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ABSTRACT Since theMirai botnet attacks in 2016 research into the Internet of Things (IoT) botnet malware
has increased substantially. IoT botnet relevant threats continue to rise, impacting businesses and users. This
paper aims to contribute to the problem space by compiling and synthesizing the relevant literature over
the last five years to provide an overview of the most recent advances in IoT botnets, their detection and
prevention, and laying down the future research directions required to better address this ever growing threat.

INDEX TERMS Internet of Things, botnet, IoT botnet detection, IoT botnet survey, malware.

I. INTRODUCTION
As computing has become more miniaturized over time,
smaller devices could be attached to networks. This started
as industrial control systems, in areas such as electricity
generation and distribution, and water treatment and pump-
ing, with physical devices such as pumps or relays being
actuated remotely. As prices dropped in the 2010’s, small
devices started to appear in the homes of wealthy countries
as convenience devices. This included programmable space
heaters, lighting, and air conditioning devices. With the rise
of smartphones and always-connected Internet services these
devices, along with remote industrial and scientific instru-
ments, are starting to become more ubiquitous. And so the
Internet of Things (IoT) was born [1].

Malicious software existed almost since computers were
first connected together. A botnet is a network of computing
devices hijacked by malware that can be controlled remotely
by an attacker, called a ‘botmaster’. The botmaster will then
send commands to the bot network instructing it to perform
a number of different tasks, ranging from attacks such as
distributed denial of service (DDoS), disseminating spam or
simply ordering it to spread and infect more devices [2].

According to Spamhaus’s 2019 Botnet Threat Report [3],
which measures the number of botnet command and control
servers (abbreviated as C&C or sometimes C2) over time, in
2019 the number of C&C servers detected was 17,602. This
is a substantial growth compared with 7,314 C&Cs reported
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in 2014. The same report in the first quarter of 2021 indicates
24% increase in just a few months [4] (i.e., the last quarter
of 2020). The growing number of botnets is therefore an
increasing cyber security concern [5].

The Internet of Things (IoT) presents a unique set of secu-
rity challenges, as devices are often unmonitored, remotely
located, and have limited computing resources. Many IoT
devices are based on low-power-consumption chips such as
MIPS, ARM or Arduino [6]. Many use limited functionality
chips that are purpose-made, such as sensors and actuators.

Hackers have found an opportunity in the heterogeneous
IoT landscape with many manufacturers creating devices,
where price and time-to-market are their primary objectives
rather than security [7]. There are several open standards for
IoT communication protocols including Zigbee, Constrained
Application Protocol (CoAP), and Bluetooth LowEnergy [8].
Many manufacturers, however, choose to use proprietary pro-
tocols instead, or may choose how to implement standards
themselves.

Firmware updates may be unavailable or poorly controlled
and communicated, and default credentials are often used,
making IoT devices an attractive target for attackers.

A. METHODOLOGY
It was found that the 2016 Mirai malware was a driver for
research in this area, and much of the research that was ana-
lyzed focuses on preventing a repeat of similar future attacks.
Therefore papers from the last five years were collected to
expose the current state of research on IoT botnets.
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Search terms were used on Google Scholar and
EBSCOhost database for ‘‘IoT Botnet’’ and ‘‘Internet of
Things Botnet’’. The resulting list of approximately 1,200
conference and journal papers’ titles were reviewed for rele-
vance. Papers published at well-established and top-ranking
publications includingQ1 on SJR (SCImago Journal &Coun-
try Rank) or A/A* on CORE 2020 (Computing Research
and Education) portals were selected, given the stringent
peer review process and traditional impact in the field.1 We
initially selected 19 core papers that gave a range of IoT
botnet detection methods which informed the formulation of
our research questions:

1) What are the methods for identifying and classifying
malware detection in IoT devices?

2) What IoT malware detection methodologies are better
suited to detect IoT bots?

Drawing on the literature review guidelines given by Sny-
der [9] we reviewed each paper within the targeted five-year
time frame, leading to our selection of around 50 of the most
relevant papers. We read and summarized these papers to
classify them, and then followed up the reference lists to
‘snowball’ more relevant literature, which was again catego-
rized and summarized.

B. RELATED WORK
Several surveys on botnets have been conducted, as have
several IoT security surveys, but only one could be found
that specifically addresses the issue of botnets in IoT devices.
Vu et al. [5] provided an extensive survey on botnets, focus-
ing on the incentives for their creation, how they have evolved
and current trends. Cozzi et al. [6] traced the evolution and
code-sharing of IoT malware and provided valuable insight
into the relationships between malware families. Costin &
Zaddach analysed malware in IoT but did not look specifi-
cally at botnets in their 2018 BlackHat paper [10]. They con-
ducted an earlier survey in 2014 [11] which is focused solely
on security of embedded firmware. Meneghello et al. [8]
provided a comprehensive survey of vulnerabilities in IoT
devices. Rytel et al. [12] conducted another survey of vul-
nerabilities but focus on the data sources for vulnerability
sharing.

Wazzan et al. [13] wrote the most similar paper to this,
having conducted a literature review on botnets in IoT.
However, the research questions, motivations, and scope are
different and we find their survey complimentary to ours.
Wazzan et al. primarily focus on the phases of infection
detection with the majority of papers reviewed focusing on
early-detection of IoT bots. Several high-quality and influ-
ential research publications from the past few years in IoT
botnet (e.g., [10], [11], [14], [15] among others) are over-
looked. Recent significant IoT botnet threats such as Hajime
are only discussed in a few words, the paper has limited
focus on mitigation and it does not establish future research
directions systematically. Our contribution differs from [13]

1When looking at future research directions, this requirement was relaxed
for a few papers to accommodate inclusion of promising early ideas.

in that we compare detection and mitigation methods (e.g.,
network blocking, software patching) and establish a frame-
work for future research in detecting and mitigating IoT bots.
More important, we focus on different papers within the same
problem space (i.e., IoT botnet instead of botnet broadly)
in the form of a targeted literature review focusing on the
more stringently reviewed research publications published at
a higher quality conferences and journals.

C. CONTRIBUTIONS
To the best of our knowledge this paper is the first IoT botnet
specific survey which compares detection methods and sug-
gests a framework for future research. Our main contributions
are:

• Adetailed review of IoT botnet attack impacts to identify
the problem space.

• A systematic review of recent IoT botnet detection and
mitigation literature (2015-2020) inclusive of method-
ologies, contributions, and shortcomings.

• Review of the emerging IoT botnet threats as well as
emerging research directions.

• Recommendations for future research directions, open
research questions, and a framework for future research.

In Section II we explore the history of botnet malware
and methods of infection for traditional PC malware versus
embedded systems such as IoT devices. Section III details
methods of botnet detection in IoT devices, which is split
into two subsections. Section III-A looks at the research into
Host-based detection and Section III-B explores Network-
based detection. Network detection is further split into remote
(over the network) detection and local detection via the
router/gateway at the network edge. Section IV explores new
research into emerging directions as well as emerging threats.
In Section V we discuss a framework for future research and
the open questions that have not been answered. In Section VI
we provide our final thoughts and conclude the paper.

II. METHODS OF ATTACK
A. TRADITIONAL BOTNETS
The threat of botnets were first recognized in the 1990’s, with
early botnets such as Eggdrop, SDBot and Sub7 spreading
through Trojan horses or email worms to infect hundreds
of personal computers and their associated networks. These
botnets were then used to send spam or conduct DDoS attacks
against the botmaster’s targets. Botnets of this era often used
Internet Relay Chat (IRC) servers as a central point for the
botmaster to control the bots [20].

Asmalware evolved so did botnets, with peer-to-peer (P2P)
botnets being developed in the mid-2000’s to avoid having
the single point of failure of a central C&C server. The
2010’s were the decade when botnets starting becomingmon-
etized according to Cimpanu [21], first as ‘DDoS for hire’
then more recently, cryptocurrency-mining botnets. Sophos
Labs [22] disagree with the dating, stating that the use of
botnets for pharmacy spam from 2006 was the start of botnet
monetization.
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Crypto botnets are being used to ‘mine’ cryptocurrencies
such as Bitcoin or Monero [23] to directly add to the bot-
master’s wallet. Crypto botnets have been observed since
2014 [24] running on embedded devices such as routers,
security cameras and set-top boxes, however these are less
effective than higher-powered computing devices. The most
recent monetization method employed by botmasters is ran-
somware, whereby infected machine’s files are encrypted and
a ransom demand is displayed before the files are irretrievably
removed.

Botnets impact in two ways; the device is no longer under
the control of the legitimate owner, and is then used to
generate malicious activity on the Internet. Bots will remain
quiet and behave as normal until the malware is triggered,
which complicates their detection and mitigation. Botnets are
a problem for the Internet as a whole as they are used to send
large amounts of spam from unwitting hosts and can also be
used to create huge DDoS attacks. Some of the largest botnet
attacks were comprised of IoT devices, as we will explore in
the following section.

B. IoT ATTACKS
Traditional botnets are able to infect PCs which have high
computing resources and the ability to run anti-malware pro-
grams. IoT devices, with lower resources, do not have the
capacity to run anti-malware software which makes them
more vulnerable to infection and less able to mitigate threats.
Vulnerabilities that can turn IoT devices into bots include:
1) brute-force password guessing [25], 2) unsecured services
[26], 3) leaked/reused passwords, 4) network stack vulnera-
bilities in unpatched firmware [10], and 5) physical access to
the device.

There is no central database of IoT vulnerabilities, however
Rytel, Felkner& Janiszewski [12] have explored theUSA and
China’s National Vulnerability Databases (NVD and CNVD
respectively) and other databases. From this, they extracted
features they plan to use in a future IoT vulnerability reporting
database.2

Mirai’s variants are the most widely studied botnets, due
to the scale of the attacks. The first reported attack, on the
‘‘Krebs on Security’’ blog (discussed below), hit 623Gbps
using simple TCP port flooding, which knocked the web-
site offline. This was followed by the attack on Dyn which
was between 1-1.5Tbps [27] which disrupted domain name
resolution for Dyn’s customers, including Amazon, GitHub,
Netflix and Twitter. This botnet was created by exploiting
default passwords such as ‘root/root’ or ‘admin/admin’ [14]
that were left on the devices when they were installed.

Antonakakis et al. [14] assembled an army of researchers
in 2017 to analyze the Mirai botnet. Mirai peaked at 600,000
infected IoT devices in November 2016, one of the largest
botnets at the time. When it was used to attack the Krebs
on Security blog the botnet was smaller at around 120,000
hosts, but had grown to its peak by the time of the Dyn
attack. It is suspected that attackers were attempting to bring

2https://www.variot.eu

down Sony’s PlayStation network, whose name servers are
hosted byDyn. Other targets include Lonestar Cell, a Liberian
telecommunications provider and OVH, a French cloud host-
ing provider. After Mirai’s source code was publicly released,
variants started appearing [14], attacking new targets using
new tactics such as reflection attacks, where DDoS traffic is
bounced off a third party.

Gu et al. [28] predicted in 2008 that a peer to peer (P2P)
IoT botnet was coming, 8 years before the emergence of
Hajime, the first IoT P2P botnet. Between 2016 and 2019
Hajime was examined in depth by Herwig et al. [17]. Hajime
peaked at around 300,000 infected hosts, before returning to
a steady state of about 90,000. Herwig et al. believe the worm
was created to secure vulnerable devices, as no attacks have
ever been observed from Hajime. However, other researchers
such as [21] disagree, claiming the botnet may be used for
proxying – masking malicious Internet traffic.

Bashlite (also called Gafgyt), the precursor to Mirai
displayed similar characteristics, but was missing Mirai’s
encrypted traffic and had hard-coded IP addresses for its
C&C servers [2]. Brickerbot is another significant botnet
from 2017 that was used to create a ‘permanent denial of
service’ attack by exploiting default credentials, then wip-
ing vulnerable devices storage and network capabilities [18]
turning them into ‘bricks’. Costin and Zaddach [10] estimate
that over 10 million devices could have been affected by this
attack.

Persirai [19] was a 2017 Mirai variant that exploited an
empty password bug in certain IP cameras that allowed it
to gain user passwords in clear text [26]. Other vulnerabil-
ities have been exploited and combined with the released
Mirai code-base to create smaller botnets such as Reaper
in 2017.

As the number of IoT devices continues to grow, botnets
will become larger, and their attacks more devastating. It is
therefore vital that ways are found to protect these devices
from malware [27]. Table 1 gives an overview of the most
significant IoT botnets to date. The data shows that 95% of
botnet attacks are caused by default credentials being left on
devices.

III. METHODS OF DETECTION
There are two main groupings of botnet detection meth-
ods; network-based and host-based. Network-based detection
methods can be used with any networked device remotely.
Host-based methods require the firmware from a device to
be loaded onto a computer and studied either statically (not
running) or dynamically (running).

An advantage noted by several researchers when compar-
ing botnet-infected IoT devices with general purpose comput-
ing devices is that IoT devices are not multipurposemachines,
so will usually only follow specific patterns of execution
and network usage. This leads researchers to explore the two
availablemethods of detection, host-based – discoveringmal-
ware by examining the device firmware, or network-based
where network traffic is analyzed.

VOLUME 9, 2021 160393



B. Stephens et al.: Detecting Internet of Things Bots: Comparative Study

TABLE 1. IoT botnet families and impact.

TABLE 2. Host-based detection approach.

A. HOST-BASED DETECTION
Table 2 summarizes the most recent literature focusing on
host-based detection. It gives details of citations to measure
impact of each paper, accuracy (correctly predicted observa-
tions) where reported for detection, and precision (correctly
predicted positive observations), where reported.

Host-based detection describes the methodology for analy-
sis of code on a device. It can be categorized into two distinct
methods. First the static method, where binaries or source
code are examined without executing the code. The second
method is dynamic analysis, where a sandbox is created and
monitored, and the code is executed to observe its effects.

Static analysis is slow, but more conservative, and in
malware is much less likely to cause an unexpected conse-
quence such as infection. Dynamic analysis is faster, however
all paths of execution and variables cannot be guessed by
the analyst so some functionality of the malware may be
missed [31].

Costin et al. [11] provided a comprehensive survey of
embedded systems firmware in 2014. They updated their
research in 2018 [10] with a similar survey of malware,
specifically on IoT devices. This section will add to their
work with novel techniques that have been discussed since
then.

Pa et al. [25] proposed and implemented an IoT honeypot,
which presented itself to the Internet as varied unprotected
IoT devices to capture malware. It emulated telnet services
of various devices on the front end, with a back-end con-
nected to a series of virtual environments emulating embed-
ded CPU architectures. During its 81 days of operation,
the honeypot had 79,935 download attempts by malware
from 180,581 Internet hosts. The researchers manually down-
loaded 106 samples and analyzed them in their emulation
system, identifying 5 families of IoT malware.

Su et al. [29] propose a technique where IoT firmware
binaries (executable low-level software) were converted to
gray-scale visual images, then passed through a shallow
(2 layer) convoluted neural network algorithm. The neural

network classified the image as malware or goodware. Basic
firmware to image processing can be done on the IoT device,
then the image can be passed to a cloud-based classifier.
They do, however warn that this method may be vulnerable
to binary obfuscation.

Nguyen et al. [30] outlined a method of static analysis of
firmware source code or binary executables, searching for
printable strings then fed those to a convoluted neural net-
work. The neural network, which had been trained on known
good and malware samples, put the strings into context and
classified them as malware or goodware, whether they have
been obfuscated or not. They did this by leveraging a control
flow graph, which traverses paths of execution in the sample.
As shown in table 2 they achieved 92% accuracy and 91%
precision.

Zaddach et al. [15] described Avatar, a dynamic approach
that relied on a hybrid of hardware to provide the input/output
of the system, and software running on an external emulator
to dynamically analyse (possibly malicious) firmware. They
created an open-source framework based on QEMU3 with
debugging interfaces that could be used to analyze and change
device execution. The authors provided three examples of
Avatar in action: an analysis of a hard drive’s on-board
firmware, a vulnerability assessment of a Zigbee device, and
manipulation of amobile phoneGSMnetwork stack - proving
the versatility of their platform.

B. NETWORK-BASED DETECTION
Several methods have been suggested, modeled and pro-
totyped for network-based detection of IoT malware using
network traffic. The advantage of these methods are that
the device can stay in place, connected to the network and
continue performing its function. Table 3 provides a summary
of the most recent literature with a focus on network-
based detection. Citations are included for impact on fur-
ther research and accuracy (correctly predicted observations)

3https://www.qemu.org
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TABLE 3. Network-based detection approach.

and precision (correctly predicted positive observations) are
included where available.

Emerging research aimed to leverage recent network
advances to enhance detection and mitigation of IoT bot
threats. For instance Software Defined Networking (SDN)
is a recent network paradigm that splits network operations
into data and control planes, decoupling the functions from
the hardware. It adds separate layers for policy definition,
enforcement, and implementation, allowing the network to be
reconfigured dynamically in real time using an ‘‘intelligent
orchestration and provisioning engine’’ independently from
the hardware used [32].

Similarly, Network Function Virtualization (NFV), use vir-
tual machines to emulate hardware. This can be useful for
adding network resources such as firewalls, domain name
resolvers, virtual routing or traffic control on an as-needed
basis [33]. This technology could be used in the future for
mitigation of botnet malware.

1) LOCAL DETECTION
Habibi et al. [35] proposed a software solution called Heim-
dall that they implemented on a Linksys router. This solution
is in two parts, a trafficmanager which continuously validated
traffic and a whitelist manager that managed allowed and
blocked addresses. A profile of each device was built when
they were connected to the network, and once patterns were
established the system moved to an enforcement phase per
device. DNS requests were mediated through the system,
which checked validity of the DNS response to prevent DNS
poisoning attacks. While the results in table 3 look signifi-
cant, this is based on just a few test devices.

Miettinen et al. [38] proposed methods of detection and
mitigation at the network edge on the gateway in conjunction
with a web-based IoT security service provider. The gateway
fingerprinted the connected IoT device, then sent the finger-
print to the service provider, who sent back a classification of
restricted, trusted or strict which was applied by the gate-
way depending on whether vulnerabilities exist. They also
provided a method for fingerprinting devices as they were
inducted into the network.

Hafeez et al. [34] built on thework ofMiettinen et al. [38].
They had the gateway classify devices in both cases, but
where Miettinen et al. proposed a central service provider,
Hafeez et al. proposed all the work be done by the net-
work gateway. They created a prototype that could be run
on a regular consumer-grade router with minimal impact

(1.8% increased latency). It was a modular system with
monitoring, detection and enforcement modules which used
fuzzy C-means clustering, after feature extraction, to classify
network traffic. They then used SDN to create adhoc network
overlays to modify traffic flows.

Meidan et al. [37] ignored the infection stage of botnet
malware entirely, under the assumption that some malware
will get past any filters, and concentrated their network
anomaly detection at the point when devices are given the
attack order by the botmaster. They used autoencoders,
a compressed neural network, training them on benign traffic.
Once the autoencoder was trained for a particular device
it could detect anomalous network behavior. They infected
9 commercial IoT devices withMirai and Bashlite to test their
detection method. Their results detected 100% of attacks in
the samples and a false-positive rate of 0.007 in 174-386ms.

2) REMOTE DETECTION
Nõmm and Bhaşi [39] usedMachine Learning (ML) to detect
anomalies in IoT network traffic by only training benign
data. Their system detected outlying data points and classified
them as suspicious. Nõmm & Bhaşi performed multiple tests
to determine the best ML algorithm for accuracy (low false-
negative) and precision (low false-positive rate) when a sys-
tem is trained on benign data and then exposed to combined
normal and botnet data from Mirai and Bashlite botnets.
They concluded that the most effective ML algorithms were
five feature-point entropy for feature selection and isolation
forests for unsupervised learning. These performed better
than local outlier function, support vector machines, and
Hopkins statistics for botnet traffic detection. The authors
updated their work in [42] with an examination of a hybrid
feature selection model.

McDermott et al. [36] used a deep learning method called
Bidirectional Long Short Term Memory based Recurrent
Neural Network (BLSTM-RNN). This method fed whole
packet data into a neural network over long time periods
to extract text features, then contextualized the data. The
self-learning capabilities and knowledge of the past that the
RNN provided allowed for the detection of botnet traffic even
when there was a large time gap between attacks. This came
at a processing cost but provided very high levels of accuracy,
even where malware had mutated.

Vinayakumar et al. [40] explored converting domain
names extracted from malware binaries into images then
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using Siamese Neural Networks. They used this to ana-
lyze whether domain names had been computer-generated
or were legitimate domains to detect domain generation
algorithms (DGA). The same researchers have explored the
use of deep learning in PC botnet detection in previous
papers [43], [44].

Sriram et al. [45] built on the work of
Vinayakumar et al. [40] by comparing multiple ML and
Deep Neural Network (DNN) algorithms when applied to
normal and botnet traffic to classify them. They explored
which algorithms use the least time for training and detec-
tion and presented their results. They showed that the most
promising techniques were Decision Tree (DT) for differ-
entiating botnet vs. normal traffic, and that 4-hidden-layer
DNN is effective in classifying which botnet is operating at
real-time speeds. In this paper they also used a t-distributed
stochastic neighbor embedding visualization, which sepa-
rated the attack and normal traffic graphically. They sug-
gested that this visualization could be run through a convo-
luted neural network to achieve differentiation using existing
computer vision algorithms.

Alauthaman et al. [41] proposed a method targeted at
detecting P2P botnet traffic by passively monitoring net-
work traffic, extracting TCP headers and reducing the data
to a feature set. This method did not require deep packet
inspection and so was scalable. The remaining features were
fed to a resilient back-propagation neural network using a
classification and regression tree (CART) algorithm. Exper-
imental results showed that the CART algorithm was faster
and more effective than random forest (RFtree) and principle
component analysis (PCA) neural network algorithms.

While machine learning and AI models are effective when
trained onmixed botnet and normal traffic, they have a couple
of drawbacks. They use more computing power than other
methods, and for large volumes of traffic they may become
a bottleneck unless appropriate resource planning is under-
taken. They can also be tricked using adversarial machine
learning techniques [46].

Local detection is useful when the scale of the IoT deploy-
ment is not large and the limited resources of a consumer
router are able to scan and classify network traffic in real time.
Remote detection suits larger networks such as an enterprise
or campus as the remote resources are used on faster devices
such as servers or high-end workstations. A combination of
detection methods would be ideal for sensitive IoT devices
such as industrial control systems.

IV. EMERGING DIRECTIONS
In this section we will explore future threats that have been
theorized and emerging directions in botnet detection and
mitigation. These are broken down to Emerging Threats and
Emerging Detection Methods, which are further categorized
by their themes of Trust and Patch Delivery. This is not
a comprehensive list, but rather research that the authors
believe have not had the attention they deserve and as such
we highlight them here.

A. EMERGING THREATS
Soltan et al. [47] described a theoretical attack they call
BlackIoT on a power grid by a group ofmalware infected high
wattage IoT devices such as water heaters, air conditioners
and space heaters. In this scenario the Supervisory Control
and Data Acquisition (SCADA) devices of power distribution
are not attacked directly, but instead large changes in power
consumption are initiated by the botnet master controlling
consumer high-wattage appliances in certain regions to over-
load or under-load the electricity grid and cause blackouts and
potentially cascading failures in power transmission systems.

Kamenski et al. [48], [49] proposed a threat model for
increasing the resilience of botnets by leveraging blockchain
technology in place of traditional centralized C&C servers.
This would make bots harder to take over for security teams
as they would not be able to impersonate the botmaster.
If a public blockchain such as bitcoin were used to store
botnet data then the data would become part of the immutable
blockchain and be distributed to all nodes. This also makes
the C&C structure more resistant to government shutdown.

In February 2021, as this paper was being written, the
attack predicted by Kamenski et al. has been observed by
Saias [50]. The Skidmap cryptocurrency mining botnet, iden-
tified in 2019, was seen in 2021 attempting to download
malware to Akami’s honeypot with a bitcoin wallet address
that contained encoded IP addresses for backup C&C servers.
Nagy [51] also observed in June 2020 that theGlupteba botnet
has also been using the Bitcoin blockchain since 2019 to
update C&C servers.

Future IoT device threats must be classified by the tech-
nology layer that they attack [52]. Application-level attacks
are the most common to date, but vulnerabilities in net-
work stacks are a real threat as evidenced by Karliner [53],
who described discovering thirteen vulnerabilities in the
FreeRTOS operating system used in embedded devices.

Vulnerabilities in IoT devices may come from unexpected
sources, such as attacks on cloud-based service providers
or the headline-making work of Sugawara et al. [54] who
used lasers to remotely control voice assistant software.
This demonstrated that vulnerabilities can exist in surprising
places such as sensors, network bridges, hardware or software
and that security should be a high priority design considera-
tion for device manufacturers.

B. EMERGING DETECTION METHODS
In this section we will examine new and experimental
methods of detection and mitigation that fall outside of
the host/network-based paradigm. Table 4 summarizes the
emerging directions in detection and mitigation of IoT bots.
Citations are listed for impact on future research.

Zheng et al. described IoTAegis [55], a model security
platform that worked on a workstation within a large net-
work to discover and secure devices, both Internet-facing
and internal. It used active and passive network scanning
to discover IoT devices, connected to, and identified them.
It then checked for security vulnerabilities and could be used

160396 VOLUME 9, 2021



B. Stephens et al.: Detecting Internet of Things Bots: Comparative Study

TABLE 4. Emerging directions in detection & mitigation.

to change default passwords and update firmware remotely.
It was successfully used on a university campus to update
passwords and firmware of Hewlett-Packard printers as their
test cases. Their scan of 2399 hosts discovered 1701 IoT
devices, which were then analyzed. 66% of VoIP phones and
51% of IP printers were discovered to have default or no
password, and 59% of printers were found to have out of date
firmware.

Jung et al. [56] discussed a method for detecting botnet
traffic by monitoring power consumption in IoT devices.
They attached a power monitor to a simulated IoT device
using Raspberry Pi, then measured changes in current when
a device was working normally compared to when it was
infected with malware. They found that botnets generate a
detectable pattern of electricity usage.

Demeter et al. [57] described a production honeypot-as-
a-service run by Kaspersky Labs. This aimed to record
and analyze new malware targeting IoT devices to pro-
tect enterprise networks from intrusion attempts. Results
from their monitoring show a marked increase in infection
attempts from 2018 to 2019, with mostly Mirai-based attacks
observed.

Authors in [58] introduced a PLuggable And Reusable
(PLAR) architecture for firmware development aimed at giv-
ing IoT device manufacturers tools to create more secure
devices. They suggested modularizing software compo-
nents, with middleware that mediates between the compo-
nents in the device, so modules can be swapped for tested
and secure components depending on the manufacturer’s
needs.

While most traditional computing research separate their
detection methods by the same host-based or network-based
methods as the IoT literature, there is some early research into
combining the two methods. Almutairi et al. [59] described
an algorithm for host and network analysis to detect bot-
net activity at early stages of infection before communi-
cation with the C&C server. They used a combination of
file state from the host being monitored and network traf-
fic to determine anomalies through a common detection
engine. This method is impractical in the current gener-
ation of IoT devices, however future generations may be
able to include self-checking software which could be com-
bined with network-based detection for more transparency of
device configuration and software.

1) TRUST
Devices must communicate between themselves and back to
controllers such as a service provider or home hub to be able
to function. This has led researchers to examine the subject of
trust between devices, and how trust can be established that a
device has not been compromised.

Xia et al. [60] suggested using social features to estab-
lish trustworthiness between devices. They explained that a
PageRank algorithm can be used to promote distribution of
information (whether patches or data) from more trustworthy
sources and reduce the impact of untrustworthy devices.

England et al. [61] described RIoT or Robust Internet of
Things, a system for establishing hardware-based trust using
simple hashing cryptography in IoT devices. An immutable
bootloader was used to read a device secret during boot,
whichwas never revealed to higher layers of software. Rather,
a derived key was generated using a HMAC algorithm which
could be used to establish trust with upper-layer software and
external devices, such as for attestation of software being run.

Samaniego and Deters [62] suggested using a blockchain
middleware to establish trust. They followed a zero-trust
model where each device must validate their credentials and
configuration each time they participate in a network before
they can send a message on the network, ensuring transac-
tions are legitimate. The IoT devices can store their configu-
ration on a blockchainwhere it is immutable and updated only
by consensus with other devices. They outline a two-level
hierarchy of mining for identity-trust and transaction-trust.

2) PATCH DELIVERY
An effective method for defending against botnet infection
is keeping IoT device firmware up to date, as manufacturers
release patches from time to time to plug security bugs and
improve functionality [63].

Choi et al. [7] proposed an ecosystem for securely updat-
ing device firmware. In their system, an IoT device will not
run software that has not been properly signed. Signatures
are chained, from the manufacturer to a central server on the
Internet, then middleware running on a home gateway. Each
device in the chain signed the firmware with its private key,
and the device used public key cryptography to verify the
signature of each step in the chain from the manufacturer to
the device and would not run firmware that does not pass all
tests. They proved their method mathematically.
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Chandra et al. [63] proposed a method of pushing
firmware updates to very low power or capacity devices
via a lightweight mesh over-the-air protocol. They used a
gateway device to download the firmware, then a hub to
distribute it across the mesh network, with any devices at
too great a distance from the hub being able to acquire the
updated firmware from their end-device peers in the mesh.
The authors did not provide details on use-cases, but this
method could be used for diverse applications of wireless
IoT devices such as sensor networks, distributed weather
monitoring or even micro satellites.

IoT updates are primarily delivered through a client-
server architecture. Evidently, this approach is not scalable
given the exponential growth in device numbers. Further-
more, the existing mechanisms to ensure integrity of updates
are challenging given the IoT devices’ limited computing
power (e.g., only lightweight cryptographic primitives can
be implemented). Puggioni et al. [64] proposed CrowdPatch-
ing to address the aforementioned challenges in IoT update
delivery. CrowdPatching is a blockchain-based decentralized
protocol that allows device manufacturers to delegate the
delivery of software updates to self-interested distributors in
exchange for cryptocurrency. Compared with similar work
proposed in [65], CrowdPatching allows the involvement of
an unrestricted number of distributors, leveraging recent IoT
deployment architectures, and rewards trustworthy distribu-
tors in the network.

V. FINDINGS
After reviewing the literature, the authors have formed the
following conclusions:

• The vulnerability exploited to create most IoT botnets
(around 95%) is use of default credentials. This could be
replaced with a per-device unique password generation
system to alleviate much of the botnet infection activity.

• Host-based detection is not feasible on the current gen-
eration of IoT devices and has limited application.

Artificial intelligence and machine learning models are
a promising avenue of research into botnet detection and
can be used in mitigation. Researchers contributing in this
space, however, do not present side by side comparisons.
Their results are often communicated in different ways and
with their experimental methods not detailed enough to repro-
duce their results. This presents a problem when trying to
decide which is the most effective or efficient algorithm for
detecting botnet activity. Sharing of full experimental setup
and methodology, as well as publishing of data sets such as
network traffic capture, would help future researchers verify
results and build upon the work of others. Authors in [66]
recently have made an attempt to provide a comparison given
the ongoing inconsistencies in results.

Malware analysis is, by nature, reactive to threats discov-
ered in the wild or on honeypots. If device manufacturers
could be convinced of the value of designing with security
prioritized then their devices could be much less vulnerable.
Provisions need to made for decommissioning IoT devices

once they have served their purpose and patch management
should be automated or very simple for a typical end-user to
perform until the device reaches its end of life.

Over the course of this research we have discovered that
while there are many researchers aiming to solve the prob-
lems facing IoT devices and detecting botnets in particular,
the work is disparate and each researcher uses their own
metrics to measure their success. We therefore propose a
framework that will allow future researchers to compare and
contrast results in an accurate and methodical way.

A. FRAMEWORK FOR FUTURE RESEARCH
We have devised a framework for future research in IoT bot-
net detection and mitigation. We have noticed that research in
IoT botnet detection and mitigation is hardly repeatable and
comparable, which has slowed down practical progress in this
domain. The main goal we are pursuing with this framework
is, therefore, to ensure that research in this critical domain
does not suffer from such limitation. Generally, research in
IoT botnets can be categorized into the matrix shown in
table 5. This framework table can be used to assist researchers
to move their research from the early exploration phase to an
operational product that can perform detection and mitigation
of botnets in IoT devices.

Examples of research papers in the exploration phase
include [42], [60], [62], [63] and [64] which are early exper-
iments that explore whether a concept is worth pursuing.
Papers that are in the solution phase like [30], [36], [39]
and [41] take their research a step further, comparing algo-
rithms against malware to measure effectiveness. Finally,
operational phase papers such as [34], [35], [38] and [55]
provide more fully-fledged mitigation solutions to the IoT
botnet problem, having built on previous research.

Future researchers are encouraged to use a standard set of
characteristics for reporting results so that different method-
ologies can be compared. For machine learning models or
other automated detection methods we suggest the following
characteristics as a minimum: Number of samples, accuracy
%, false positive %, time for training, time per 1000 training
samples, time per 1000 test classifications. We also suggest
researchers enumerate the hardware that they are running
their simulations or experiments on.

B. OPEN QUESTIONS
In this section we list some open questions that we believe
could prompt future research in IoT botnet domain:

• How can device manufacturers be brought on
board to use standards-based best practice such as
IEEE 2413-2019 [67] and ISO/IEC 30141 [68] when
designing their devices? Could smart home hubs (e.g.,
Home Assistant4) be developed to include pluggable
modules [58] for device reconfiguration on the fly?

• Could the IoTAegis network scanning method be used
in conjunction with device fingerprinting such as that

4https://www.home-assistant.io
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TABLE 5. Framework for future research.

described by [69] to give an organization a central-
ized database of connected devices? Could this be
combined with the work of Miettinen et al. [38] and
Hafeez et al. [34] or Software Defined Networking lay-
ers described in [70] to provide whole network protec-
tion for IoT devices through white-listing and patching?

• How will developing 5G technologies and the large
IPv6 address space be addressed when IoT devices
are manufactured to run off a 5G SIM card with even
less interface with the owner? Broadly, how do 5G
advancements complicate or facilitate protection against
IoT botnet? ([71])

• Whether developing revamped software architectures
such as the pluggable and dynamic model presented
by Maroof et al. [58] should be prioritised for the next
generation of IoT devices?

• Whether traditional domain-based detection and filter-
ing of bots can be effectively imported for IoT bot
detection and mitigation (e.g., [72], [73])?

• How technological advancements through Fog and
Edge computing can be used to develop more effi-
cient IoT botnet detection and mitigation solutions? For
instance, authors in [74] propose an edge-oriented detec-
tion/mitigation scheme against DDoS in IoT leveraging
SDN and Fog capabilities.

Other research gaps identified, which need to be addressed
by thorough research, include:
• Using Shamir Secret Sharing to create networks of trust
between IoT devices.

• Production practices from industry (e.g., certifications)
that can eliminate default credentials shared between
devices.

• Decommissioning strategies for devices at the end of
their life.

VI. CONCLUSION
Kaspersky’s 2020 Security Bulletin [75] notes thatMirai vari-
ants continue to dominate the IoT malware space along with
Nyadrop, which is used to download further Mirai variants.

Our research has shown that there are two methods for
detecting botnets in IoT devices; host-based and network-
based. Research can be categorized further into exploration,
solution or operation depending on the stage of research and
the researchers’ goals. We reviewed the most recently emerg-
ing threats and solutions and report that there seems to be an
agreement among researchers that network-based detection
suits the heterogeneous, distributed, and sometimes remote
nature of IoT devices. Innovative approaches for detection

of IoT botnet such as monitoring power usage, hybrid
approaches (i.e., local and remote detection), leveraging
other technologies such as Blockchain and Software-Defined
Networks seem to be early stage promising efforts that
require further exploration. Specifically, we note that the real
world efficacy of proposals will be dependent on deployment
assumptions that recent efforts seem to be too idealistic about.

Future researchers in IoT botnet domain can plan their
work based on the findings reported in this paper including
the framework suggested to increase effectiveness and better
positioning of their contribution.
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