the botnet attacks. The bot-master works
as the main operator of a botnet that issues commands to the
C&C server (in client-server architecture) or specific bots (in
peer-to-peer architecture).

4) C&C SERVER

The C&C server is the central computer that controls the
zombie devices based on the control signals received from the
bot-master. The C&C server is not a compulsory component
of every botnet. In the case of a peer-to-peer network, the bot-
master directly sends control signals to zombies.

B. LIFE-CYCLE OF AN IoT BOTNET

The botnet attack is a multi-stage attack [9]. A vulnerable IoT
device passes through five stages to become a bot for per-
forming malicious activities like sending spams, performing
DDoS [9], etc. These stages are also referred as the botnet
life cycle. These stages include scanning, malware injection,
botnet connection, command execution, and maintenance &
up-gradation as shown in Fig. 1. Scanning is the initial stage
of a botnet life cycle in which the attacker collects informa-
tion to proceed with further steps. The information collected
by scanning helps an attacker to exploit the vulnerability
which allows him/her to inject malware into the target device.

VOLUME 9, 2021

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

IEEE Access

Scanning

Life Cycle of an

loT Botnet

Command
Execution

Botnet
Connection

FIGURE 1. Five stages of an loT botnet attack life cycle.

Afterwards, the injected malware establishes the connection
with the bot-master and executes the instructions received
from the bot-master. Finally, the bot-master maintains and
upgrades the infected devices in order to perpetuate the
infection for future use. All these stages are defined in the
following subsections:

1) SCANNING

Scanning is the preliminary step of a botnet life cycle. In this
stage, the attacker/bot-master scans the target network or
target device to collect the initial information about the ser-
vices, protocols, OS, etc. of the target device. The attackers
use different techniques for scanning an IoT network or tar-
get device. Some popular tools used for scanning include:
NMap [40], ZMap [41], Masscan [42], OpenVAS [43], etc.

2) MALWARE INJECTION

Once the attacker collects information about the tar-
get network/device, next he/she applies different exploita-
tion methods to find the vulnerabilities of the target
device/network. The successful exploitation, allows an
attacker to inject the malware into a target device. Besides the
vulnerabilities’ exploitation, the attacker can trap the victim
by sending malware through phishing, email attachments, etc.
The victim unknowingly downloads the malicious software
from the phishing website or email attachments, which helps
the attacker to proceed with further steps. At first, the attacker
installs a shellcode on the victim device. This step is also
called an initial infection. The running shellcode fetches some
more details about the victim device and sends it to a cen-
tral server from where a bot program binary is downloaded
along with some additional configurations. Afterwards, the
bot program is installed with respect to the target device
properties [44], [45]. This step is also called a secondary
injection. When the bot program is installed in the victim
device, it becomes a ‘zombie’ [45].

3) BOTNET CONNECTION
When the bot program starts running, it establishes a commu-
nication channel with the bot-master or C&C server to deem a

VOLUME 9, 2021

valid bot. The initial connection attempts done by the zombie
with the C&C server to receive further commands from the
bot-master are called as rally [45]. When the malware is
injected, it starts executing as per the attacker’s strategy. The
attacker can code the malware to run as a Trojan and run the
malware based on some event. The running malware connects
the target machine with the bot-master, from where it receives
the commands to do further steps.

4) COMMAND EXECUTION

Once an infected device gets connected with a bot-master or
C&C server, it becomes part of a botnet army. Afterwards,
it waits for the C&C server’s commands to perform mali-
cious activities as instructed by the bot-master. This phase
is also called the waiting phase. The malicious activities
include scanning for new bots, sending spams, performing
DoS attacks [6], [8], [46], etc. When many infected devices
are connected with the bot-master, the bot-master sends com-
mands to these infected devices to do flooding/DDoS attacks
on a target server/network.

5) UPGRADATION & MAINTENANCE

A bot program installed in a victim machine needs to be
updated and maintained with time in order to remain unde-
tected in the victim machine. This step has great importance
for an attacker to perpetuate the malware infection so that
the infected machine can be used in future attacks/malicious
activities as well.

The life cycle of a traditional and IoT botnet is similar [5].
The difference is only in target devices. In traditional botnet
attacks, the target of an attacker is to victimize the computers,
servers, etc. while in the case of IoT botnet attacks, the
target of an attacker is to victimize the IoT devices like smart
cameras, smart TVs [5], etc.

IV. PROPOSED METHODOLOGY

In this work, we proposed a novel two-fold machine learning
approach to prevent and detect botnet attacks in [oT networks.
In the first fold, we trained a state-of-the-art deep learn-
ing model, i.e., ResNet-18 [23] for detecting the (pre-attack
stage) scanning activity to protect the IoT network from
botnet attacks. While in the second fold, we trained another
ResNet-18 [23] model for detecting the DDoS attack that
attackers perform after compromising the weakly-secured
IoT devices.

As discussed earlier that the lifecycle of a botnet attack
consists of five stages, i.e., scanning, malware injection,
botnet connection, command execution, and maintenance &
up-gradation. Scanning is the initial premature attack stage
of the botnet attack. The proposed methodology stops an
attacker during the scanning activity so that an attacker cannot
proceed to further attack stages. Thus, the proposed method-
ology prevents botnet attacks by detecting the scanning attack
activity while it detects the botnet attack by identifying the
DDoS attack for both inbound and outbound traffic.

163417

IEEE Access

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

traces (.pcap files)

DATA COLLECTION DATA PROCESSING FEATURE SELECTION ATTACK DETECTION OUTPUT
| A
/—\ g:,
5 Y 4
&P |9
<= A All Features - |2 Normal
28 b <7 |83
o5 Cem N ! I |[rEz 153 |
- - Features Selection —V &P 545 o
- Feat —V i g =
zZh = eature Technique = |38
<zt [=) Extraction = FE
[3) Wireshark Network Scan Attack r ‘% @ [} I
] traces (.pcap files) Dataset Labelling Feature Set 1 el
(Fs-1) = iff
Normal
> 4 Scan
i N DDoS
&P ; o
= All Features ®
x e 8 o (27]
a3 : S N [} &7 184
= I— = Y - asa
2 3 Feature %ﬂ W [Festures Seiection [V 4 S 5:7 Normal
o Extraction Technique 4 =g
Ow & : 3
=¥=) Wireshark Network L -
=] Dataset Labelling & |-
3 L0
L7 i

Feature Set 2
(FS-2)

FIGURE 2. The proposed Two-fold approach to prevent and detect loT botnet attacks.

Each fold of the proposed approach passes through five
major stages for scanning and DDoS attacks detection,
as illustrated in Fig. 2. In the first stage, we generated and
captured the scanning and DDoS attack traffic (in.pcap for-
mat) in order to use it for training the machine learning
models. In the second stage, we converted these network
packet traces (.pcap files) into flows, then extracted the fea-
tures and stored them in.csv files. Further, we labelled the
dataset with labels such as ‘normal’ for benign traffic, ‘scan’
for scanning traffic and ‘DDoS’ for the DDoS attack traffic.
In the third phase, we applied the Logistic Regression (LR)
feature selection technique to optimize the performance of
the machine learning model using minimum unique features.
We used the LR feature selection technique due to its efficient
performance in the existing literature [6], [8], [17]. More-
over, it is fast, simple, and has low complexity as compared
to other feature selection techniques [6], [8], [17]. In the
fourth stage, we trained two ResNet-18 [23] models over
the resultant feature vector, once for scanning and then for
DDoS attack detection. Finally, we test the performance of
the trained machine learning models in order to validate their
performance for real-time attack scenarios.

As discussed earlier that an IoT botnet attack initiates with
the scanning activity and ends at the DDoS attack. Therefore,
the proposed framework consists of two machine learning
models, i.e., one for preventing the IoT botnet attacks while
the other for detecting the DDoS attacks. For preventing the
IoT devices and network from IoT botnet attacks, we trained
the ResNet-18 [23] model on scanning attacks and normal
traffic dataset so that it can prevent the IoT botnet attacks
during the premature attack stage, i.e., scanning stage. Since
this model prevents the IoT botnet attacks by detecting the

163418

scanning attacks performed by the attacker in the premature
attack stage to collect information about the vulnerable IoT
devices, therefore, we called this model as ResNetScan-1
model. On the other hand, in case if an attacker invades the
scanning attack detection model, installs malware on IoT
devices and starts performing DDoS attacks. Then for detect-
ing the DDoS attack performed through the compromised IoT
devices, we trained another ResNet-18 [23] model over the
DDoS attack and normal traffic dataset so that it can detect the
DDoS attack activity. We called this model a ResNetDDoS-1
model.

Finally, we integrated both the ResNetScan-1 and
ResNetDDoS-1 models to classify the incoming network data
as scan, DDoS, or normal as shown in Fig. 2. The following
subsections describe all the steps followed to train and test
the proposed machine learning models for preventing and
detecting IoT botnet attacks.

A. SCANNING ATTACK DETECTION

In the first fold, we trained a ResNet-18 [23] model for
scanning attack detection by following the five steps as men-
tioned previously. These steps are described in the following
sections.

1) DATA COLLECTION

The data collection is the preliminary step of the pro-
posed methodology for scanning attack detection. In this
step, we first analysed some existing techniques and
approaches [47]-[51] that the attackers commonly use
for scanning the IoT network and devices to collect the
information.

VOLUME 9, 2021

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

IEEE Access

Based on the literature review [47]-[51], we selected
eleven different scanning methods that attackers widely use
for gathering information about the vulnerable IoT dur-
ing the premature attack stage. These scanning techniques
include SYN scan, FIN scan, ACK scan, NULL scan, SYN-
ACK scan, FIN-ACK scan, XMAS scan, UDP scan, TCP
Window scan, TCP connect scan, and Banner grabbing
and are performed using three widely used scanning tools,
i.e., Nmap [40], Hping3 [52], and Dmitry [53]. In order to
generate the scan traffic for this work, we performed these
scanning attacks on two of the lab servers using three different
scanning approaches which include horizontal scan, vertical
scan, and box scan. So, atotal (11 x 3) =33 types of scanning
attacks were performed to generate and collect scanning traf-
fic. We performed scanning attacks by installing three widely
used scanning tools, (i.e., Nmap [40], Hping3 [52], and
Dmitry [53]), on an Ubuntu machine with a Core i7 processor
and 8 GB RAM. Afterwards, we write some python scripts to
execute different scanning commands. While performing the
scanning attacks, we captured the network packets into.pcap
files using the Wireshark tool [54]. We call this self-generated
dataset as ScanLab dataset.

Besides generating and collecting the network packets
from our experimental setup, we also obtained scan and
normal traffic samples from three publicly-available datasets
which include CICIDS-19 [55], CICIDS-17 [56] and Bot-
IoT [38] dataset. The scan and normal samples of these
three publicly-available datasets are acquired to compare the
performance of the ResNet-18 [23] model trained over the
ScanLab dataset, with ResNet-18 [23] models trained over
other datasets for scanning attack detection.

2) DATA PRE-PROCESSING

After capturing the scanning traffic, we need to pre-process
the data. In the pre-processing step, we first extracted the
features from the captured.pcap files of the ScanLab dataset
using the CICFlowmeter [57] Tool. The CICFlowmeter [57]
tool reads a given.pcap file and extracts more than 60 flow
features for each flow which is identified based on five-tuple
which include source IP, destination IP, source port, destina-
tion port, and protocol. The details of these features extracted
by CICFlowmeter [57] are given at [58]. The CICFlowme-
ter [57] results a.csv file which consists of the flow features
of a given.pcap file. The resultant data is unlabelled. So based
on the IP addresses used for scanning, we labelled them as
scan while the rest of the network traffic is labelled as normal
traffic.

Similarly, we pre-processed CICIDS-19 [55],
CICIDS-17 [56] and Bot-IoT [38] dataset and labelled the
resultant.csv files with respect to the description of these
datasets. Eventually, we partially integrated the scan attack
samples (by randomly selecting the 50K samples from
these three datasets) with the ScanLab dataset for maxi-
mum attack coverage for better training of machine learning
algorithms.

VOLUME 9, 2021

3) FEATURES SELECTION

Once we extracted the features from all.pcap files, the next
step is to select the useful features that can better help a
machine learning model for distinguishing the normal and
scan traffic. For features selection, we used the LR algorithm
due to its better performance in existing research studies
[6], [8]. So, by using the LR algorithm, we first selected
the top 20 features from each dataset including the ScanLab
dataset and three other selected datasets. Afterwards, we per-
formed a frequency analysis—as done in [6]—of the features
selected by the LR algorithm from the ScanLab dataset and
all three selected datasets.

Based on the frequency analysis of the features selected
by the LR algorithm, we found 15 most frequently selected
features and named them as features set 1 (FS-1) as displayed
in Figure 2 and enlisted in Table 3. The 15 features enlisted in
Table 3 are selected from each dataset in order to use them in
the subsequent stages of scanning attack detection.

4) TRAINING ML MODEL FOR SCAN DETECTION

After selecting the useful features, we split each dataset into
the train, validation, and test set. For this purpose, we ran-
domly selected 60% data for training, 20% data for valida-
tion and 20% data for testing to avoid overfitting and for
efficiently training the ML model. Both the training set and
validation set are used during the training phase. The training
set is used to train the machine learning model. In order to
efficiently train and better optimize the weights of an ML
model, we validate the trained model on the validation set
after each epoch based on which the optimizer algorithm
updates the weights of the ML model. Finally, when the ML
model completes its training, we test its performance over
unseen data, i.e., test set. As mentioned earlier that we used
the ResNet-18 [23] model and first trained it over the train set
of the ScanLab dataset.

Originally, the ResNet-18 [23] model is designed to clas-
sify the image processing and computer vision problems [4]
which consist of images, i.e., high dimensional arrays. So,
before starting the training, we need to convert the data into
high dimensional arrays since the ResNet-18 [23] model
is prone to overfit at low dimension data [4], [59]. There-
fore, we first converted the whole ScanLab dataset into high
dimension arrays of size 15 x 15 x 1 and saved them as
images by following the method described in [4]. Similarly,
we converted the other three datasets into greyscale images
of size 15 x 15 x 1. Furthermore, we also need to mention
the hyperparameters, i.e., learning rate, batch size, number of
epochs, and optimizer. The learning rate controls the updates
of ML model weights based on the estimated error after each
epoch. The epochs tell about the number of iterations for
which an ML model is trained. The batch size divides the
given dataset into small chunks for fast and better training.
While the optimizer set the better attributes of weights of
a neural network to improve the speed and performance
of a machine learning model. So, we set the learning rate

163419

IEEE Access

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

TABLE 3. Top 15 features selected for scanning and DDoS attack
Detection using LR algorithm.

Top 15 Features (FS-1) for
Scanning Attack Detection

Top 15 Features (FS-2) for
DDoS Attack Detection

Total Backward Packets Flow Duration
Fwd Packet Length Min
Fwd Packet Length Mean
Fwd Packet Length Std

Bwd Packet Length Min

Total Length of Fwd Packets
Total Length of Bwd Packets
Total Fwd Packets

Total Backward Packets

Bwd Packet Length Mean Fwd Packet Length Mean
Bwd Packet Length Std Bwd Packet Length Mean
Bwd Header Length Flow Bytes/s

Min Packet Length Flow Packets/s

Max Packet Length Fwd IAT Mean

Packet Length Mean Bwd IAT Mean
Down/Up Ratio Fwd Packets/s

Avg Packet Size Bwd Packets/s

Avg Fwd Segment Size Packet Length Mean

Avg Bwd Segment Size Down/Up Ratio

as 0.01 with batch size 100 with 12 epochs, and selected
stochastic gradient descent (SGD) optimizer.

After setting the hyperparameters, we passed the train-
ing and validation set obtained from the ScanLab dataset
to the ResNet-18 [23] model, and started the training.
After the ResNet-18 [23] model completed the training,
we saved the trained model as ResNetScan-1. The sim-
ilar method was followed to train the ResNet-18 [23]
model over the other three datasets. We saved the resul-
tant models as ResNetScan-2, ResNetScan-3, ResNetScan-4
model obtained after training the ResNet-18 [23] model on
CICIDS-19 [55], CICIDS-17 [56], and Bot-IoT [38] dataset
respectively.

5) TESTING AND AFFIRMATION

Once the trained models are saved, we then test the perfor-
mance of the trained ResNet model over the test set. The test
set consists of samples that are separated before training the
ML model. As the test set is unknown for the trained model,
so in order to check the performance of the trained model
over the test set we evaluated the performance of the trained
model over four commonly used performance metrics. These
performance metrics are described in Section V. The results
of the trained model over the test set for scanning attack
detection are also given Section V.

In order to affirm the effectiveness of the proposed method-
ology, we test the performance of all scan detection mod-
els in four phases. In the first phase, we test the proposed
ResNetScan-1 model over the three datasets that were not
used in its training, i.e., CICIDS-19 [55], CICIDS-17 [56],
and Bot-IoT [38] dataset. Similarly, in the second phase,
we test the ResNetScan-2 model over the three datasets that

163420

were not used in its training, i.e., ScanLab, CICIDS-19 [55],
and Bot-IoT [38] dataset. Likewise, in the remaining phases,
the other two ResNetScan models, i.e., ResNetScan-3 and
ResNetScan-4 are tested over datasets that were not used in
their training. Finally, we compared the performance of all
ResNetScan models on each dataset.

B. DDoS ATTACK DETECTION
In the second fold of the proposed approach, we trained a
ResNet-18 [23] model for DDoS attack detection. As men-
tioned earlier, the DDoS attack detection model is proposed
to detect the DDoS attacks in case if an attacker invades
the scanning attack detection model, installs malware on IoT
devices and starts performing DDoS attacks.

In order to develop the DDoS detection model, we followed
the five steps as mentioned earlier. These steps are described
in the following sections.

1) DATA COLLECTION

Like the scanning attacks, in this step, we first analyzed the
existing DDoS attack techniques that are commonly used by
the attackers to perform DDoS attacks. There exist a vast
literature on DDoS attacks as compared to the scan attacks,
therefore, we reviewed some recent studies [60]-[62] on
DDoS attacks to analyze the DDoS attack types.

Based on the analysis of different DDoS attack techniques,
we performed 60 different types of DDoS attacks which
include all 57 TCP flag based attacks given in Table 4, UDP,
ICMP, and HTTP flooding attacks. All these DDoS attacks
are performed using the Hping3 tool [52]. We write python
scripts that execute different commands of Hping3 [52] to
perform DDoS attacks on two of our Lab servers. While per-
forming the DDoS attacks, we captured the network packets
into.pcap files using the Wireshark tool [54]. We named this
self-generated dataset as the DDoSLab dataset.

Besides generating and collecting the network packets
from our experimental setup, we also obtained DDoS and
normal traffic samples from three publicly-available datasets
which include CICIDS-19 [55], CICIDS-17 [56] and Bot-
10T [38] dataset. These datasets are considered to compare the
performance of the ResNet-18 [23] model trained over self-
generated DDoSLab, with the ResNet-18 [23] model trained
over other datasets for scanning attack detection.

2) DATA PRE-PROCESSING
After capturing the DDoS traffic into.pcap files, we extracted
the features from the captured.pcap files of the DDoSLab
dataset using the CICFlowmeter [57] Tool. Since the
CICFlowmeter [57] results in an unlabelled.csv file which
consists of the flow features of a given.pcap file. So based
on the IP addresses used for the DDoS attack, we labelled
them as DDoS while the rest of the network traffic is labelled
as normal traffic.

Likewise, we pre-processed DDoS and normal traffic of
CICIDS-19 [55], CICIDS-17 [56] and Bot-IoT [38] dataset
and labelled the resultant.csv files with respect to the

VOLUME 9, 2021

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

IEEE Access

TABLE 4. TCP DDosS attack patterns with different flags combination.

1 Flag Patterns 2 Flags Patterns 3 Flags Patterns 4 Flags Patterns 5 Flags Patterns

SYN (S) SP, SR, SA, SE, SU SPU, SFU, SFP, SFR, SRP, | SFRA, SFRU, SFRP, SFAU, | SFRPA, SFRAU, SFRPU,
SRU, SPA, SFA, SAU SFPA, SFPU, SRPU SFPAU, SRPAU

ACK (A) AR, AU, AP AFP, AFR, ARU, APU, AFU AFRP, ARPU, AFPU, AFRU AFRPU

RST (R) RF, RU, RP RPU, RFU, RFP RFPU

URG (U) UP, UF UFP

FIN (F) FA, FP

PSH (P)

description of these datasets. Further, we partially integrated
the DDoS attack samples (by randomly selecting the 50K
samples from these three datasets) with the DDoSLab dataset
for maximum attack coverage for better training of machine
learning algorithms.

3) FEATURES SELECTION

Once the features are extracted and the dataset is labelled,
we then applied the LR algorithm on the labelled dataset
in order to select the useful features that can better help a
machine learning model for distinguishing the normal and
DDoS traffic. So, using the LR algorithm, we first selected
the top 20 features including the DDoSLab dataset and three
other selected datasets. Afterwards, we performed a fre-
quency analysis—as done in [6]—of the features selected
by the LR algorithm from DDoSLab and all three selected
datasets. Finally, based on the frequency analysis of the
features, we found 15 most frequently selected features and
named them as features set 2 (FS-2) as displayed in Figure 2
and enlisted in Table 3 that are selected from DDoSLab and
the other three datasets.

4) TRAINING ML MODEL FOR DDoS DETECTION

After selecting the useful features, we then divided the dataset
into train, validation, and test set. We randomly selected 60%
data for training, 20% data for validation and 20% data for
testing to avoid overfitting and for efficiently training the
ML model. In order to train the ML model over the DDoS
dataset, we selected the ResNet-18 [23] model due to its better
performance in existing research works.

Before starting the training, we converted the whole
DDoSLab dataset into high dimension arrays of size 15 x
15 x 1 and saved them as images by following the method
described in [4]. Similarly, we converted the other three
datasets into greyscale images of size 15 x 15 x 1. Fur-
thermore, we set the values of hyperparameters, i.e., learning
rate as 0.01 with batch size 64, 12 epochs, and selected SGD
optimizer.

After setting the hyperparameters, we first passed the
training and validation set extracted from the DDoSLab
dataset to the ResNet-18 [23] model and started the train-
ing. Once the training is completed, we saved this trained
model as ResNetDDoS-1. Similarly, we trained the three

VOLUME 9, 2021

other ResNet-18 [23] models for other datasets. We saved
the resultant models as ResNetDDoS-2, ResNetDDoS-3,
ResNetDDoS-4 model obtained after training the
ResNet-18 [23] model on CICIDS-19 [55], CICIDS-17 [56],
and Bot-IoT [38] dataset respectively.

5) TESTING AND AFFIRMATION

Once the training of the ResNet-18 [23] model is complete,
we then test the performance of the trained model over the test
set. Since the test set is unknown for the trained model, so in
order to check the performance of the trained model over the
test set, we evaluated the performance of the trained model
over four commonly used performance metrics. These per-
formance metrics are described in Section V. The results of
the trained model over the test set for DDoS attack detection
are also given in Section V.

In order to authenticate the efficiency of the proposed
methodology, we evaluated the predictions of all the trained
models in four phases. In the first phase, we test the proposed
ResNetDDoS-1 model over the three datasets that were not
used in its training, i.e., CICIDS-19 [55], CICIDS-17 [56],
and Bot-IoT [38] dataset. Likewise, we cross-validated the
performance of other saved models over the dataset that were
not during their training. Finally, we compared the perfor-
mance of all ResNetDDoS models on each dataset.

V. RESULTS AND DISCUSSION

A. EXPERIMENTAL SETUP

As mentioned earlier that in this study, we first analysed
the existing scanning and DDoS attacks techniques. Based
on the analysis, we generated 33 types of scanning attacks
traffic and 60 types of DDoS attacks traffic using 3 different
network traffic generator tools, i.e., Nmap [40], Hping3 [52]
and Dmitry [53]. All these tools were installed in a Core i7
machine with 8 GB RAM and having Ubuntu-18 operating
system installed on it.

The generated network traffic was captured using the Wire-
shark tool [54] in.pcap format. After that, we extracted fea-
tures from these.pcap files and performed labelling according
to the IP addresses of the machines used in the experiment.
Afterwards, we applied the feature selection techniques and
split the dataset into train and test set to proceed with the
proposed methodology with further steps as described in

163421

IEEE Access

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

TABLE 5. ResNet-18 model architecture.

Layer Output Size Kernel
convl 112x 112 7x 7, 64, stride 2
3 x 3 max pool, stride 2
conv2 56 x 56 -
3x3, 64
X 2
3x3, 64
3x3, 128
conv3 28 x 28 X 2
3x3, 128
3x3, 256
conv4 14x 14 X 2
3x3, 256
3x3, 512
convS 7x7 X 2
3x3, 512
prediction I1x1 average pool, fc, softmax

Section IV. The proposed two-fold approach detects two
cyber-attacks, i.e., scan attack and DDoS attack. Both of
these attacks have different nature. Similarly, the best fea-
tures resulted from the feature selection are different for both
attacks, as enlisted in Table 3. Therefore, we trained two
ResNet-18 [23] models separately for the better prevention
and detection of IoT botnet attacks.

The ResNet-18 [23] is basically a convolutional network
with eighteen layers which consists of 10 convolution layers
and 8 pooling layers. Table 5 represents the architecture of
the ResNet-18 [23] model used in this work. In total, our
ResNet-18 [23] model had 11,185,666 computational param-
eters out of which 11,176,066 were trainable parameters
while 9600 were non-trainable parameters. In order to train
and test ResNet-18 [23] model for this work, we used Python3
and TensorFlow v2.2 library run over Google Colab environ-
ment. Table 6 enlists the execution time spent while training
and testing the two separate ResNet-18 [23] models in the
proposed two-fold approach. Based on the testing stats shown
in Table 6, it can be verified that the ResNetDDoS-1 model
takes (49.45/63668 =) 776.685 us for testing an image while
the ResNetScan-1 model takes (5.75/12546 =) 458.313 us
for testing an image. So, using a second model induced
1.59 times more delay (while considering the ResNetDDoS-1
as a single primary model) as compared to a single detection
model.

B. PERFORMANCE EVALUATION
The proposed two-fold approach for preventing and detecting
IoT Botnet attacks is evaluated based on the four commonly
used performance parameters. These parameters include pre-
cision, recall, accuracy, and F1-score. These parameters are
defined below. In order to calculate these performance param-
eters, we first define the following terms:

o True Positive (TP): The ML model truly predicted the

attack flow as an attack.

163422

TABLE 6. Time constraints of the proposed Two-fold approach.

Model Dataset Execution Time
ResNetDDoS-1 Training Images: 1,91,006 1884 sec
Testing Images: 63,668 49.45 sec
ResNetScan-1 Training Images: 50,184 368 sec
Testing Images: 12,546 5.75 sec

o True Negative (TN): The ML model truly predicted the

normal flow as normal.

« False Positive (FP): The ML model wrongly predicted

the normal flow as an attack.

« False Negative (FN): The ML model wrongly predicted

the is attack flow as normal.

1) Accuracy: It is defined as the ratio of correctly clas-
sified the attack flows as ‘attack flow’ (i.e., TP) and
normal traffic flows as ‘normal flow’ (i.e., TN). Math-
ematically, it is defined as (1):

TP+ TN
X
TP+ FN + 1N + FP

2) Precision: It tells about how many of the pre-
dicted attack flows were correct. Mathematically, it is
described as (2):

100 (1)

Accuracy =

Precision = x 100 2)

T
TP + FP
3) Recall - It defines the ability of the system to correctly
detect the attack upon the occurrence of the actual
attack. It is also called as sensitivity. Mathematically,
it is expressed as (3):

Recall = x 100 3)

TP + FN

4) F1-Score - Itis defined as the weighted harmonic mean
of precision and recall. Mathematically, it is defined
as (4):

Recall % Precision

F1—Score =2 x — (@)
Recall + Precision

1) TEST SCENARIO 1: WHEN EACH ResNetScan MODEL IS
TRAINED AND TESTED OVER SIMILAR DATASET

Table 7 summarizes the testing results of each ResNetScan
model when tested over the test-set of the similar dataset
on which it was trained for detecting the scanning attack
traffic. The first row of the Table 7 shows the performance
of the ResNetScan-1 model, which is obtained by training
the ResNet-18 [23] model over the train-set extracted from
the ScanLab dataset. When the ResNetScan-1 model is tested
over a similar dataset (i.e., ScanLab dataset) on which it was
trained, it resulted in 99.20% accuracy, 99.39% precision,
99.05% recall, and 99.22% f1-score for classifying the nor-
mal and scanning attack traffic.

VOLUME 9, 2021

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

IEEE Access

TABLE 7. Testing results when each ResNetScan model is trained and tested over the similar dataset for scanning attack detection.

Model Name Trained & Test Over Accuracy Precision Recall F1-Score
ResNetScan-1 ~ ScanLab 99.20 99.39 99.05 99.22
ResNetScan-2 CICIDS-19 [55] 99.91 100 99.83 99.92
ResNetScan-3 CICIDS-17 [56] 99.79 99.95 99.67 99.81
ResNetScan-4 Bot-IoT [38] 98.85 98.95 98.66 98.81
TABLE 8. Testing results when each ResNetScan model cross validated for scanning attack detection.
Testing Model Testing Dataset ~ Accuracy Precision Recall F1-Score
CICIDS-19 [55] 99.91 100.00 99.83 99.92
ResNetScan-1 CICIDS-17 [56] 99.79 99.81 99.81 99.81
Bot-IoT [38] 98.48 98.20 98.67 98.43
Average Results 99.39 99.34 99.44 99.39
ScanLab 66.75 74.51 53.79 62.47
ResNetScan-2 CICIDS-17 [56] 58.81 66.92 51.04 57.91
Bot-IoT [38] 37.67 0.66 0.19 0.30
Average Results 54.41 47.36 35.01 40.23
ScanLab 94.24 99.81 33.63 50.31
ResNetScan-3 CICIDS-19 [55] 47.05 50.00 0.08 0.17
Bot-IoT [38] 51.62 75.00 0.29 0.57
Average Results 64.30 74.94 11.33 17.02
ScanLab 56.53 89.95 17.47 29.26
ResNetScan-4 CICIDS-19 [55] 45.26 2.40 0.08 0.16
CICIDS-17 [56] 44.46 40 0.09 0.19
Average Results 48.75 44.12 5.88 9.87

Similarly, the ResNetScan-2 model is obtained after train-
ing the ResNet-18 [23] model over the CICIDS-19 [55]
dataset. When the ResNetScan-2 is tested over the test-
set of its respective dataset, i.e., CICIDS-19 [55] dataset,
it showed 99.91% accuracy, 100% precision, 99.83% recall,
and 99.92% f1-score for detecting the normal and scanning
attack traffic. Likewise, the performance of other ResNetScan
models for detecting the normal and scanning traffic over
their respective datasets, is shown in Table 7. It can be
observed that all the ResNetScan models performed well with
accuracy, precision, recall, fl-score more than 98% when
trained and tested for scanning attack detection. Overall,
the ResNetScan-2 model outperformed all other models for
correctly classifying the normal and scan traffic, when we
evaluated its performance over the test-set of the similar
dataset on which it was trained.

2) TEST SCENARIO 2: WHEN EACH ResNetScan MODEL IS
TESTED OVER OTHER DATASETS

In this test scenario, we performed experiments to cross-
validate the performance of each ResNetScan model over

VOLUME 9, 2021

the test-set of other datasets. Table 8 displays the results of
all experiments in which we test each ResNetScan model
for normal and scan traffic detection. In the first experi-
ment, we tested the ResNetScan-1 model (obtained after
training the ResNet-18 [23] model over ScanLab dataset)
over the test-set of CICIDS-19 [55], CICIDS-17 [56] and
Bot-IoT [38] datasets. The experimental results manifest that
the ResNetScan-1 model performed predominantly well over
all three datasets for correctly classifying the normal and
scan traffic. On average, the ResNetScan-1 model demon-
strated 99.39% accuracy, 99.34% precision, 99.44% recall,
and 99.39% f1-score which is equivalent to its performance
when trained and tested over a similar dataset.

Similarly, in the second experiment, we tested the per-
formance of the ResNetScan-2 model over the test-set of
ScanLab, CICIDS-17 [56] and Bot-IoT [38] dataset. The
experimental results reveal that on average, the ResNetScan-2
model resulted in 54.41% accuracy, 47.36% precision,
35.01% recall, and 40.23% f1-score as shown in Table 8. As a
whole, the average performance of the ResNetScan-2 model
over the other scan datasets decreased by 45.50%, 52.64%,

163423

IEEE Access

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

Dataset: ScanLab

100 — — — —
90
80
70
60
50
40
30
20
10

0

Accuracy

Precision Recall F1-Score

OResNetScan-1 M ResNetScan-2 M ResNetScan-3

(a)
Dataset: CICIDS-17

100 1] — 1
90
80
70
60
50
40
30
20
10

0

Accuracy

ResNetScan-4

Precision Recall F1-Score

M ResNetScan-2 O ResNetScan-3

()

M ResNetScan-1 ResNetScan-4

Dataset: CICIDS-19

100 —
90
80
70
60
50
40
30
20
10

0

Accuracy

Precision Recall

F1-Score
M ResNetScan-1 [0 ResNetScan-2 ® ResNetScan-3
(b)
Dataset: Bot-loT

100 — = — —

90
80
70
60
50
40
30
20
10
0 — S

Accuracy Precision Recall

ResNetScan-4

F1-Score
M ResNetScan-2 M ResNetScan-3 O ResNetScan-4

(d)

M ResNetScan-1

FIGURE 3. Performance comparison of ResNetScan models on individual dataset. (a) Presents the results with the ScanLab dataset. (b) Presents the
results with the CICIDS-19 dataset. (c) Presents the results with the CICIDS-17. (d) Presents the results with Bot-loT dataset.

64.82%, and 59.69% in case of accuracy, precision, recall,
and fl-score respectively. In a nutshell, the performance of
the ResNetScan-2 model was significantly downgraded as
compared to its performance when trained and tested over a
similar dataset.

In like manner, in the third experiment, we tested
the performance of the ResNetScan-3 model over the
test-set of ScanLab, CICIDS-19 [55] and Bot-IoT [38]
dataset. The experimental results illustrate that on average,
the ResNetScan-3 model demonstrated 64.30% accuracy,
74.94% precision, 11.33% recall, and 17.02% f1-score. These
results indicate that the ResNetScan-3 aptly detected the
normal traffic samples, however, it did not fairly detect the
scan samples due to which the average fl-score drastically
reduced as compared to average precision.

Eventually, in the fourth experiment, we tested the per-
formance of the ResNetScan-4 model over the test-set of
ScanLab, CICIDS-17 [56] and CICIDS-19 [55] dataset. The
experimental results summarized in Table 8 present that the
ResNetScan-4 model exhibited 48.75% accuracy, 44.12%
precision, 5.88% recall, and 9.87% fl-score. These results
also present that the ResNetScan-4 model insufficiently
detected the scan attack samples, owing to which the aver-
age fl-score terrifically decreased as compared to average
precision.

163424

Fig. 3 (a)-(d) compares performance of all ResNetScan
models with respect to each individual dataset. The white
bars with black boundary line in Fig. 3 (a)-(d), presents the
performance of the ResNetScan model which is trained and
tested over a similar dataset while the other bars present the
performance of other ResNetScan models on each dataset.
From Fig. 3 (a)-(d), it can be noticed that the highest per-
formance is achieved when a ResNetScan model is tested
over the test-set of a similar dataset on which it was trained.
However, if we further observe the Fig. 3 (a)-(d), it can
be the proposed ResNetScan model, i.e., the ResNetScan-1
model accomplished the second-highest performance scores
and outperformed all other ResNetScan models with remark-
able accuracy, precision, recall, and fl-score. Thus, the
experimental results prove that the proposed ResNetScan-1
model outperformed all other ResNetScan models when each
ResNetScan model is tested over the dataset on which it was
not trained. In case, an attacker invades the scan detection
stage, compromises an [oT device, and starts performing the
DDoS attack, then the attacker can be detected in the second
stage. Further, if an IoT device or network becomes the victim
of the DDoS attack (i.e., the device is under attack from
outside the network) then the DDoS attack detection model
will detect the inbound DDoS attack to stop the attacker from
performing further damaging the network.

VOLUME 9, 2021

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

IEEE Access

TABLE 9. Testing results when the ResNet model is trained and test over the similar dataset for DDoS attack detection.

Model Name Dataset Accuracy Precision Recall F1-Score
ResNetDDoS-1 DDoSLab 98.57 98.63 98.42 98.52
ResNetDDoS-2 CICIDS-19 [55] 99.49 99.40 99.63 99.52
ResNetDDoS-3 CICIDS-17 [56] 97.49 95.59 92.83 94.19
ResNetDDoS-4 Bot-IoT [38] 99.70 99.58 99.6 99.59

TABLE 10. Testing results when the ResNetDDoS-1 model is test over other datasets for DDoS attack detection.

Testing Model Testing Dataset ~ Accuracy Precision Recall F1-Score
CICIDS-19 [55] 98.99 98.91 99.18 99.04
ResNetDDoS-1 CICIDS-17 [56] 97.95 95.66 94.94 95.30
Bot-IoT [38] 99.16 98.02 99.75 98.88
Average Results 98.70 97.53 97.96 97.74
DDoSLab 70.22 96.67 39.92 56.51
ResNetDDoS-2 CICIDS-17 [56] 78.41 63.01 3.30 6.27
Bot-IoT [38] 68.58 93.56 16.19 27.60
Average Results 72.40 84.41 19.80 30.13
DDoSLab 62.56 94.74 24.07 38.39
ResNetDDoS-3 CICIDS-19 [55] 49.60 81.28 5.27 9.91
Bot-IoT [38] 64.15 70.81 5.26 9.79
Average Results 58.77 82.28 11.53 19.36
DDoSLab 71.75 99.30 42.00 59.03
ResNetDDoS-4 CICIDS-19 [55] 47.53 70.31 0.23 0.44
CICIDS-17 [56] 78.14 56.90 0.65 1.29
Average Results 65.81 75.50 14.29 20.25

3) TEST SCENARIO 3: WHEN EACH ResNetDDoS MODEL IS
TRAINED AND TESTED OVER SIMILAR DATASET

In this scenario, we performed experiments to compare the
performance of each ResNetDDoS model when each ResNet-
DDoS model is tested over the similar dataset on which it was
trained. Table 9 presents the performance of all ResNetDDoS
models for detecting the normal and DDoS attack traffic when
each ResNetDDoS model is tested over the similar dataset on
which it was trained. The first row of Table 9 displays the per-
formance of the ResNetDDoS-1 model, which is obtained by
training the ResNet-18 [23] model over the train-set extracted
from the DDoSLab dataset. When the ResNetDDoS-1 model
is tested over a similar dataset (i.e., DDoSLab dataset) on
which it was trained, it resulted in 98.57% accuracy, 98.63%
precision, 98.42% recall, and 98.52% f1-score for classifying
the normal and DDoS attack traffic.

Similarly, the ResNetDDoS-2 model is obtained after
training the ResNet-18 [23] model over the
CICIDS-19 [55] dataset. The ResNetDDoS-2 showed
99.49% accuracy, 99.40% precision, 99.63% recall, and

VOLUME 9, 2021

99.52% f1-score for detecting the normal and scanning attack
traffic when it is tested over the test-set of its respective
dataset, i.e., CICIDS-19 [55] dataset. Likewise, the perfor-
mance of other ResNetDDoS models for detecting the normal
and DDoS traffic over their respective datasets, is shown in
Table 9. It can be noticed that all the ResNetDDoS models
performed well with accuracy, precision, recall, fl-score.
Overall, the ResNetDDoS-2 model outperformed all other
models for correctly classifying the normal and DDoS traffic,
when we evaluated its performance over the test-set of the
similar dataset on which it was trained.

4) TEST SCENARIO 4: WHEN EACH ResNetDDoS MODEL IS
TESTED OVER OTHER DATASETS

In this test scenario, we performed experiments to cross-
validate the performance of each ResNetDDoS model over
the test-set of other datasets. Table 10 summarizes the
results of all experiments in which we test each ResNet-
DDoS model for normal and DDoS attack traffic detec-
tion. In the first experiment, we tested the ResNetDDoS-1

163425

IEEE Access

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

Dataset: DDoSLab

100 — — — —
90
80
70
60
50
40
30

20
10
0

Accuracy

Precision Recall F1-Score

OResnetDDoS-1 ~ m ResnetDDoS-2 M ResnetDDoS-3
(@)
Dataset: CICIDS-17

90] M]
80
70
60
50
40
30
20
10
o - ||

F1-Score

ResnetDDoS-4

Accuracy Precision Recall

M ResnetDDoS-1 M ResnetDDoS-2 O ResnetDDoS-3
(c)

ResnetDDoS-4

Dataset: CICIDS-19

100 —/ — — —

90
80
70
60
50
40
30
20
10
° - B
Accuracy Precision Recall F1-Score
B ResnetDDoS-1 O ResnetDDoS-2 ® ResnetDDoS-3 ResnetDDoS-4
(b)
Dataset: Bot-loT
100 — — — —
90
80
70
60
50
40
30
20 I
10 l
° - R

Accuracy Precision Recall F1-Score

M ResnetDDoS-1 M ResnetDDoS-2
(d)

B ResnetDDoS-3 O ResnetDDoS-4

FIGURE 4. Performance comparison of ResNetDDoS models on individual dataset. (a) Presents the results with the ScanLab dataset. (b) Presents the
results with the CICIDS-19 dataset. (c) Presents the results with the CICIDS-17. (d) Presents the results with Bot-loT dataset.

model (obtained after training the ResNet-18 [23] model
over the DDoSLab dataset) over the test-set of CICIDS-
19 [55], CICIDS-17 [56] and Bot-IoT [38] datasets. The
experimental results manifest that the ResNetDDoS-1 model
performed predominantly well over all three datasets for
correctly classifying the normal and DDoS attack traffic.
On average, the ResNetDDoS-1 model manifested 98.70%
accuracy, 97.53% precision, 97.96% recall, and 97.74%
fl-score which is equivalent to its performance when trained
and tested over the similar dataset.

Likewise, in the second experiment, we tested the perfor-
mance of the ResNetDDoS-2 model over the test-set of Scan-
Lab, CICIDS-17 [56] and Bot-IoT [38] dataset. The exper-
imental results showed that on average, the ResNetScan-2
model resulted in 72.40% accuracy, 84.41% precision,
19.80% recall, and 30.13% f1-score as shown in Table 10.
As a whole, the average performance of the ResNetScan-2
model over the other DDoS datasets decreased by 27.09%,
14.99%, 79.83%, and 69.39% in case of accuracy, precision,
recall, and fl-score respectively. In summary, the perfor-
mance of the ResNetScan-2 model was significantly down-
graded as compared to its performance when trained and
tested over a similar dataset.

In the same way, in the third experiment, we tested
the performance of the ResNetDDoS-3 model over the
test-set of ScanLab, CICIDS-19 [55] and Bot-IoT [38]
dataset. The experimental results illustrate that on average,

163426

the ResNetDDoS-3 model demonstrated 58.77% accuracy,
82.28% precision, 11.53% recall, and 19.36% f1-score. These
results indicate that the ResNetDDoS-3 fairly detected the
normal traffic samples, however, it did not fairly detect the
DDosS traffic due to which the average fl-score drastically
reduced as compared to average precision.

Finally, in the fourth experiment, we tested the perfor-
mance of the ResNetDDoS-4 model over the test-set of
ScanLab, CICIDS-17 [56] and CICIDS-19 [55] dataset. The
experimental results summarized in Table 10 present that the
ResNetDDoS-4 model illustrated 65.81% accuracy, 75.50%
precision, 14.29% recall, and 20.25% f1-score. These results
also present that the ResNetDDoS-4 model insufficiently
detected the DDoS attack samples, owing to which the aver-
age Fl-score crucially decreased as compared to average
precision.

Fig. 4 (a)-(d) compares performance of all ResNetDDoS
models with respect to each individual dataset. The white
bars with black boundary line in Fig. 4 (a)-(d), presents the
performance of the ResNetDDoS model which is trained and
tested over a similar dataset while the other bars present
the performance of other ResNetDDoS models on each
dataset. From Fig. 4 (a)-(d), it can be noticed that the highest
performance is achieved when a ResNetDDoS model is tested
over the test-set of the similar dataset on which it was
trained. However, if we further observe the Fig. 4 (a)-(d),
it can be inferred that the proposed ResNetDDoS model,

VOLUME 9, 2021

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

IEEE Access

90

80

70

60

50

40

30

20

10 I
.]

Avg. Accuracy Avg. Precision Avg. Recall Avg. F1-Score

(a) B ResnetScan-1 M ResnetScan-2 M ResnetScan-3 ResnetScan-4

100

0 ‘ll ‘ll ‘Il |II

Avg. Accuracy

BN Wb U N WO
o O © O O o o o o

Avg. Precision Avg. Recall Avg. F1-Score

(b) M ResnetDDoS-1 M ResnetDDoS-2 M ResnetDDoS-3 ResnetDDoS-4

FIGURE 5. Average performance comparison of all (a) ResNetScan and (b) ResNetDDoS models when tested over other datasets that were not used while

training.

100

90
80
70
60
50 2 d 2 :
40
30
20
10
0

Accuracy

98.89
99.01
98.74
98.87

Precision Recall F1-Score

FIGURE 6. Overall performance of the proposed Two-Fold machine
learning approach to prevent and detect loT botnet attacks.

i.e., ResNetDDoS-1 model accomplished the second-highest
performance scores and outperformed all other ResNetD-
DoS models with remarkable accuracy, precision, recall, and
fl-score. Thus, the experimental results prove that the pro-
posed ResNetDDoS-1 model outperformed all other ResNet-
DDoS models when each ResNetDDoS model is tested over
the dataset on which it was not trained.

The experimental results of all the above experiments per-
formed in four test scenarios reveal that all the ResNetScan
and ResNetDDoS models efficiently detect the scan and
DDoS attack when they are tested over the test-set of a
similar dataset on which they were trained. However, the
performance of all ResNetScan and ResNetDDoS models
except ResNetScan-1 and ResNetDDoS-1 model crucially
reduced when these models are tested over the test-set of
other datasets on which they were not trained. Fig. 5 (a)-(b)
illustrates the average performance of all ResNetScan and
ResNetDDoS models over the test-set of other datasets on
which they were not trained. It can be easily perceived that
the average performance of both the proposed ResNetScan-1
and ResNetDDoS-1 models persisted highest as compared
to all other models. Hence, the proposed ResNetScan-1 and
ResNetDDoS-1 models outperformed all others for detecting
scan and DDoS attacks. Overall, the proposed two-fold
approach manifested 98.89% accuracy, 99.01% precision,
98.74% recall, and 98.87% fl1-score to prevent and detect

VOLUME 9, 2021

IoT botnet attacks as displayed in Fig. 6. The testing results
and comparative analysis of the proposed two-fold approach
on both self-generated datasets and three publicly-available
datasets affirm that the proposed two-fold approach is effi-
cient and robust to prevent and detect IoT botnet attacks with
large attack patterns coverage.

VI. CONCLUSION

In this work, we proposed a two-fold machine learning
approach to prevent and detect IoT botnet attacks. In the
first fold, we trained a state-of-the-art deep learning model,
i.e., ResNet-18 for scanning attack detection, and named it
ResNetScan-1 model. While in the second fold, we trained
another ResNet-18 model (named as ResNetDDoS-1 model)
in order to detect the DDoS attack in case if the scanning
detection model fails to prevent a botnet attack. In order to
authenticate the performance of the proposed ResNetScan-1
model and ResNetDDoS-1 model, we performed a couple
of experiments in which we take the scan and DDoS traffic
samples from three publicly-available datasets, trained the
ResNet-18 model over these datasets, and saved the resultant
ResNetScan and ResNetDDoS models. We then tested each
resultant ResNetScan and ResNetDDoS model over the test-
set of other datasets on which they were not trained. The
experimental results revealed that the performance of all
ResNetScan and ResNetDDoS models except the proposed
ResNetScan-1 and ResNetDDoS-1 model crucially reduced
when tested over the datasets on which they were not trained.
Furthermore, the experimental results proved that the pro-
posed ResNetScan-1 and ResNetDDoS-1 models persisted
in their performance and outperformed all other models for
detecting the scan and DDoS attacks. Hence, the proposed
two-fold approach is efficient and robust to prevent and detect
IoT botnet attacks with a large attack patterns coverage.

The current work only covers 33 types of scanning
and 60 types of DDoS attacks. In future, we aim to cover more
scanning and DDoS attacks techniques in order to well train
the proposed framework for more efficient prevention and
detection of IoT botnet and DDoS attacks. Further, we can
deploy the proposed two-fold approach in an IDS to investi-
gate its effectiveness on live network traffic.

163427

IEEE Access

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

ACKNOWLEDGMENT

This work was supported in part by the Centro de Com-
peténcias em Cloud Computing (C4) under Grant Operacao
Centro-01-0145-FEDER-000019, in part by the Programa
Operacional Regional do Centro (CENTRO 2020) through
the Sistema de Apoio a Investigacdo Cientica e Tecnoldg-
icaProgramas Integrados de IC&DT, in part by FCT/MEC
through national funds, in part by FEDERPT2020 Partnership
Agreement under Project UIDB/50008/2020, and in part by
the Al-Khwarizmi Institute of Computer Science (KICS),
University of Engineering and Technology Lahore (UET),
Lahore, Pakistan. This article is based upon work from
COST Action IC1303—-AAPELE-Architectures, Algorithms
and Protocols for Enhanced Living Environments and COST
Action CA16226-SHELD-ON-Indoor living space improve-
ment: Smart Habitat for the Elderly, supported by COST
(European Cooperation in Science and Technology) (More
information in www.cost.eu).

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]
[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

I. Ali, A. 1. A. Ahmed, A. Almogren, M. A. Raza, S. A. Shah, A. Khan, and
A. Gani, “Systematic literature review on IoT-based botnet attack,” IEEE
Access, vol. 8, pp. 212220-212232, 2020.

S. Ghazanfar, F. Hussain, A. U. Rehman, U. U. Fayyaz, F. Shahzad,
and G. A. Shah, “IoT-Flock: An open-source framework for IoT traffic
generation,” in Proc. Int. Conf. Emerg. Trends Smart Technol. (ICETST),
Mar. 2020, pp. 1-6.

M. Safaei Pour, A. Mangino, K. Friday, M. Rathbun, E. Bou-Harb, F. Igbal,
S. Samtani, J. Crichigno, and N. Ghani, “On data-driven curation, learning,
and analysis for inferring evolving Internet-of-Things (IoT) botnets in the
wild,” Comput. Secur., vol. 91, Apr. 2020, Art. no. 101707.

F. Hussain, S. G. Abbas, M. Husnain, U. U. Fayyaz, F. Shahzad, and
G. A. Shah, “IoT DoS and DDoS attack detection using ResNet,” in Proc.
IEEE 23rd Int. Multitopic Conf. (INMIC), Nov. 2020, pp. 1-6.

S. Dange and M. Chatterjee, “IoT botnet: The largest threat to the IoT
network,” in Data Communication and Networks. Singapore: Springer,
2020, pp. 137-157.

F. Hussain, S. G. Abbas, U. U. Fayyaz, G. A. Shah, A. Togeer, and A. Ali,
“Towards a universal features set for IoT botnet attacks detection,”” in Proc.
IEEE 23rd Int. Multitopic Conf. (INMIC), Nov. 2020, pp. 1-6.

A. O. Prokofiev, Y. S. Smirnova, and V. A. Surov, “A method to detect
Internet of Things botnets,” in Proc. IEEE Conf. Russian Young Res. Electr.
Electron. Eng. (EIConRus), Jan. 2018, pp. 105-108.

B. K. Dedeturk and B. Akay, “Spam filtering using a logistic regression
model trained by an artificial bee colony algorithm,” Appl. Soft Comput.,
vol. 91, Jun. 2020, Art. no. 106229.

N. Vlajic and D. Zhou, “IoT as a land of opportunity for DDoS hackers,”
Computer, vol. 51, no. 7, pp. 26-34, 2018.

GitHub Survived Biggest DDoS Attack Ever Recorded. Accessed:
May 3, 2021. [Online]. Available: https://github.blog/2018-03-01-ddos-
incident-report/

AWS Said it Mitigated a 2.3 Tbps DDoS Attack, Largest Ever. Accessed:
May 3, 2021. [Online]. Available: https://www.zdnet.com/article/aws-
said-it-mitigated-a-2-3-tbps-ddos-attack-the-largest-ever/

Shodan. Accessed: May 3, 2021. [Online]. Available: https://www.
shodan.io/

Censys. Accessed: May 3, 2021. [Online]. Available: https://censys.io/

C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80-84, 2017.

R. Hallman, J. Bryan, G. Palavicini, J. Divita, and J. Romero-Mariona,
“TIoDDoS—The internet of distributed denial of sevice attacks,” in
Proc. 2nd Int. Conf. Internet Things, Big Data Secur. Settibal, Portugal:
SciTePress, 2017, pp. 47-58.

H.-T. Nguyen, Q.-D. Ngo, and V.-H. Le, “A novel graph-based approach
for IoT botnet detection,” Int. J. Inf. Secur., vol. 19, no. 5, pp. 567-577,
Oct. 2020.

F. Hussain, S. G. Abbas, G. A. Shah, I. M. Pires, U. U. Fayyaz, F. Shahzad,
N. M. Garcia, and E. Zdravevski, “A framework for malicious traffic
detection in IoT healthcare environment,” Sensors, vol. 21, no. 9, p. 3025,
Apr. 2021.

163428

(18]

[19]

(20]

[21]

[22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

(40]
[41]

Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai,
D. Breitenbacher, and Y. Elovici, ‘“N-BaloT—Network-based detection
of IoT botnet attacks using deep autoencoders,” IEEE Pervasive Comput.,
vol. 17, no. 3, pp. 12-22, Jul./Sep. 2018.

H. Hindy, D. Brosset, E. Bayne, A. Seeam, C. Tachtatzis, R. Atkinson,
and X. Bellekens, “A taxonomy and survey of intrusion detection system
design techniques, network threats and datasets,” 2018, arXiv:1806.03517.
L. Le Jeune, T. Goedemé, and N. Mentens, ‘“Machine learning for
misuse-based network intrusion detection: Overview, unified evalua-
tion and feature choice comparison framework,” IEEE Access, vol. 9,
pp. 63995-64015, 2021.

C. Kim, M. Jang, S. Seo, K. Park, and P. Kang, “Intrusion detection based
on sequential information preserving log embedding methods and anomaly
detection algorithms,” IEEE Access, vol. 9, pp. 58088-58101, 2021.

V. T. Alaparthy and S. D. Morgera, “A multi-level intrusion detection
system for wireless sensor networks based on immune theory,” IEEE
Access, vol. 6, pp. 47364-47373, 2018.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

W. Wang, Y. Shang, Y. He, Y. Li, and J. Liu, “BotMark: Automated
botnet detection with hybrid analysis of flow-based and graph-based traffic
behaviors,” Inf. Sci., vol. 511, no. 2, pp. 284-296, Feb. 2020.

W. Yassin, R. Abdullah, M. F. Abdollah, Z. Mas’ud, and F. A. Bakhari,
“AnIoT botnet prediction model using frequency based dependency graph:
Proof-of-concept,” in Proc. 7th Int. Conf. Inf. Technol., IoT Smart City,
Dec. 2019, pp. 344-352.

Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “IoTPOT: A novel honeypot for revealing current IoT threats,”
J. Inf. Process., vol. 24, no. 3, pp. 522-533, 2016.

S. Almutairi, S. Mahfoudh, S. Almutairi, and J. S. Alowibdi, “Hybrid
botnet detection based on host and network analysis,” J. Comput. Netw.
Commun., vol. 2020, pp. 1-16, Jan. 2020.

A. Blaise, M. Bouet, V. Conan, and S. Secci, “Botnet fingerprinting: A
frequency distributions scheme for lightweight bot detection,” IEEE Trans.
Netw. Service Manage., vol. 17, no. 3, pp. 1701-1714, Sep. 2020.

S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical compari-
son of botnet detection methods,” Comput. Secur., vol. 45, pp. 100-123,
Sep. 2014.

Y. N. Soe, Y. Feng, P. I. Santosa, R. Hartanto, and K. Sakurai, “Machine
learning-based IoT-botnet attack detection with sequential architecture,”
Sensors, vol. 20, no. 16, p. 4372, Aug. 2020.

S. Sriram, R. Vinayakumar, M. Alazab, and K. Soman, “Network flow
based IoT botnet attack detection using deep learning,” in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Jul. 2020,
pp. 189-194.

B. Nugraha, A. Nambiar, and T. Bauschert, ‘‘Performance evaluation of
botnet detection using deep learning techniques,” in Proc. 11th Int. Conf.
Netw. Future (NoF), Oct. 2020, pp. 141-149.

G. De La Torre Parra, P. Rad, K.-K.-R. Choo, and N. Beebe, ““‘Detecting
Internet of Things attacks using distributed deep learning,” J. Netw. Com-
put. Appl., vol. 163, Aug. 2020, Art. no. 102662.

A. Pektas and T. Acarman, “Botnet detection based on network flow
summary and deep learning,” Int. J. Netw. Manage., vol. 28, no. 6, p. €2039,
Nov. 2018.

A. A. Ahmed, W. A. Jabbar, A. S. Sadiq, and H. Patel, “Deep
learning-based classification model for botnet attack detection,” J. Ambi-
ent Intell. Hum. Comput., pp. 1-10, Mar. 2020. [Online]. Available:
https://link.springer.com/article/10.1007/s12652-020-01848-9

S. Maeda, A. Kanai, S. Tanimoto, T. Hatashima, and K. Ohkubo, ‘A botnet
detection method on SDN using deep learning,” in Proc. IEEE Int. Conf.
Consum. Electron. (ICCE), Jan. 2019, pp. 1-6.

G. Bovenzi, G. Aceto, D. Ciuonzo, V. Persico, and A. Pescapé, “‘A hierar-
chical hybrid intrusion detection approach in IoT scenarios,” in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2020, pp. 1-7.

N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the
development of realistic botnet dataset in the Internet of Things for network
forensic analytics: Bot-IoT dataset,” Future Gener. Comput. Syst., vol. 100,
pp- 779-796, Nov. 2019.

Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,” 2018,
arXiv:1802.09089.

NMAP. Accessed: May 3, 2021. [Online]. Available: https://nmap.org/
ZMap. Accessed: May 3, 2021. [Online]. Available: https://github.
com/zmap/zmap

VOLUME 9, 2021

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

IEEE Access

[42] MASSCAN. Accessed: May 3, 2021. [Online]. Available: https://github.
com/robertdavidgraham/masscan

[43] OpenVAS. Accessed: May 3, 2021. [Online]. Available: https://www.
openvas.org/

[44] S. Gaonkar, N. F. Dessai, J. Costa, A. Borkar, S. Aswale, and
P. Shetgaonkar, ““A survey on botnet detection techniques,” in Proc. Int.
Conf. Emerg. Trends Inf. Technol. Eng. (ic-ETITE), Feb. 2020, pp. 1-6.

[45] D. Acarali, M. Rajarajan, N. Komninos, and I. Herwono, “Survey of
approaches and features for the identification of HTTP-based botnet traf-
fic,” J. Netw. Comput. Appl., vol. 76, pp. 1-15, Dec. 2016.

[46] S. Sikkanan and M. Kasthuri, “Denial-of-service and botnet analysis,
detection, and mitigation,” in Forensic Investigations and Risk Manage-
ment in Mobile and Wireless Communications. Hershey, PA, USA: IGI
Global, 2020, pp. 114-151.

[47] M. U. Nisa and K. Kifayat, “Detection of slow port scanning attacks,” in
Proc. Int. Conf. Cyber Warfare Secur. (ICCWS), Oct. 2020, pp. 1-7.

[48] F. Tang, Y. Kawamoto, N. Kato, K. Yano, and Y. Suzuki, “Probe delay
based adaptive port scanning for IoT devices with private IP address behind
NAT,” IEEE Netw., vol. 34, no. 2, pp. 195-201, Mar. 2020.

[49] C. Yuan,J. Du, M. Yue, and T. Ma, “The design of large scale IP address
and port scanning tool,” Sensors, vol. 20, no. 16, p. 4423, Aug. 2020.

[50] S.Lee, S.-Y. Im, S.-H. Shin, B.-H. Roh, and C. Lee, “Implementation and
vulnerability test of stealth port scanning attacks using ZMap of Censys
engine,” in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC),
Oct. 2016, pp. 681-683.

[51] E. V. Ananin, A. V. Nikishova, and I. S. Kozhevnikova, “Port scanning
detection based on anomalies,” in Proc. Dyn. Syst., Mech. Mach. (Dynam-
ics), Nov. 2017, pp. 1-5.

[52] hping3. Accessed: May 3, 2021. [Online]. Available: https://tools.kali.org/
information-gathering/hping3

[53] DMitry. Accessed: May 3, 2021. [Online]. Available: https://tools.kali.org/
information-gathering/dmitry

[54] L. Chappell, Wireshark Network Analysis. San Jose, CA, USA: Podbooks,
2012.

[55] 1. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Developing
realistic distributed denial of service (DDoS) attack dataset and taxon-
omy,” in Proc. Int. Carnahan Conf. Secur. Technol. (ICCST), Oct. 2019,
pp. 1-8.

[56] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward generat-
ing a new intrusion detection dataset and intrusion traffic characterization,”
in Proc. ICISSP, 2018, pp. 108-116.

[57] CICFlowmeter. Accessed: May 3, 2021. [Online]. Available:
https://github.com/ahlashkari/CICFlowMeter

[58] Network Traffic Flow Analyzer. Accessed: May 3, 2021. [Online]. Avail-
able: http://www.netflowmeter.ca/netflowmeter.html

[59] Y. Xiao and X. Xiao, “An intrusion detection system based on a simplified
residual network,” Information, vol. 10, no. 11, p. 356, Nov. 2019.

[60] R. Vishwakarma and A. K. Jain, “A survey of DDoS attacking techniques
and defence mechanisms in the IoT network,” Telecommun. Syst., vol. 73,
no. 1, pp. 3-25, Jan. 2020.

[61] M. M. Salim, S. Rathore, and J. H. Park, “Distributed denial of service
attacks and its defenses in [oT: A survey,” J. Supercomput., vol. 76, no. 7,
pp- 5320-5363, 2020.

[62] M. De Donno, N. Dragoni, A. Giaretta, and A. Spognardi, ‘““DDoS-capable
IoT malwares: Comparative analysis and mirai investigation,” Secur. Com-
mun. Netw., vol. 2018, pp. 1-30, 2018.

FAISAL HUSSAIN received the B.Sc. and M.Sc.
degrees in computer engineering from the Uni-
versity of Engineering and Technology (UET),
Taxila, Pakistan, in 2016 and 2018, respectively.
He is currently working as a Senior Research
Officer with the Al-Khawarizmi Institute of Com-
puter Science (KICS), UET, Lahore, Pakistan. His
research interests include the Internet of Things
(IoT), the IoT security, wearable sensors, signal
processing, human activity and emotion recogni-
tion, pervasive and ubiquitous computing, embedded systems, biomedical
engineering, machine learning, neural networks, and data analysis.

VOLUME 9, 2021

SYED GHAZANFAR ABBAS received the mas-
ter’s degree from the Department of Computer
Science, National University of Computer and
Emerging Sciences (FAST), Lahore, Pakistan,
in 2019. He is currently serving as a Senior
Research Associate and the Team Lead with the
IoT Laboratory, Al-Khawarizmi Institute of Com-
puter Sciences (KICS), UET, Lahore. His research
interests include the Internet of Things (IoT) and
industry 4.0, machine learning, and cyber security.

IVAN MIGUEL PIRES was born in Penha Garcia,
Castelo Branco, Portugal, in 1989. He received the
B.Sc. degree in computer science and engineering
from the Polytechnic Institute of Castelo Branco,
Castelo Branco, in 2010, the M.Sc. degree in com-
puter science and engineering from the Universi-
dade da Beira Interior (UBI), Covilha, Portugal,
in 2012, and the European Ph.D. degree in com-
puter science and engineering from UBI.

From February 2019 to September 2019, he fre-
quented a Postdoctoral Fellowship at the Cloud Computing Competence
Centre (C4), Universidade da Beira Interior, related to passing cloud. The
subject was conveyed to sensors embedded on mobile devices to monitor traf-
fic warning situations by car. From October 2019 to September 2021, he was
an Invited Adjunct Professor with the Polytechnic Institute of Viseu, Viseu,
Portugal. He is currently an Invited Assistant Professor with the University
of Tras-os-Montes e Alto Douro, Vila Real, Portugal. His main research
interests include the use of sensors available in off-the-shelf mobile devices
for different purposes, including medicine and sports, and the application of
data fusion and data classification techniques of the data acquired from the
different sensors.

SABEEHA TANVEER received the B.S. degree in
computer science from The University of Lahore
(UOL), Lahore, Pakistan, in 2018, and the M.S.
degree in computer science from the National
University of Computer and Emerging Sciences
(FAST), Lahore, in 2020.

She is currently working as a Research Offi-
cer with the Al-Khawarizmi Institute of Computer
Sciences (KICS), UET, Lahore. Her areas of inter-
ests include the IoT, the IoT security, machine
learning, and deep learning.

UBAID U. FAYYAZ received the B.S. degree
in electrical engineering from the University of
Engineering and Technology, Lahore, Pakistan,
in 2005, and the M.S. and Ph.D. degrees in electri-
cal engineering from the Georgia Institute of Tech-
nology, GA, USA, in 2013 and 2016, respectively.

From 2006 to 2009, he worked with the Center
for Advance Research in Engineering (CARE),

e 4 ﬁ Islamabad, Pakistan, where he was responsible for
Ea the algorithm design and FPGA-based implemen-
tations of communication systems. He is currently working as an Assis-
tant Professor with the Electrical Engineering Department, University of
Engineering and Technology. His current research interests include coding
theory, information theory, and signal processing. He was a recipient of the
William J. Fulbright, the Water and Power Development Authority Pakistan,
and the National Talent Scholarships.

163429

IEEE Access

F. Hussain et al.: Two-Fold Machine Learning Approach to Prevent and Detect loT Botnet Attacks

NUNO M. GARCIA received the B.Sc. degree
(Hons.) in mathematics/informatics (for five
years) and the Ph.D. degree in computer science
engineering from the Universidade da Beira Inte-
rior (UBI), Covilha, Portugal, in 2004 and 2008,
respectively.

He has been an Invited Associate Professor
with Universidade Luséfona de Humanidades e
Tecnologias, Lisbon, Portugal, since 2010. He has
also been an Associate Professor with Habilitation
at the Computer Science Department, UBI, member of the department, since
2012. His main research interests include next-generation networks, predic-
tive algorithms for healthcare and well-being, distributed and cooperative
algorithms, and the battle for a free and open internet.

GHALIB A. SHAH received the Ph.D. degree in
computer engineering from Middle East Technical
University, Ankara, Turkey, in 2007.

He started his academic career at the Col-
lege of Electrical and Mechanical Engineering,
National University of Sciences and Technol-
ogy, Islamabad, Pakistan, as an Assistant Profes-
L sor, in 2007, and served for three years. He has
; 1%" also been with the School of Computer Science,

Y 4 Australian National University, as a Visiting Fel-
low, from 2009 to 2010. Later, he moved to the Center for Advanced
Research in Engineering (CARE), Islamabad, as a member of technical
staff and led various networking projects for one year. He then joined the
Next Generation Wireless Networks Laboratory, Koc University, Istanbul,
as a Research Fellow, and produced significant research publications in well
reputed conferences and journals. He joined the Al-Khawarizmi Institute of
Computer Science (KICS), UET, Lahore, Pakistan, in 2012, and established
the Internet of Things (IoT) Laboratory, where he received many research
grants from the HEC Pakistan and the ICT Research and Development Fund.
Currently, several IoT and cyber-security related projects are in progress at
his laboratory. He is currently a Professor and the Sultan Qaboos IT Co-Chair
with KICS. He has over 15 years experience in research and development.
His research interests include wireless networking protocols for cognitive
radio networks, multimedia communication, the IoT, and the IoT security.

163430

FARRUKH SHAHZAD received the B.C.S.
degree (Hons.) from Hamdard University, Karachi,
Pakistan, in 1999, the M.S. degree in computer
engineering (CE) from the University of Engineer-
ing and Technology, Taxila, Pakistan, in 2006, and
the Ph.D. degree in electrical engineering (EE)
from the National University of Computer and
Emerging Sciences (FAST-NUCES), Islamabad,
Pakistan, in 2014.

In 2000, he joined Elixir Technologies Pvt. Ltd.,
Pakistan, as a Software Engineer and worked in the areas of enterprise
database applications and printing streams-based applications for heavy
duty printers. From 2004 to 2008, he worked as the Team Lead and a
Software Architect with Interactive Group Pvt. Ltd., Pakistan, in the area of
multimedia applications design and development. In 2008, he joined the Next
Generation Intelligent Networks Research Center (nexGIN RC), Islamabad,
as the Project Manager, a Software Architect, and a Researcher. He is
currently working as a Principal Researcher with Ebryx (Pvt.) Ltd., Pakistan,
and also a Researcher with the Al-Khawarizmi Institute of Computer Science
(KICS), UET, Lahore, Pakistan. His research interests include cyber secu-
rity, non-signature base, intelligent and self-healing security solutions for
smart phones and desktop operating systems, data mining, and evolutionary
algorithms.

VOLUME 9, 2021

