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ABSTRACT This paper proposes a general robust model predictive control (MPC) approach for the con-
strained Takagi-Sugeno (T-S) fuzzy model with additive bounded disturbances. We adopt the homogeneous
polynomially parameter-dependent (HPP) Lyapunov matrix with the arbitrary complexity degree and the
corresponding HPP control law for the controller design. By applying the Pólya’s theorem and the extended
nonquadratic boundedness property, a systematic approach to construct a set of sufficient conditions for
assessing robust stability described by parameter-dependent linear matrix inequalities (LMIs) is established.
The proposed approach is an improvement over the existing approaches in terms of control performance and
stabilizable model range. Numerical examples are provided to show the effectiveness of the proposed robust
MPC approach.

INDEX TERMS Robust model predictive control, T-S fuzzy model, bounded disturbances, extended
nonquadratic boundedness.

I. INTRODUCTION
Takagi-Sugeno (T-S) fuzzy model has been widely used
to approximate the nonlinear systems, whose basic idea is
representing the original system by a family of linear sub-
models [1]–[3]. For the stability analysis of T-S model,
many efforts are made based on the Lyapunov functions,
such as the common quadratic Lyapunov function in [4],
the parameter-dependent quadratic Lyapunov function in
[5], the piecewise-quadratic Lyapunov function in [6], the
nonquadratic Lyapunov function in [7], and barrier Lya-
punov functions in [8], [9]. In order to further improve
the performance and reduce the conservatism, a general
nonquadratic stabilization conditions are presented by the
multiple-parameterization approach in [10]. In [11], [12],
other general forms of relaxed stabilization conditions are
derived by means of affine parameter-dependent Lyapunov
functions. More details are available in [2], [3].

Model predictive control (MPC), as a widespread control
technique being implemented in a receding horizon fashion,
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has its advantages in constraints handling for multi-variable
plants, e.g., the distributed MPC [14], the industrial hier-
archical MPC [15], and the stochastic MPC [16]. Usually,
at each sampling interval, MPC solves an optimization prob-
lem, with the performance index being associated with the
system evolutions over a prediction horizon, subjected to
the physical constraints; a sequence of control moves are
treated as the decision variables, but only the first among this
sequence is sent to the actuator. These actions are repeated
in a receding horizon fashion. Since the future predictions
for input/state/output are needed, which are obtained based
on the system dynamic model, the accuracy of this model is
crucial for the future prediction, which as a result, can influ-
ence the control performance [13]. The stability analysis and
control synthesis for T-S fuzzy model by MPC approaches
have been studied with variety. In [17], an interval type-2
fuzzy MPC approach is proposed for nonlinear networked
systems. The model and controller are not required to share
the same lower and upper membership functions. In [18],
to improve the performance, a local stability approach is
applied and an estimation of the domain of attraction is pro-
vided. The work of [19] investigates the robust fuzzy MPC,
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which uses the nonlinear local models. More relaxed results
are achieved, and on-line computational cost is significantly
reduced. The authors in [20] propose a fuzzy generalized
predictive control for T-S systems based on Kernel Ridge
Regression strategy which learns the T-S fuzzy parameters
from the input and output data. Reference [21] utilizes the
zonotopic set and interval matrices to bound the member-
ship function errors. The controller parameters are stored
in an off-line table for searching and robust tubes can be
time-varying. In [22], the nonlinear multivariable predictive
control is proposed for the vehicle systems. For maintaining
the robustness and stability, the controller design is based
on LMI convex optimization. The cooperative fuzzy MPC
is represented in [23] where the overall nonlinear plant con-
sists of a group of parallel input-coupled T-S fuzzy mod-
els. For this cooperation, the convergence and stability are
guaranteed.

In order to deal with unknown disturbances, a series of
paradigms have been elaborated (see e.g., [26]–[31], [33]).
In [26], the homothetic tube-based approach is proposed,
which maintains the state predictions of the linear model
in the presence of disturbance within an on-line scaling
tube centered at the disturbance-free model trajectory. The
work of [27] proposes a tube-based MPC for nonlinear
continuous-time model, and the feedback control law is
optimized off-line. The authors in [28] utilize an integral
non-squared stage cost and a non-squared terminal cost,
so that the robustness of the resultant MPC is ensured with-
out additional stability constraints. In [29], the input-to-state
stability property is utilized for the quasi-min-max MPC
design, and the first control move from the control sequence
can be optimized directly. In [30], the notion of quadratic
boundedness (QB) is utilized, based on which, the system
is guaranteed to be quadratically bounded in the presence
of disturbance. Reference [31] proposes the full and par-
tial dynamic output feedback MPC applying full Lyapunov
matrix. The elliptical estimation error set is refreshed on-line
based on optimized information of the last sampling instant.
Reference [32] aims at the norm-bounded model parametric
uncertainty. The estimated state feedback gain and state esti-
mator matrix are optimized on-line while the state estimator
gain is designed off-line. In [33], sufficient conditions for
computing the positively invariant set for T-S fuzzy systems
are derived, and the terminal constraint set for 0-step and
N -step control strategies are obtained.

This paper characterizes MPC synthesis, based on improv-
ing the Lyapunov function, for constrained T-S fuzzy model
with the bounded disturbance. Some general results for the
positiveness of polynomials with matrix-valued coefficients
(based on Pólya’s theorem) is given in [35], where some com-
plete characterization of the solution of parameter-dependent
LMIs, usually arising in the robust stability analysis, is pro-
posed. However, when themodel parameters are time-varying
uncertain, the results in [35] cannot be directly invoked.
We deal with this issue in this paper, and contributions are
summarized as follows.

1) The potentiality of Pólya’s theorem is exploited.
The general homogeneous polynomially parameter-
dependent (HPP) Lyapunov matrix whose complexity
degree is tunable, and corresponding HPP control law,
are applied.

2) By a generalization of the methods based-on Pólya’s
theorem and parameter-dependent LMIs, a series of
finite-dimensional LMI relaxations, as sufficient stabil-
ity conditions, are developed to robustly stabilize the
resultant closed-loop system.

In [34], a general robust MPC approach for linear parame-
ter varying (LPV) systems in the absence of bounded distur-
bance has been proposed, which can include many existing
approaches with common quadratic Lyapunov matrices and
state feedback laws (e.g., [24], [25]) as special cases. As com-
pared with [12], [34], this paper handles the unknown but
bounded disturbance. Since the bounded disturbance is incor-
porated in the model, the characterization of the closed-loop
stability is different from that in [34]. There are two other
differences as compared with [34].
• While [34] introduces a free control move (i.e., the
control move is the immediate decision variable), this
paper does not.

• While [34] utilizes the dilution parameter G, this paper
does not.

The rationale of approximation is the same as in [34]: the
complexity degree of HPP solutions is tunable for the pro-
posed approach and, when it increases, the conservatism
of the results reduces; the HPP Lyapunov matrix and HPP
feedback gain matrix can asymptotically approximate any
Lyapunov and feedback gain matrices which are continuous
on the combining coefficient functions.
Notation: The symbol ? induces a symmetric structure in

the matrix inequalities. A variable with superscript ∗ means
the optimal solution to the optimization problem. <m×n

denotes the m × n-dimensional real matrix set. N+ is the set
of nonnegative integers. For the vector x and positive-definite
matrix P > 0, ‖x‖2P = xTPx. M ! denotes factorial of M .
x(i|k) is the value of x at the future interval k+ i, predicted at
interval k . I is the identity matrix with appropriate dimension.
For the column vectors x and y, [x; y] = [xT , yT ]T . εP =
{ξ |ξTPξ ≤ 1} denotes the ellipsoid that is associated with the
symmetric positive-definite matrix P. The time-dependence
of the MPC decision variables is often omitted for brevity.

II. PROBLEM STATEMENT
Consider a class of T-S fuzzy systems, with its jth rule repre-
sented by

Rule j : IF θ1(k) is H
(j)
1 , · · · , and θϑ (k) is H

(j)
ϑ ,

THEN x(k + 1) = Ajx(k)+ Bju(k)+ Djw(k), (1)

where j ∈ {1, . . . , r} with r rules. Let θ (k) = [θ1(k);
θ2(k); · · · ; θϑ (k)] be the measurable premise variable.
H (j)
1 ,H

(j)
2 , · · · ,H

(j)
ϑ are the fuzzy sets. x ∈ Rn, u ∈ Rm, and

w(k) are measurable state, input, and bounded disturbance
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vectors, respectively. The disturbance is persistent and sat-
isfies w(k) ∈ εPw . Then the acquisition of T-S model can be
described as

x(k + 1) = A(θ (k))x(k)+ B(θ (k))u(k)+ D(θ (k))w(k),

3(θ (k)) =
r∑
j=1

hj(θ (k))3j, 3 ∈ {A,B,D}. (2)

hj(θ (k)) =

∏ϑ
τ=1 H

(j)
τ (θτ (k))∑r

j=1
∏ϑ
τ=1 H

(j)
τ (θτ (k))

, (3)

where H (j)
τ (θτ (k)) denotes the grade of membership of θτ (k)

in H (j)
τ , and hj(θ (k)) is the normalized membership function

(abbreviated as the membership function), with hj(θ (k)) ≥
0,

∑r
j=1 hj(θ (k)) = 1. For the sake of simplicity, hj is short

for hj(θ (k)) and hj+ is short for hj(θ (k+1)) for the rest of the
paper.

The physical constraints to be considered is as follows,

−u ≤ u(i|k) ≤ ū, i ≥ 0, (4)

−ψ ≤ 9x(i+ 1|k) ≤ ψ̄, i ≥ 0, (5)

where u = [u1; u2; · · · ; um], ū = [ū1; ū2; · · · ; ūm], ψ =
[ψ

1
;ψ

2
; · · · ;ψ

r
], ψ̄ = [ψ̄1; ψ̄2; · · · ; ψ̄r ] with us > 0,

ūs > 0, s = 1, 2, · · · ,m and ψ
s
> 0, ψ̄s > 0, s =

1, 2, · · · , r . 9 ∈ <r×n can be any pre-specified forms of
constraints on state x.
The corresponding disturbance-free (reference) model is

expressed as

x̃(k + 1) = A(θ (k))x̃(k)+ B(θ (k))ũ(k), (6)

where x̃ and ũ are the disturbance-free state and input signals.
The control objective is to design anMPC controller which

steers x(k), with the increase of sampling interval k , to con-
verge to a neighborhood of the origin, while satisfying the
constraints (4)–(5). Accordingly, the cost function is given as

J∞(k) =
∞∑
i=0

[
‖x̃(i|k)‖2Q + ‖ũ(i|k)‖

2
R

]
, (7)

where Q > 0 and R > 0 are the given symmetric weighting
matrices. x̃(0|k) = x(k). Note that the penalized signals are x̃
and ũ from the disturbance-free model (6), any other signals
linearly dependent on x̃ and ũ are also allowed.

III. MODEL PREDICTIVE CONTROL SYNTHESIS
In this section, we propose the main result. Firstly, the
standard MPC synthesis approach with the nonquadratic
Lyapunov function is proposedwith guaranteed recursive fea-
sibility and closed-loop stability. Then, we apply the Pólya’s
theorem to extend the result such that the LMI conditions in
the MPC optimization problem is relaxed.

A. FORMULATION OF OPTIMIZATION PROBLEM
This paper utilizes a g-degree HPP control law in the form of

u(k) = Fgx(k), (8)

where Fg = YgS−1g is the parameter-dependent feedback
gain, which is define as follows.

Firstly, introduce some definitions in order to be consistent
with [35]. Let the HPPmatrix with tunable complexity degree
g be

Gg(η) =
∑

p∈K(g)

η
p1
1 η

p2
2 . . . η

pr
r Gp, p = p1p2 . . . pr , (9)

where η ∈ �r , pi ∈ N+, i = 1, 2, . . . , r , each ηp11 η
p2
2 · · · η

pr
r

is a monomial. For all p ∈ K(g), Gp ∈ <n×n are matrices.
K(g) is the family of r-tuples, which is comprised of all the
terms p1p2 . . . pr , pi ≥ 0, i = 1, 2, . . . , r , with p1+p2+· · ·+
pr = g. K(g) includes J (g) number of elements with

J (g) =
(r + g− 1)!
g!(r − 1)!

.

For example, for the case with g = 2 and r = 2,
K(g) = {02, 11, 20} and J (2) = 3, subject to the form
G2(η) = η22G02 + η1η2G11 + η

2
1G20.

Hence, in light of (9), we have parameter-dependent HPP
Lyapunov matrices Yg =

∑
p∈K(g) h

p1
1 h

p2
2 . . . h

pr
r Yp, Sg =∑

p∈K(g) h
p1
1 h

p2
2 . . . h

pr
r Sp, with p = p1p2 . . . pr .

Lemma 1: Consider a parameter-dependant LMI

P(µ, η) , P0(η)+ µ1P1(η)+ · · · + µMPM (η) > 0,

where P0(·),P1(·), . . . ,Pr (·) are continuous functions with
respect to parameters η = [η1, η2, . . . , ηr ]T ∈ �r and
unknownµ ∈ RM . If there existsµ(η) ensuring P(µ(η), η) >
0 for all η, then a homogenous polynomial function µ̂(η)
exists such that P(µ̂(η), η) > 0 holds.

Proof: See [35].
Remark 1: Lemma 1 implies that a homogeneous polyno-

mial form of solutions, whose parameters lie in the unit sim-
plex, is a very general form, i.e., can be readily transformed
into any other continuous solutions of parameter-dependent
LMIs. By considering the famous Weierstrass approximation
theorem and applying Lemma 1, it infers that Pg and corre-
spondingFg can represent any Lyapunovmatrix and feedback
gain matrix that are parameterized by hj, j ∈ {1, 2 . . . r} as g
increases.

By applying (8) on (2), the closed-loop system is obtained
as

x(k + 1) = (A(θ (k))+ B(θ (k))YgS−1g )x(k)+ D(k)w(k).

(10)

In order to guarantee the stability of closed-loop system
(10), the technique of quadratic boundedness (QB) ([37]),
which is primarily utilized for the state estimation problem
and can be particularly useful for handling the system with
bounded disturbance, is utilized to ensure that the state will
stay in a quadratically bounded set. The definition and theo-
rem of QB according to [37] are reviewed as follows.
Definition 1: For all allowable w(k) ∈ εPw , k ≥ 0, the

autonomous linear system x(k + 1) = Ax(k) + Dw(k) is
quadratically bounded with a common Lyapunov matrix P,
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if x(k)TPx(k) ≥ 1 implies that x(k + 1)TPx(k + 1) ≤
x(k)TPx(k).

The QB condition is applied to many MPC problems
with common quadratic Lyapunov functions. However, the
resulting control performance can be conservative due to
the utilization of the form of Lyapunov function. Since
it is known that the extended nonquadratic Lyapunov
method outperforms the common quadratic one, the extended
nonquadratic boundedness is applied to characterize the
closed-loop property in this paper.

Let Pg be the nonquadratic Lyapunov matrix. At interval
k+1, definePg+ =

∑
p∈K(g) h1(k+1)

p1h2(k+1)p2 . . . hr (k+

1)prPp =
∑

q∈K(g) h
q1
1+h

q2
2+ . . . h

qr
r+Pq, with q = q1q2 . . . qr ,

satisfying q1 + q2 + · · · + qr = g,
∑l

j=1 hj+ = 1.
Definition 2: System (10) is strictly nonquadratically

bounded with an extended nonquadratic Lyapunov matrix
Pg > 0, if x(k)TPgx(k) ≥ 1 implies that x(k + 1)TPg+x(k +
1) ≤ x(k)TPgx(k) for any w(k) ∈ εPw , k ≥ 0.

By inheriting the results in [37] and extending to the case
with the extended nonquadratic boundedness, the following
conclusion can be obtained
Lemma 2: For all allowable w(k + i), i ≥ 0, the following

statements are equivalent.
a) System (2) is nonquadratically bounded with an

extended nonquadratic Lyapunov matrix Pg.
b) The ellipsoid εS−1g is a positively invariant set for (2).

c) x(i|k)TPgx(i|k) ≥ 1 implies that x(i + 1|k)TPg+x(i +

1|k) ≤ x(i|k)TPgx(i|k).
From Lemma 2, we can obtain that the system (2) is

nonquadratically bounded if at each sampling interval k , the
following condition are satisfied:

x(i|k)TPgx(i|k) ≥ 1

⇒ ‖x(i+ 1|k)‖2Pg+ − ‖x(i|k)‖
2
Pg

≤ −x(i|k)TQx(i|k)− u(i|k)TRu(i|k), i ≥ 0. (11)

Since w(k + i) ∈ εPw , i ≥ 0, x(i|k)TPgx(i|k) ≥ 1 is
equivalent to w(k+ i)TPww(k+ i) ≤ x(i|k)TPgx(i|k). Hence,
the condition (11) is equivalent to

w(k + i)TPww(k + i) ≤ x(i|k)TPgx(i|k)

⇒ ‖x(i+ 1|k)‖2Pg+ − ‖x(i|k)‖
2
Pg

≤ −x(i|k)TQx(i|k)− u(i|k)TRu(i|k), i ≥ 0. (12)

According to (10), (12) can be expressed in quadratic
form as[

x(i|k)
w(k + i)

]T [Pg 0
0 −Pw

] [
x(i|k)
w(k + i)

]
≥ 0

⇒

[
x(i|k)
w(k + i)

]T
×

[
1 ?

−D(k + i)TPg+A −D(k + i)TPg+D(k + i)

]
×

[
x(i|k)
w(k + i)

]
≤ 0, (13)

where 1 := Pg − ATPg+A − Q − S−Tg Y Tg RYgS
−1
g , and

A = A(θ (k + i))+ B(θ (k + i))YgS−1g .
By eliminating the variables [x(i|k)T w(k+i)T]T and invok-

ing the S-procedure, it is shown that (12) is satisfied if and
only if there exists a scalar α > 0 such that (see [37])[

1 ?

−D(k + i)TPg+A −D(k + i)TPg+D(k + i)

]
≥ α

[
Pg 0
0 −Pw

]
. (14)

By substitute Pg = γ S−1g , Pg+ = γ S−1g+ , pre-

and post-multiplying (14) by diag{Sg, I } (which leaves the
inequality unaffected), and applying the Schur complement,
it is shown that (14) is guaranteed by

(1− α)Sg ? ? ? ?

0 αPw ? ? ?

AjSg + BjYg Dj Sg+ ? ?

Q1/2Sg 0 0 γ I ?

R1/2Yg 0 0 0 γ I

 ≥ 0,

j ∈ {1, 2, . . . , r}. (15)

Proposition 1: Reference model (6) is quadratically stable
with the Lyapunov matrix Pg.

Proof: By neglecting the disturbance, (15) is reduced to
(1 − α)γ S−1g − AT γ S−1g+A ≥ Q + S−Tg Y Tg RYgS

−1
g which

guarantees that γ S−1g − AT γ S−1g+A ≥ Q + S−Tg Y Tg RYgS
−1
g .

Thus, by defining the HPP quadratic function V (x̃(i|k)) =
x̃(i|k)TPgx̃(i|k), and substituting V (x̃(i + 1|k)) = x̃(i +
1|k)TPg+x̃(i+ 1|k), we have

V (x̃(i+ 1|k))− V (x̃(i|k)) ≤ −x̃(i|k)TQx̃(t|k)

− ũ(i|k)TRũ(i|k), i ≥ 0. (16)

According to Lemma 2, since the condition (16) is sat-
isfied, (2) is quadratically bounded with the Lyapunov
matrix Pg.
Thus, the conclusion holds. �
Remark 2: The HPP quadratic function V (·) is in a very

general form, which implies that it covers many existing
Lyapunov functions. For example, by taking g = 0, the
Lyapunov function in [24] is recovered; by taking g = 1,
[25] is recovered.

Based on Proposition 1, the state and input prediction
of reference model (6) will converge to the origin, i.e.,
limi→∞ x̃(i|k) = 0 and limi→∞ ũ(i|k) = 0. Hence, sum-
ming (16) from i = 0 to∞ yields

J∞ ≤ V (x̃(0|k)) = x̃(0|k)TPgx̃(0|k). (17)

Since Pg = γ S−1g and x̃(0|k) = x(k), let γ be the upper
bound of (17), i.e., V (x̃(0|k)) ≤ γ , then the following holds:[

1 ?

x(k) Sg

]
≥ 0. (18)
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Similar to the procedure in [24], the input and state con-
straints in (4) and (5) are guaranteed by[

Sg ?

Yg Z

]
≥ 0, Zss ≤ z2s,inf s ∈ {1, 2, . . . ,m}, (19)[

Sg ?

9(AjSg + BjYg) 0

]
≥ 0, j ∈ {1, 2, . . . , r},

0ss ≤ ψ
2
s,inf, s ∈ {1, 2, . . . , r}, (20)

where zs,inf = min{us, ūs}, ψs,inf = min{ψ
s
, ψ̄s} and Zss

(0ss) is the sth diagonal element of Z (0).
As the usual practice in robust MPC, the optimization

problem is formulated as the following min-max form:

min
Sg,Sg+,Yg,γ,Z ,0

γ s.t. (15), (18), (19), (20). (21)

Noth that by specifying α in the interval (0, 1), problem
(21) will become a convex optimization which can be solved
efficiently by the interior point method. The MPC optimiza-
tion (21) is simply an extension of the approach in [24] to the
case with nonquadratic Lyapunov function. We will further
extend this approach by the utilization of the Pólya’s theorem
in the next section.
Theorem 1: For (2), once there exists a feasible solution

to optimization problem (21) at any interval k , then it will be
feasible at k + 1, and x will converge to a neighborhood of
the origin.

Proof: The proof contains two steps.

1) RECURSIVE FEASIBILITY
Supposed there exists feasible solution to (21) at sampling
interval k . At next interval k + 1, we need to check that
whether the constraints in (21) can still be satisfied. It is noted
the optimization problems at k and k+1 are different only in
constraint (18) which contains the state x(k).
At interval k+1, let feasible bound γ̄ (k+1) = γ ∗(k). Con-

straints (15) and (18) at k imply V (x̃(i+ 1|k)) ≤ V (x̃(i|k)) ≤
γ ∗(k) = γ̄ (k+1) which, by applying the Schur complement,
is shown to be equivalent to[

1 ?

x(k + 1) S∗g+

]
≥ 0. (22)

Thus, the optimal solution at sampling interval k still satis-
fies constraint (18) at interval k + 1. Other constraints can be
naturally satisfied at k+1 by substituting the optimal solution
at k . Hence, the constraints of the optimization problem are
satisfied at k + 1.

2) STABILITY
Define the optimal upper bound γ ∗(k) as the candidate
Lyapunov function. Denote by γ ∗(k + 1) the correspond-
ing Lyapunov function at k + 1. According to the previous
proof 1), it implies that γ ∗(k+1) ≤ γ̄ (k+1) = γ ∗(k) which
means that x̃ → 0 as k → ∞. Since optimization problem
(21) is feasible at sampling interval k ≥ 0, constraint (15)
is always satisfied, x will converge to a neighborhood of the
origin.

Thus, the proof is complete. �
Remark 3: For simplifying the presentation, we only con-

sider the case when switching horizon N = 0 which is
consistent with the benchmark work [24]. When N > 0, free
control moves are added before the control law (8), which can
be achieved easily by generalization, being omitted here for
brevity.

B. OPTIMIZATION PROBLEM VIA HPP SOLUTIONS
Theorem 2: Suppose �r be the simplex set satisfies �r =

{η ∈ <r |
∑l

j=1 ηj = 1, ηj ≥ 0}. If f ∈ <r is homogeneous
and positive on �r , then for a sufficiently large scalar d , all
the coefficients of (η1+ η2+ · · · + ηr )d f (η1, η2, . . . , ηr ) are
positive.

In this paper, we consider the homogeneous polynomial
matrix X with degree g× g in the following form

X =
∑

q∈K(g)

η
q1
1+η

q2
2+ . . . η

qr
r+

∑
p∈K(g)

η
p1
1 η

p2
2 . . . η

pr
r Xp,q, (23)

where each Xp,q is a matrix. Also, we have
∑l

j=1 ηj = 1,∑l
j=1 ηj+ = 1. p = p1p2 . . . pr , p1 + p2 + · · · + pr = g, and

q = q1q2 . . . qr , q1 + q2 + · · · + qr = g.
Proposition 2: Suppose (23) is positive, then it is guaran-

teed that a set of sufficiently large d and d+ exist which ensure
the positiveness of all the coefficients of (η1+· · ·+ηr )d (η1++
· · · + ηr+)d+X .

Proof: This is referred to Theorem 2. Let us consider the
following matrix-valued function:

f (ζ1, ζ2 . . . ζ2r ) =
∑

ρ∈K(2g)

ζ
ρ1
1 ζ

ρ2
2 . . . ζ

ρ2r
2r Xρ, (24)

where ρ = ρ1ρ2 . . . ρ2r such that ρ1 + ρ2 + · · · + ρ2r = 2ρ.
Note that each ζ ρ11 ζ

ρ2
2 . . . ζ

ρ2r
2r is a monomial andK(2g) is the

set of 2r-tuples. If we rewrite

ζj =
ηj

2
, ζj+r =

ηj+

2
, j ∈ {1, 2 . . . r}

Xρ = 4gXp,q, p = ρ1ρ2 . . . ρr , q = ρr+1ρr+2 . . . ρ2r .

then X = f (ζ1, ζ2 . . . ζ2r ),
∑r

j=1 ρj = g,
∑r

j=1 ρj+r = g.
By the extension of scalar-valued function case in [36,

Th1], we can obtain that a set of sufficiently large d and d+
exist which ensures the positiveness of all the coefficients
of (η1 + · · · + ηr + η1+ + · · · + ηr+)d+d+X . Since (η1 +
· · · + ηr )d (η1+ + · · · + ηr+)d+X is a composition of part
of terms in (η1 + · · · + ηr + η1+ + · · · + ηr+)d+d+X , all
the coefficient of (η1 + · · · + ηr )d (η1+ + · · · + ηr+)d+X are
positive. �

We utilize the procedure in [35] based-on Pólya’s theorem
to further handle (15), (18), (19), and (20) in order to obtain
a non-conservativeness result.

For r-tuples p and p′, we represent p � p′ if pj ≥ p′j, j =
1, 2, . . . r . The definition for the r-tuple ej ∈ K(1) is ej =
0 . . . 0 1︸︷︷︸

jth

0 . . . 0. Let π (p) = (p1!)(p2!) . . . (pr !).

Theorem 3: For sufficiently large scalars d ≥ 0, d+ ≥ 0,
if there exist matrices Yp and symmetric matrices
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Sp, p ∈ K(g) satisfying inequalities (25)-(28), as shown at the
bottom of the page, then constraints (15), (18), (19), (20) are
guaranteed.

Proof: Consider the constraint (26) firstly. Let 2 =[
1 ?

x(k) Sg

]
. Since

∑r
j=1 hj = 1 and 2 = (h1 + h2 + · · · +

hr )d2, by applying the equality∑
p∈K(g+d)

hp11 h
p2
2 . . . h

pr
r
(g+ d)!
π (p)

= 1, p = p1p2 . . . pr ,

and utilizing the procedure in [35], 2 is rewritten as

2 =
∑

p∈K(g+d)

hp11 h
p2
2 . . . h

pr
r

(g+d)!
π (p) ?

(g+d)!
π (p) x(k)

∑
p′∈K(d),
p�p′

(d)!
π (p′)Sp−p′

 ,
∀p ∈ K(g+ d). (29)

It is clearly shown that 2 ≥ 0 is guaranteed by (26).
According to Proposition 2, the proof of (25) contains two

steps.

1) Handling Sg, Yg: Let

ϒ =


(1− α)Sg ? ? ? ?

0 αPw ? ? ?

A(k + i)Sg + B(k + i)Yg D(k + i) Sg+ ? ?

Q1/2Sg 0 0 γ I ?

R1/2Yg 0 0 0 γ I

 .

Since
∑r

j=1 hj = 1, ϒ = (h1 + h2 + · · · + hr )dϒ . By the
fact that

∑
p∈K(g+d+1)

hp11 h
p2
2 . . . h

pr
r
(g+ d + 1)!

π (p)
= 1, p=p1p2 . . . pr ,

ϒ is further rewritten as

ϒ =
∑

p∈K(g+d+1)

hp11 h
p2
2 . . . h

pr
r Xp, p = p1p2 . . . pr ,

Xp =
∑

p′∈K(d),
p�p′

∑
j∈{1,...,r},
pj>p′j

d !
π (p′)

(g+ d+)!
π (q)

∑
p′∈K(d),
p�p′

∑
j∈{1,...,r},
pj>p′j

d !
π (p′)


(1− α)Sp−p′−ej ? ? ? ?

0 0 ? ? ?

AjSp−p′−ej + BjYp−p′−ej Dj 0 ? ?

Q1/2Sp−p′−ej 0 0 0 ?

R1/2Yp−p′−ej 0 0 0 0



+
(g+ d + 1)!

π (p)



0 ? ? ? ?

0 (g+d+)!
π (q) αPw ? ? ?

0 0
∑

q′∈K(d+),
q�q′

(d+)!
π (q′) (Sq−q′ ) ? ?

0 0 0 (g+d+)!
π (q) γ I ?

0 0 0 0 (g+d+)!
π (q) γ I


≥ 0,

∀p ∈ K(g+ d + 1), ∀q ∈ K(g+ d+), (25)
(g+d)!
π (p) ?

(g+d)!
π (p) x(k)

∑
p′∈K(d),p�p′

(d)!
π (p′)Sp−p′

 ≥ 0, ∀p ∈ K(g+ d), (26)


∑

p′∈K(d), p�p′

(d)!
π (p′)Sp−p′ ?∑

p′∈K(d), p�p′

(d)!
π (p′)Yp−p′

(g+d)!
π (p) Z

 ≥ 0, Zss ≤ z2s,inf, s ∈ {1, 2, . . . ,m}, ∀p ∈ K(g+ d), (27)



∑
p′∈K(d),
p�p′

∑
j∈{1,...,r},
pj>pj ′

d !
π (p′)Sp−p′−ej ?

∑
p′∈K(d),
p�p′

∑
j∈{1,...,r},
pj>pj ′

d !
π (p′)9(AjSp−p′−ej + BjYp−p′−ej )

(g+d+1)!
π (p) 0

 ≥ 0,

0ss ≤ ψ
2
s,inf, s ∈ {1, 2, . . . , r}, p ∈ K(g+ d + 1). (28)

VOLUME 9, 2021 159981



B. Ding et al.: Robust Model Predictive Control for T-S Model With Bounded Disturbances—Pólya Approach

×


(1− α)Sp−p′−ej ? ? ? ?

0 0 ? ? ?

AjSp−p′−ej + BjYp−p′−ej Dj 0 ? ?

Q1/2Sp−p′−ej 0 0 0 ?

R1/2Yp−p′−ej 0 0 0 0



+
(g+ d + 1)!

π (p)


0 ? ? ? ?

0 αPw ? ? ?

0 0 Sg+ ? ?

0 0 0 γ I ?

0 0 0 0 γ I

 .
Then we can conclude that ϒ ≥ 0, i.e., constraint (18) is

guaranteed by Xp ≥ 0.
2) Handling Sg+: Since

∑r
j=1 hj+ = 1, by the fact∑

q∈K(g+d+)

hq11+h
q2
2+ . . . h

qr
r+

(g+ d+)!
π (q)

= 1, q=q1q2 . . . qr ,

we can obtain that

(h1+ + h2+ + · · · + hr+)d+Xp

=

∑
q∈K(g+d+)

hq11+h
q2
2+ . . . h

qr
r+Xp,q,

Xp,q =
(g+ d+)!
π (q)

∑
p′∈K(d),
p�p′

∑
j∈{1,...,r},
pi>p′i

d !
π (p′)

81

+
(g+ d + 1)!

π (p)
82,

where 81 and 82 are shown at the bottom of the page.
We can find that Xp,q ≥ 0 ensures Xp ≥ 0. Analogously,

it is easy to prove that (19), (20) are satisfied if (27), (28) hold,
respectively.

Thus, the proof is completed. �
In summary, the optimization problem (21) is reex-

pressed as

min
Sp,Yp,Z ,0,γ

γ s.t. (25)− (28). (30)

Similarly to (21), problem (30) can be solved via convex
optimization if α is pre-specified. However, note that the
computational burden of (30) can be much heavier but the
result is non-conservative.

Corollary 3.1: If the optimization problem (30) has a fea-
sible solution for a particular set of {g0, d0, d0+}, then it also
has for g > g0, d > d0, d+ > d0+.

Proof: see [35].
Remark 4: An alternative methodology to calculate the

HPP Lyapunov solution to (30) is by only increasing g and
choosing d = 0, d+ = 0. However, more decision variables
are emerged by increasing g while the increase in {d, d+}
brings the larger number of LMIs. If the computational effi-
ciency is a crucial factor, one can simply reduce g, d and d+
to a satisfactory level.

IV. ILLUSTRATIVE EXAMPLE
Example 1: Consider the following discrete-time nonlinear
model:

x1(k + 1) = x1(k)− x1(k)x2(k)+ (5+ x1(k))u(k)

+ 0.5x1(k)w(k)

x2(k + 1) = −x1(k)− 0.5x2(k)+ 2x1(k)u(k), (31)

where x1(k) ∈ [−β, β] with β > 0 and disturbance |w(k)| ≤
0.5. Let the membership functions h1 = (β + x1(k))/(2β)
and h2 = (β − x1(k))/(2β) be the combination coefficients.
Then, the nonlinear system (31) can be represented by the T-S
model in the form of (2) with

A1 =
[

1 −β

−1 −0.5

]
, A2 =

[
1 β

−1 −0.5

]
,

B1 =
[
5+ β
2β

]
, B2 =

[
5− β
−2β

]
,

D1 =

[
0.5β
0

]
, D2 =

[
−0.5β

0

]
.

The T-S model can be different by simply changing β.
Larger β implies the model in a larger region, which is more
difficult to control.

Choose Q = I ,R = I ,Pw = 2, α = 0.3, w(k) =
0.5sin(k). In order to show the effectiveness of the proposed
approach, (30) is solved for a variety of pairs {g, d, d+}.
For each different {g, d, d+}, there exists a crucial β0 that if
β ≤ β0, then (30) becomes feasible, i.e., the T-S model can
be stabilizable.

81 =


(1− α)Sp−p′−ej ? ? ? ?

0 0 ? ? ?

AjSp−p′−ej + BjYp−p′−ej Dj 0 ? ?

Q1/2Sp−p′−ej 0 0 0 ?

R1/2Yp−p′−ej 0 0 0 0

 ,

82 =



0 ? ? ? ?

0 (g+d+)!
π (q) αPw ? ? ?

0 0
∑

q′∈K(d+),q�q′

(d+)!
π (q′) (Sq−q′ ) ? ?

0 0 0 (g+d+)!
π (q) γ I ?

0 0 0 0 (g+d+)!
π (q) γ I


, ∀p ∈ K(g+ d + 1), ∀q ∈ K(g+ d+).
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TABLE 1. Feasible values of β0 ((30) is feasible when β ≤ β0).

Different pairs of {g, d, d+} and β0 are chosen for the
simulation and they are listed in Table 1. It can be inferred that
as the values of {g, d, d+} increase, the stabilizable range of
T-S model is enlarged by applying the approach in this paper.
Moreover, in order to get the same β0, one can increase g
while maintaining d and d+ to be zero, or increase the set
{g, d, d+} as a whole.

FIGURE 1. Trajectories of state via different g.

To illustrate the effectiveness of different g, three special
cases with {d = 0, d+ = 0} for the same T-S model are
considered, i.e., the case g = 0 that is applied in benchmark
work [24], the case g = 1 that is applied in another work [25],
and case g = 2 that is tuned in this paper. Choose β0 = 0.73,
x(0) = [0.73; 1]. The resultant trajectories of states and
inputs are shown in Figures 1 and 2, respectively. Define
the cumulated cost Jsum =

∑k
k1=0

[
‖x(k1)‖2Q + ‖u(k1)‖

2
R

]
to

assess the control performance. Calculate Jsum for g = 0,
g = 1, g = 2, respectively. As can be seen in Figure 3,
the value of Jsum tends to be smaller as g increases. Hence,
it is concluded that a larger value of g brings the performance
improvement.

To validate the effectiveness of {d, d+}, we consider three
different cases with fixed g = 1, i.e., {d = 0, d+ = 0} in
[25], {d = 3, d+ = 0}, and {d = 6, d+ = 3}. Choose β0 =
0.73, x(0) = [0.73; 1]. The resultant trajectories of states and
inputs are shown in Figures 4 and 5, respectively. Compute
Jsum for {d = 0, d+ = 0}, {d = 3, d+ = 0} and {d = 6, d+ =
3}, respectively, and the results are shown in Figure 6. It can
be observed that, the control performance is improved with
{d, d+} increasing.
Example 2: Consider another benchmark example, i.e.,

a continuous stirred tank reactor (CSTR) whose continuous-

FIGURE 2. The control input signal via different g.

FIGURE 3. Performances index Jsum via different g.

FIGURE 4. Trajectories of state via different pairs {d ,d+}.

time dynamics is

ĊA =
q
V
(CAf − CA)− k0exp

(
−
E
RT

)
CA + Dw

Ṫ =
q
V
(Tf − T )+

(−1H )
ρCp

k0exp
(
−
E
RT

)
CA

+
UA
VρCp

(Tc − T ) (32)
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FIGURE 5. The control input signal via different pairs {d ,d+}.

FIGURE 6. Performances index Jsum via different pairs {d ,d+}.

whereCA is the concentration of irreversible exothermic reac-
tion A in the reactor, T is the measurable reactor temperature,
Tc is the temperature of the coolant stream. The disturbance
|w| ≤ 1. The objective is to regulate CA and T by manip-
ulating Tc. Corresponding parameters used are summarized
in Table 2.

TABLE 2. System parameters.

The constraints are 328K ≤ Tc ≤ 348K, 340K ≤ T ≤
360K, 0 ≤ CA ≤ 1mol/l. Denote the non-zero equilibrium
as {Ceq

A ,T
eq,T eqc } where C

eq
A = 0.5mol/l, T eq = 350K,

T eqc = 338K. Define the state vector x = [CA − Ceq
A ,T −

T eq]T and the input u = Tc − T eqc . Denote the constraint

on x2 as x2 ≤ x2 ≤ x̄2. Moreover, define ϕ1(x2) =
k0exp(−(E/R)/(x2 + T eq)), ϕ2(x2) = k0[exp(−(E/R)/(x2 +
T eq)) − exp(−(E/R)/T eq)]Ceq

A
1
x2
, H1 =

1
2 (ϕ1(x2) −

ϕ1(x2))/(ϕ1(x̄2)−ϕ1(x2)),H2 =
1
2 (ϕ1(x̄2)−ϕ1(x2))/(ϕ1(x̄2)−

ϕ1(x2)), H3 =
1
2 (ϕ2(x2) − ϕ2(x2))/(ϕ2(x̄2) − ϕ2(x2)),

H4 =
1
2 (ϕ2(x̄2) − ϕ2(x2))/(ϕ2(x̄2) − ϕ2(x2)). By discretiz-

ing the continuous-time model with sampling period 1ts =
0.2minute, the nonlinear system (32) can be approximated
by the following four rules of T-S fuzzy model (h1 = H1,
h2 = H2, h3 = H3, and h4 = H4):

Rule 1: IF x2(k) is H1, THEN

x(k + 1) = σ
[
0.5347 −0.0073
27.7559 0.7640

]
x(k)+ σ

[
0

0.4184

]
u(k)+ σ

[
0.01
0

]
w(k)

Rule 2: IF x2(k) is H2, THEN

x(k + 1) = σ
[

0.8271 −0.0073
−2.8341 0.7640

]
x(k)+ σ

[
0

0.4184

]
u(k)+ σ

[
0.01
0

]
w(k)

Rule 3: IF x2(k) is H3, THEN

x(k + 1) = σ
[
0.6809 −0.0060
12.4609 1.0059

]
x(k)+ σ

[
0

0.4184

]
u(k)+ σ

[
0.01
0

]
w(k)

Rule 4: IF x2(k) is H4, THEN

x(k + 1) = σ
[
0.6809 −0.0013
12.4609 0.5220

]
x(k)+ σ

[
0

0.4184

]
u(k)+ σ

[
0.01
0

]
w(k)

Then choose Q = I , R = I , w(k) = sin(k).
We use another way to modify the model through multi-

plying submodels by σ simultaneously. The maximal values
of σ for the stabilizable T-S models are listed in Table 3.
From the Table 3, it is shown that with values of {g, d, d+}
increasing, σ becomes larger. Thus, the stabilizable model
range is enlarged.

TABLE 3. Feasible values of maximal σ .

To illustrate the effectiveness via different complexity
degrees g, we consider three cases for the same T-S model,
i.e., {g = 0, d = 0, d+ = 0}, {g = 1, d = 0, d+ =
0}, {g = 2, d = 0, d+ = 0}. Choose σ = 1,
x(0) = [0.2, 4]T . The trajectories of states and input are
depicted in Figures 7–8. Figures 7–8 show that the state
and input evolve to the neighborhood of the origin without
the constraints violation over the whole simulation horizon,
so the closed-loop system is nonquadratically bounded.
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FIGURE 7. Responses of states via different g.

FIGURE 8. The control input signal via different g.

FIGURE 9. Performance index Jsum via different g.

Choose Jg =
∑30

k=0

[
‖x(k)‖2Q + ‖u(k)‖

2
R

]
as the perfor-

mance criterion. Calculate Jg via g = 0, g = 1, g = 2,
respectively, and we obtain that J(g=0) = 154.3521, J(g=1) =
133.0989, J(g=2) = 110.1759 (see Figure 9). As being shown,
Jg reduces as the value of g increases. It implies that the
control performance is improved with increasing the value
of g.

V. CONCLUSION
In this paper, a less conservative MPC approach for T-S
fuzzymodel with bounded disturbance is proposed. A general
form of HPP Lyapunov function and the corresponding HPP
control law are adopted to extend the previous approaches
which are taken as special cases in this paper. The complexity
degree is allowed to be tuned in order to balance the control
performance and the computational efficiency. The proposed
technique brings less conservatism as well as enlarged sta-
bilizable model range. The systems subject to measurement
noises widely exist in practice, so our future attention is
on extending the proposed method to other systems, such
as Markov systems [38], [39], the linear parameter-varying
systems [40], and the networked control systems [41].
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