IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received October 6, 2021, accepted November 15, 2021, date of publication November 25, 2021,
date of current version December 6, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3130667

Intelligent SPARQL Query Generation for Natural
Language Processing Systems

YI-HUI CHEN 12, (Member, IEEE), ERIC JUI-LIN LU, (Member, IEEE), AND TING-AN OU3

! Department of Information Management, Chang Gung University, Taoyuan 33302, Taiwan
2Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
3Department of Management Information Systems, National Chung Hsing University, Taichung 402204, Taiwan

Corresponding author: Eric Jui-Lin Lu (jllu@nchu.edu.tw)
The work of Yi-Hui Chen was supported in part by the Ministry of Science and Technology of the Republic of China, Taiwan, under Grant

MOST 107-2221-E-182-081-MY3 and Grant MOST 110-2221-E-182-026-MY3; and in part by the Kaohsiung Chang Gung
Memorial Hospital.

ABSTRACT Developing question answering (QA) systems that process natural language is a popular
research topic. Conventionally, when QA systems receive a natural language question, they choose useful
words or phrases based on their parts-of-speech (POS) tags. In general, words tagged as nouns are mapped
to class entities, words tagged as verbs are mapped to property entities, and words tagged as proper nouns
are mapped to named entities, although the accuracy of entity type identification remains low. Afterward, the
relationship between entity types as RDF types determines the first element to be a pivot word to generate
the SPARQL (acronym for SPARQL protocol and RDF query language) query on the basis of the sequences
by a specific graph or tree structure, such as dependence tree or directed acyclic graph (DAG). However, the
generated SPARQL query is difficult to adapt to the given query request in that the sequences are decided by a
fixed structure. Unlike in previous research, SPARQL generation occurs automatically according to the entity
type identification and RDF type identification results. This study attempts to design a method that leverages
machine learning to learn human experiences in entity type identification as well as RDF-type identification.
We approach the problem as a multiclass classification problem and propose a two-stage maximum-entropy
Markov model (MEMM). The first stage identifies the entity type and the second identifies the RDF type for
the purpose of generating appropriate SPARQL queries to meet the query request. Along with the templates
designed for the two-stage MEMM model, we develop an automatic question answering prototype system
called QAWizard. The experimental results show that QAWizard outperforms all other systems in question
answering when evaluated on Linked Data version 8 (QALD-8) metrics.

INDEX TERMS Question answering system (QA), parts-of-speech (POS), SPARQL query, maximum-

entropy Markov model.

I. INTRODUCTION

For decades, experts from various fields have developed
technologies that enable computers to understand human lan-
guages and complete tasks assigned by humans. For example,
Siri from Apple Inc. and Google Assistant can understand
natural language in order to help carry out tasks. Although
human languages represent one of the best interfaces with
computer systems, they are extremely complex. So far, com-
puters have not yet been fully able to understand human
language. Natural language question answering (QA) has
thus become a popular research topic [1], [7]-[9], [23], [27].

The associate editor coordinating the review of this manuscript and

approving it for publication was Emre Koyuncu

158638

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

QA systems analyze users’ questions by using natural lan-
guage processing (NLP) technologies and converting these
questions (interrogative sentences) into query languages such
as Structured Query Language (SQL) or SPARQL Protocol
and RDF Query Language (SPARQL) suitable for back-
end databases or knowledge bases. Because questions often
include words with latent semantic meaning, and because
linked data can be used to recognize latent semantics,
researchers have employed linked databases (e.g., DBpe-
dia [28], FreeBase [3], and Yago [41]) to enable computers
to obtain correct answers to the questions.

A typical architecture of a natural language question
answering (QA) system based on linked data (QALD;
Figurel has four components: parsing, entity mapping,
SPARQL generation, and evaluation).

VOLUME 9, 2021

https://orcid.org/0000-0002-9932-0594
https://orcid.org/0000-0001-7953-5486
https://orcid.org/0000-0002-0726-4979

Y.-H. Chen et al.: Intelligent SPARQL Query Generation for Natural Language Processing Systems

IEEE Access

Natural .
. Entity
Language Parsing Mabpin
Question pping

FIGURE 1. A typical architecture of QALD systems.

When parsing a question, QALD systems utilize natural
language processing tools to identify words, parts-of-speech
(POS) tags, lemmas, dependency trees, and named-entity
recognition (NER). Next, based on those POS tags and prede-
fined lexical rules, mapping is performed between the chosen
words or phrases (denoted as w; hereinafter) and the enti-
ties in a linked database. After entities have been identified,
SPARQL queries can be generated based on the dependency
(or parsing) tree structure of the question [4], [15], [16],
[26]. Finally, the generated SPARQL queries are executed to
retrieve answers from the linked database, which is known as
evaluation.

Entities in linked databases are mostly classified into name,
property, and class entities. Named entities are generally
names of people, animals, events, and objects; property enti-
ties describe the relationships between named entities; and
class entities describe the class of an entity. In DBpedia,
each entity is represented in the form of a uniform resource
identifier (URI). For example, War and Peace is linked to
the URI http://dbpedia.org/resource/War_and_Peace and can
be denoted as dbr:War_and_Peace. Problems such as lexical
gaps and ambiguity [22] occur during entity mapping. As a
result, PATTY [37], ESA [17], and Word2vec [19] were
developed to alleviate these problems.

In the process of parsing, one of the most important things
is to identify useful w; from a question and assign them appro-
priate entity types in order to avoid excessive entity map-
pings. For example, if a word is correctly classified as a class
type, the word does not need to be mapped to either named
entities or property entities. Conventionally, the useful w; are
chosen based on their POS tags. Words tagged as nouns are
mapped to class entities, words tagged as verbs are mapped
to property entities, and words tagged as proper nouns are
mapped to named entities [16], [21], [44]. HAWK [44] fur-
ther considers either consecutive proper nouns (NNP) or two
common nouns connected by a conjunction to be one named
entity. Nonetheless, the accuracy of entity type identification
in past research remains low.

To produce SPARQL queries based on natural language
questions, studies have adopted dependency tree or directed
acyclic graph (DAG) to determine the relationships between
entities. For example, Freitas and Curry [15], [16] chose
an NER from questions as a pivot, and transformed the
dependency tree of questions based on the pivot into a
sequence structure called partial ordered dependency struc-
ture (PODS), where the pivot is the first element in the

VOLUME 9, 2021

SPARQL

) Answers
Generation

» Evaluation

sequence. Then, SPARQL queries are generated based on
the sequence. However, the generated SPARQL queries have
difficulty fulfilling query requests since the sequence is gen-
erated by a fixed structure.

In contrast to the aforementioned approaches, we consider
parsing to be a multiclass classification problem, whether
in the entity type identification process or RDF type iden-
tification process for SPARQL query generation. A popular
classification algorithm within machine learning, Maximum-
Entropy Markov Model (MEMM) [33], is utilized to design a
two-stage MEMM model to learn human experiences in iden-
tifying the entity type as well as the RDF type. Accordingly,
the SPARQL generation is automated on the basis of entity
type identification and RDF type identification results. The
first stage MEMM model enables us to correctly choose use-
ful w; from a question and determine their appropriate entity
types in order to be used in the entity mapping process. Then,
the second stage MEMM model is used to determine entities
in the same RDF triples based on the results of the first stage
classification model. Finally, predefined templates, designed
for the results of the second stage model, are employed for
SPARQL generation. Aside from the templates designed for
the second stage MEMM model, we developed an automatic
question answering prototype system called QAWizard.

This study uses the questions provided in the QALD chal-
lenges as the data source for testing and training. We use
QALD-8 datasets [45] of multilingual questions for train-
ing as well as performance measurement, but exclude com-
paratives, superlatives, and interrogative sentences requiring
URIs with skos:Category entities. Our prototype, QAwizard,
achieved outstanding performances on the metrics. The accu-
racy of the first and second stage learning models reached
86.94% and 98.73%; respectively. On the QALD-8 dataset,
the recall and F-measure of our system outperform those of
other QA systems evaluated.

The rest of the paper is organized as follows. In Section 2,
we describe QA-related studies. Section 3 explains the pro-
posed approach in detail. Section 4 outlines our experiments
and their results. Finally, Section 5 offers conclusions and
gives suggestions for possible development in the future.

Il. RELATED LITERATURE

As stated in the first section, this study attempted to design
an effective approach for choosing the right w; and assign-
ing them appropriate entity types in the process of parsing.
In addition, we employed a two-stage MEMM model, along

158639

IEEE Access

Y.-H. Chen et al.: Intelligent SPARQL Query Generation for Natural Language Processing Systems

DBRDict-A

Label

URL

War and Peace

http://dbpedia.org/resource/War_and_Peace

Barack Obama

http://dbpedia.org/resource/Barack_Obama

United States

http://dbpedia.org/resource/United_States

DBRDict-B
Label URL
Aena https://dbpedia.org/resource/ENAIRE
US.A http://dbpedia.org/resource/United_States

United States of American

http://dbpedia.org/resource/United_States

FIGURE 2. Example data for DBRDict-A and DBRDict-B.

with predefined templates, to generate appropriate SPARQL
queries in the process of SPARQL generation. Therefore,
we reviewed what had been done in these two processes in
subsections II-A and II-B.

A. PARSING

Conventionally, the useful w; are selected from a question
based on their POS tags. Only proper nouns, verbs, and nouns
were used. Then, Proper-Noun-tagged words are mapped to
named entities, Verb-tagged words are mapped to property
entities, and Noun-tagged words are mapped to either class or
property entities. If two nouns are connected by conjunctions,
HAWK [44] treats them as one proper noun and maps it to a
named entity. By using CoreNLP [32], Freitas and Curry [15]
selected w; tagged with NER and used it as a named entity.
However, for a question such as “What is in a chocolate chip
cookie?”, the above approaches failed to identify “chocolate
chip cookie’ as a named entity.

WDAqua [7]-[10] used n-gram in a question to iden-
tify all entities (including named entities, class entities,
and property entities) in knowledge bases. In addition to
mentioned entities, Intui3 [12] also resolved demonyms by
using a list of demonyns and their associated countries.
Similar to WDAqua, Lu et al. [31] also used n-gram in
a question to identify named entities. These named enti-
ties were collected from DBpedia and saved in local tables
known as DBRDict-A and DBRDict-B. These tables have
two columns, namely the label of named entities and its
URI, as shown in Figure 2. Both tables contain named
entities. The only difference is that named entities in
DBRDict-B contain a property dbo:wikiPageRedirects, but
that DBRDict-A does not. For example, if a question con-
tains “U.S.A.”, http://dbpedia.org/resource/U.S.A is found.
However, this URI contains no useful information, just a
redirect URI link which is http://dbpedia.org/United_States.
Because http://dbpedia.org/United_States is what we really

158640

need for the question, its URI in DBRDict-B is thus
http://dbpedia.org/United_States.

Hu et al. [23], [48] developed a QA system called
gAnswer2. gAnswer2 pre-built two large dictionaries,
namely entity mention dictionary and relation mention dic-
tionary. These dictionaries can be used to efficiently identify
named entities and property entities from a question. How-
ever, the entity types are recognized by fixed rules. The fixed
rules cannot adapt to all input sentences. As a result, the
accuracy of entity identification for the methods above are
low.

In contrast to the aforementioned approaches, Xser [46]
designed a structured perceptron to select the right w; and
assign them entity types. Xser considered four types of enti-
ties: named entity, category entity, relation entity, and vari-
able. They employed three types of features, namely lexical
features, POS tags features, and NER features. Although the
accuracy of the structured perceptron is unknown, we believe
this approach is viable and thus adopted in our work.

B. SPARQL GENERATION

SPARQL is a query language used to search data stored in an
RDF format repository. To generate SPARQL queries from
questions, Intui3 [12] used natural language processing tools
to split each question into chunks, and then processed chunks
in a right-to-left order to generate SPARQL queries. Freitas
and Curry [15], [16] converted a question into a so-called
partially ordered dependency structure (PODS). The con-
struction of PODS is based on the question’s dependency tree,
and nodes are merged or pruned based on pre-defined rules.
Then, a NER node is selected as a pivot and the generation of
the SPARQL query begins from the pivot. Xser [46] utilized
predicate-argument dependency structure to represent query
intention, and thus created a semantic DAG. Finally, they used
pre-defined rules to convert the query intention into SPARQL
queries.

VOLUME 9, 2021

Y.-H. Chen et al.: Intelligent SPARQL Query Generation for Natural Language Processing Systems

IEEE Access

QALD training

Entity Type Entity Type

Preprocessing

DBRDict-
A~B~C

Entity Type

dataset training Tagger Model

Tagging

Entity Mapping
WordNet

RDF

Entity-RDF RDF tag RDF Tagger
training dataset training Model ’

Training Phase

i
RDF SPARQ.L Evaluation
Templates Generation

Tagging

DBpedia

Answer Retrieval

Answer Type
Filtering

FIGURE 3. The architecture of the proposed approach.

gAnswer2 [23], [48] proposed a graph data-driven
approach to generate SPARQL queries. Firstly, a so-called
semantic query graph (SQG) is built based on the depen-
dency tree structure of a question. A score is assigned to
each sub-graph of SQG. Then, the top-k subgraphs are
converted into SPARQL queries. After obtaining all enti-
ties in a question, WDAqua [7]-[10] compiles all possi-
ble SPARQL queries that give a non-empty result. The
SPARQL query syntax is restricted to a maximum of two
simple RDF triples. The idea is simple: for every pair of
entities, a breath-first search of depth 2 is performed on
the knowledge base. Yus er al. [47] adopted SPARQL-like
query language to express user’s requests to access local
knowledge from the knowledge repositories. To efficiently
explore RDF data, Gorgojo et al. [20] proposed a tool,
named RDF Surveyor, that can deal with massive datasets.
Mehmood et al. [34] presented an index-based approach,
named QPPDs, to answer queries by exploiting linked data
from multiple and distributed datasets. Liu et al. [30] trans-
lated the natural language query into SPARQL query to rep-
resent the query intention as a corresponding query graph.
Smadi et al. [40] leveraged linked open data (LOD) for auto-
matic question answering systems in the Arabic language.
Using LOD, Chughtai et al. [5] proposed an ontology-based
model to recommend reviewers for papers. Since the tree
structure or query graph is constructed by a specific rule,

VOLUME 9, 2021

Query Phase

the past researches cannot be adaptively generated based on
different input sentences.

Ill. THE PROPOSED APPROACH

QAwizard, as shown in Figure 3, which is divided into two
phases: the training phase and the query phase. In the training
phase, the QALD dataset is used for training, and MEMM is
employed in learning both entity type and RDF tags, includ-
ing the entity type tagger model and the RDF tagger model.
The entity type tagger model attempts to learn the useful w;
and their entity types from training questions. Based on the
tagged results obtained in the entity type tagger model, the
RDF tagger model attempts to learn which entities should be
in one RDF triple and their positions (either subject, property,
or object) in the triple. After training phase, the components
in the query phase handle the input questions and answer the
questions using process such as preprocessing, entity type
tagging, entity mapping, RDF tagging, SPARQL generation,
evaluation, and answer filtering.

A. TRAINING PHASE

As shown in Figure 3, there are two learning models called
entity type tagger model and RDF tagger model. The input
for the entity type tagger model is a manually tagged dataset
based on QALD datasets. Figure 4 shows a snippet of a
QALD dataset, including a question, its SPARQL query, and

158641

IEEE Access

Y.-H. Chen et al.: Intelligent SPARQL Query Generation for Natural Language Processing Systems

"How many pages does War and Peace have?",

"question": [{
"language": "en",
"string":
"keywords": “how many, pages, War and Peace"
}
1,
"query” : {

“sparql”: “{SELECT DISTINCT ?n WHERE {dbr:War_and_Peace dbo:numberOfPages

El
"answers": [{
"results": {
"bindings": [{
"upit: {
"type": "uri",
"value": "1225"

H
}
H

FIGURE 4. An example QALD dataset.

the corresponding answers. The question segment contains
its language encoding, the question string, and the useful
keywords in the question string. The query segment contains
the SPARQL query that is used to look up the answers from
DBpedia. The answers segment contains the answers for the
question.

The main purposes of the entity type tagger model are to
determine useful keywords or phrases w; from the question
sentences and assign them the right entity types. Each word
or phrase is annotated as E, R, C, V, or N to represent
named entity, relation entity, class entity, variable, or non-
useful entity, respectively. Named entity, relation entity and
class entity indicates the name of object, property/relation of
object, and the class of an entity, respectively.

Take the question in Figure 4 as an example: because the
keyword pages is used as dbo:numberOfPages, which is a
property/relation, the entity type of pages is manually tagged
as R. If w; is a WH- words (or interrogatives), it is tagged as V.
If a w; is not matched to any entity in the SPARQL query, w; is
tagged as N. Since it is possible that one entity is represented
as more than one word, we use -B (Begin), -1 (Intermediate),
and -E (End) to concatenate consecutive words into one
entity. Noted that -E will be used only when the number
of consecutive words is greater than 2. For example, the
keywords ‘“How many” are WH- words, and both words
represent one entity. Thus, they are tagged as V-B and V-I;
respectively. As stated in the previous section, we extracted
named entities using DBRDict-A and DBRDict-B. There-
fore, the keywords ‘“War” and ‘‘Peace” are converted into
War_and_Peace and tagged as one entity type, E-B. Finally,
the question sentence is tagged as follows:

How/V-B many/V-I pages/R-B does/N War_and_Peace/E-B
have/N

As we can see from the example, the determination of
w; (including How many, pages, War and Peace) and their
entity types from a question has now become a multiclass

158642

n L3

classification problem. In this paper, we chose to use
MEMM.

In an MEMM model, as shown in Equation (1), we estimate
the probability that the destination state is a particular class,
c (i.e. entity types or RDF types). The destination state can
take on C different values corresponding to the classes c,
¢2,...,cc. Here, x is a word that needs to be tagged from
the features. A feature for tagging might be mapped to this
word starts from its j leading words and ends with its k
consecutive words (i.e., denoted by (j, k) in Table 1). For each
such feature f) (see the details of feature functions defined by
Equation (4) in Section III-A), we have a weight 8,,, where
y indicates the y-th feature in the entity type tagger model
and RDF type tagger model. Given the features and weights,
the trained models are to choose a tag for the word, a named
entity tag or an RDF tag, for example. The model chooses
the tag that has the maximum probability (in Equation (3);
the probability is of a particular class ¢ given the observa-
tion x). Z, as shown in Equation (2), is a normalization factor
specifying the number of features as N to make the value
of the weight dependent on the class ¢, denoted by B, .
Then, we want to find the parameters 8, which maximize
the likelihood of the M training samples for training our
two-stage models as shown in Equation (3).

1 N
plelr) = —exp ; Byfya (1
N
Z=Y ple)y=Y ep) Beyfra 2
C ceC y=1
M
B = arg max l_[P(c?|x®) 3)
p=1

The features we consider include words, their entity types,
and unknown words, such as word shape, suffix, and prefix.
The features of trained data as training set are summarized

VOLUME 9, 2021

Y.-H. Chen et al.: Intelligent SPARQL Query Generation for Natural Language Processing Systems

IEEE Access

in Table 1. For a given word w;, the first j leading words, w;
and k consecutive words are individually treated as a single
words, denoted as words(j, k). The combination of words(j, k)
is denoted as w-sequence(j, k). The entity tagged type of w-
sequence(j, k) is denoted as et-sequence(j, k). The entity types
of the first j leading words of w; combined with k consecutive
words are represented as et-pair(j, k).

TABLE 1. The feature set for both entity type tagger model and RDF
tagger model.

item| Feature Description

1 WOI‘dS(j,k) Wiq—gye - Wi—1, Wi, Wit1,. . Witk

2 w-sequence(j,k) Wi g Wi 1WWi41... Wit IN ONE
sequence

3 et-sequence(j,k) eti_j...eti_1etjet;1...etjqp in
one sequence

et;—; et;y in one sequence

w; et;4; in one sequence

wordshape; ;... wordshape; 1
wordshape; wordshape; 41

... wordshape; | 1,

suffix(w;) and prefix (w;)

4 et-pair(j,k)
5 word-et(0,j)
6 wordshapes(7,k)

7 Suffix/prefix

Among them, features word-shape, suffix and prefix are
very useful for realizing the unknown words [26]. They con-
vert lowercase letters to ‘x’, uppercase letters to ‘X’, and
numbers to ‘d’. For example, pages is converted to XXXXX.
Also, shorter word shape features are used. That is, consec-
utive ‘x’s, ‘X’s, or ‘d’s are removed, and pages is converted
to Xx.

We continue to use ‘“How many pages does War and Peace
have?”’ as an example, and the current word w; is assumed to
be pages. Based on the tagged result, w;_; is many, w;4 is
does, ef; is R-B, et;_1 is V-1, and et;1| is N. The features to
be used in MEMM, if w; is pages, are shown in in Table 2.

TABLE 2. An example feature set for the entity type tagger model.

item| Feature
1 words(-1,1)
2 w-sequence(-1,1)
3 et-sequence(-1,1)
4 et-pair(-1,1)
5
6
7

Description

3 words: many, pages, does

word sequence: "many pages does"
entity type sequence: "V-I R-B N"
its corresponding sequence: "V-I N"
word and its entity type: "pages N"
word shapes: XXXX, XXXXX, XXXX
suffix(w;):e, ge, age

prefix(w;): p, pa, pag

word-et(0,1)
wordshapes(-1,1)
Suffix/prefix

An RDF triple is of the form (Subject, Predication, Object)
where the subject and the predicate can only be URI, and
the object can be URI or literal. In general, relation entities
will be placed in the position of the property, and named
entities will be placed in the position of either the subject
or the object. Since SPARQL queries contain RDF triples,
and since the results of the entity type tagger include named
entity types, class entity types, and relation entity types,
we attempted to learn which entity types are in one RDF
triple. For example, in the previous example, we have tagged
results as follows:

V-B V.IR-BNE-BN

VOLUME 9, 2021

Because V and N are not used in SPARQL queries, and
because dbr:War_and_Peace and dbo:numberOfPages are in
one RDF triple as shown in the query segment of Figure 4,
we attempt to determine whether R and E are in one RDF
triple through the second stage of the classification model —
the RDF tagger model.

The RDF tagger model, determines the relationships
between the entities. Only E, R, and C are considered; in other
words, the other non-useful tags are removed after the first
stage. In the RDF tagger model, we consider RDF tags such
as S (Subject), O (Object), P (Property entity), and T (Class
entity). For S, O, and P, we also append a number, which is
used to indicate whether or not two tags are in the same RDF
triple. Thus, from the previous example, the training data has
now become:

E/S1R/P1.

The number 1 indicates both S and P are in the same
RDF triple. More than one RDF triple is required to obtain
correct answers for complex questions. For example, after
being processed by the entity type tagger and non-useful tags
are removed, the tagged result of “Who are the parents of the
wife of Juan Carlos I?”” is R R E. Because the RDF triples
(or SPARQL query) for “Who are the parents of the wife of
Juan Carlos 17" are

(dbr:Juan_Carlos_I_of _Spain, dbo:spouse, ans)
(?ans, dbo:parent, ?uri)

we have to manually tag R R E as follows:
R/P2 R/P1 E/S1

In other words, E (dbr:Juan_Carlos_I_of_Spain) should be
evaluated with the second R (dbo:spouse), not the first R
(dbo:parent), because they have the same number. The RDF
tag T is very special, because it is always converted into a
standalone RDF triple of the form (?uri, rdf:type, T). Thus,
there is no need to append a number to T. For example,
after processing by the entity type tagger and removing non-
useful tags, the tagged result of “Which movies did Kurosawa
direct?” is C E R. Since the RDF triples for “Which movies
did Kurosawa direct?”’ are:

(?uri, rdf:type, dbo:Film)
(?uri, dbo:director, dbr: Akira_Kurosawa)

we have manually tag C E R as follows:
C/T E/O1 R/P1

As we can see from the examples, the RDF model is now
a multiclass classification model, which is totally different
from other graph-based or tree-based approaches proposed so
far. The feature set for the RDF tagger model is identical to
the entity type tagger model. We continue to use ‘“‘How many
pages does War and Peace have?”” as an example; the input
training data for RDF tagger model is now E/S1 R/P1. If the
current word w; is assumed to be R, the features to be used in
MEMM are summarized in Table 3.

158643

IEEE Access

Y.-H. Chen et al.: Intelligent SPARQL Query Generation for Natural Language Processing Systems

TABLE 3. An example feature set for the RDF tagger model.

TABLE 4. A pre-processing example.

tem| Feature

Description

words(-1,1)

2 words: R, E

w-sequence(-1,1)

word sequence: "R E"

et-sequence(-1,1) entity type sequence: "P1 S1"

N N N B W —

et-pair(-1,1) the corresponding sequence: "S1"
word-et(0,1) RDF tag sequence: "R S1"
wordshapes(-1,1) 2 word shapes: X, X
Suffix/prefix suffix(w;): R

prefix(w;): R

The features listed in Table 1 are also the features of
the RDF tagger model. The features defined by Table 1
are for tagging RDF types, where the outcome results of
the first stage are the input data for the second stage.
Thus, the output of the entity type tagger model is the input of
the RDF tagger ones. For example, as shown in Table 3, the
w-sequence(—1, 1) is the entity type outputted by the first
stage (i.e. R E) and et-sequence(—1, 1) is the RDF type of
w-sequence(—1, 1). Take “How many pages does War and
Peace have?” as an example: the input training data for the
RDF tagger model is E/S1 R/P1. If the current word w; is
assumed to be R, the features in Table 2 are tagged with
RDF tags as the features used in MEMM and summarized in
Table 3. As in the previous statement, the question is tagged
as R/P1 E/S1. In Item 1 of Table 3, there is no w_1, and
the individual entity types of wy and w; are R and E so
that words(—1, 1) is described as R, E. Item 2 of Table 3
concatenates the results of Item 1; thus, w-sequence(—1, 1)
is described as R E. Item 3 (feature et-pair(—1, 1)) of Table 3
shows the words w_; and wi of RDF types as “” S1. The
word-et(0,1) feature indicates the word wg and the RDF type
of word w1, denoted as R S1. Meanwhile, wordshapes(—1, 1)
refers to the word shapes of w_1, wo and w; as X, X (since
w_p is “ 7). The Suffix/prefix feature depicts the current word
as R.

The features listed in Table 1 can be defined by
Equation (4), where y is the y-th item feature in Table 1 and
Table 3, o = <b, s>, and f, «() is the feature function. That
is, the features are expressed in pairs <b, s>, where b is the
feature of observation as the y-th item in Table 1 and s is
the destination state. Take the third item feature in Table 1:
the feature function is shown as f3et-sequence(-1,1), VIR-B N>
(“many pages does”, VI R-B N) = 1. That is, the et-
sequence(—1, 1) defined in Table 2 obtains the entity types
taggers of words retrieved by sentence o; ““many pages does”
as VI R-B N, identical to s. Thus, the result is 1.

Sia (01, 5t) = fi<b,s> (01, 5t) 4
1, ifb(o;) =s;ands=s
ﬁ<b,s>(0t, §1) = ! . ! ! (5)
0, otherwise
B. QUERY PHASE
The query phase, as shown in Figure 3, presents the pro-
cess for parsing the input question, assigning tags using
the trained entity type tagger model, finding named entity,

158644

Token POS tagger Lemmatization
‘Where WRB Where

in IN in

France NNP France

is VBZ is

sparkling 1 sparkling

wine NN wine

produced VBN produce

adding RDF tags using the trained RDF tagger model, gen-
erating SPARQL queries, and finally retrieving the answers,
as described in pre-processing, entity type tagging, entity
mapping, RDF tagging, SPARQL generation, evaluation and
answer type filtering, respectively.

1) PRE-PROCESSING

After both the entity type tagger model and RDF tagger model
have been trained, we can start processing question sentences.
Pre-processed of an input question sentence includes tok-
enization, Part-of-Speech (POS) tagging, and lemmatization.
After tokenization, the sentence can be divided into several
tokens. Each token is lemmatized and then tagged with a
POS tag. For example, the results after pre-processing is
performed on the sentence “Where in France is sparkling
wine produced?” is shown in Table 4.

To efficiently extract named entities from the sentence,
we continue to use the pre-defined database DBRDict-A and
DBRDict-B [31] as shown in Figure 2, which it contains label
and its corresponding URL to present named entities explored
by URL from DBpedia. If more than one token is matched to
either DBRDict-A or DBRDict-B, they are concatenated with
the notation _. For example, because the tokens *“‘sparkling”
and “wine” in Table 4 can be found in DBRDict-A, they are
concatenated into one: sparkling_wine. Therefore, after pre-
processing, we have:

Where in France is sparkling_wine produced

Next, we use the entity type tagger model obtained in the
training phase. As a result, the sentence is tagged as:

Where/V-B in/N France/E-B is/N sparkling_wine/E-B
produced/R-B.

As stated previously, the main purposes of the entity type
tagger model are to select import w; from the sentence and
determine their entity types. Once both have been determined,
they can be used to map appropriate entities in the DBpedia.
Since only named entities (E), class entities (C), and relation
entities (R) are considered, the process of entity mapping,
as shown in Figure 3, is described below.

2) ENTITY MAPPING

Before going into detail, some notations should be defined.
For every pre-processed sentence, important w; and their
entity types, called tokens, will be used to look up appropriate

VOLUME 9, 2021

Y.-H. Chen et al.: Intelligent SPARQL Query Generation for Natural Language Processing Systems

IEEE Access

entities in the DBpedia. The set of tokens is denoted as 7K,
and tk; € TK, for 1 < i < s, where s is the size of TK. For
the aforementioned example, 7K contains three tokens: tkj is
France/E, tk is sparkling_wine/E, and tk3 is produced/R.
In other words, each token contains w; and its entity type
concatenated with a slash. Next, based on different types of
tk;, the tokens are applied in the lookup for appropriate entity
mapping in the DBpedia as demonstrated in Algorithm 1.
If the entity type is marked E, we match tk; with named
entities, and if the type is tagged with C, it is matched to
the category entities. Otherwise, the type is marked R, and
matched to attribute entities.

Algorithm 1 Entity Mapping Algorithm
1: procedure ENTITYMAPPING(tk;)
2: if tk; is tagged as E then
if tk; # labels in DBRDict-A or DBRDict-B then
if tk; has dbo:wikiPageDisambiguates then
Let Vo; be the named entities.

if tk; € labels in DBRDict-C then
Let matched Labels be the named entities

3
4
5
6: else if tk; is tagged as C then
4
8
9 else if 7k] € labels in DBRDict-C then

10: Let matched labels be the named entities
11: else if rk; is tagged as R then

12: if tk; € labels in PATTY then

13: Let the matched labels be the name entities

For named entities, because both DBRDict-A and
DBRDict-B contain their URIs and shown in Figure 2,
it is not necessary to query DBpedia again. However,
on occasion, new named entities are tagged by the entity
type tagger model. For these named entities, the follow-
ing steps are required: tk; is uesed to look up entities
in DBpedia, and the entities found (their rdfs:label val-
ues contain tk;) will be checked to see if they contain a
dbo:wikiPageDisambiguates property. If they do, all object
values (ie. URIs) of dbo:wikiPageDisambiguates, a object’s
URI is denoted by o;, will be used as named entities, instead
of the original named entity. For example, if tk; is Mary, the
result of entity mapping is http://dbpedia.org/resource/Mary.
Because http://dbpedia.org/resource/Mary contains a prop-
erty dbo:wikiPageDisambiguates, and the property contains
more than 30 object values (URIs) including (to name a few)
dbr:Mary_Queen_of_Scots and dbr:Mary_II_of_England, all
of the URIs are used as the entity mapping results of Mary,
but http://dbpedia.org/resource/Mary itself is not used.

To reduce query overhead for DBpedia, we also created a
local database called DBRDict-C. DBRDict-C is similar to
DBRDict-A, but contains all class entities defined in DBpe-
dia. Similar to named entities, tk; of type C are mapped to
the “Label” column of DBRDict-C via (sbu)string match-
ing. If not found, both synonyms and derivatively related
forms of tk;, denoted by tk;, are mapped to the DBRDict-C
again. For example, if 7k; is car, nothing can be found in the

VOLUME 9, 2021

DBRDict-C. However, the synonyms of car in WordNet
include auto, automobile, machine, and motorcar; and auto-
mobile can be mapped to dbo: Automobile in the DBRDict-C.

The tk; of type R often cannot be directly mapped to a
DBpedia entity due to lexical gaps [22]. Typically, a dataset
such as PATTY [37] or gAnswer2 [23] is used to resolve this
type of problem. In essence, PATTY searched for important
co-occurrences (or relatedness) of verbs (the ‘““Pattern” col-
umn of Table 5) and relation entities (the “Relation” column
in Table 5) from DBpedia, and generated datasets to resolve
lexical gaps. A sample snippet of data extracted from PATTY
is shown in Table 5. For the same example, the tk; produced
by type R is looked up in the dataset, and dbp:manufacturer,
dbo:musicComposer, as well as dbo:wineProduce can be
obtained.

TABLE 5. Example segments of relations and their corresponding
patterns.

pattern relation

Produced dbp:manufacturer
Produced dbo:musicComposer
Produced dbo:wineProduce

3) RDF TAGGING

To generate appropriate SPARQL queries, we not only need
the entity URIs from the entity mapping process, but also the
tagged results from the RDF tagger model. After removing V
and N, the output of the entity type tagger will be processed
by the RDF tagger. For the example in which France/E,
sparkling_wine/E, and produced/R, the tagged result of EE R
is E/S2 E/S1 R/P1. After removing the digit numbers, we have
two groups. The first group is S, and the second group is S P.

4) SPARQL GNERATION

Based on all possible tagged results, we designed 7 types
of RDF triple templates, which are summarized in Table 6.
The design rules for the templates are quite straightforward:
Each group of an RDF tagged result will have two RDF
triples because S or O can be placed in either subject or
object positions. The only exception is T, which is a class
entity. Because many evaluated QALD systems (if not all)
can only process simple questions, it is assumed that only
simple questions will be processed in our system. Thus, only
the subject or the object of an RDF triple can be an answer.
As a result, we can put a variable ?ans in either subject or
object position. Because T can only be placed in the object
position, (?ans, rdf:type, T) was also designed.

Because S, O, P, and T all have known URISs from the entity
mapping processing, they will be replaced with URIs in RDF
triple templates. Variables are used in the positions without
known entities. For ease of reading, we use variable names
such as ?P, 7S, and 70 to represent property, subject, and
object; respectively.

For example, by looking at Table 6 above, the first group S
is mapped to the template number 4, and thus two RDF

158645

IEEE Access

Y.-H. Chen et al.: Intelligent SPARQL Query Generation for Natural Language Processing Systems

TABLE 6. The RDF triple templates.

Item | RDF tags RDF triple templates
1 SP (S, P, 7ans), (?ans, P, S)
2 PO (O, P, 7ans), (?7ans, P, O)
3 SO (S, 7P, 0)

0S (O, ?P, S)
4 S (?ans, ?P, S), (S, ?P, ?ans)
5 (0] (?ans, ?P, O), (O, ?P, ?ans)
6 P (?ans, P, ?0), (7S, P, ?ans)
7 T (?ans, rdf:type, T)

triples — (?ans, ?p, S) and (S, ?p, ?ans) — are created. Then, the
second group S P is mapped to the template item number 1,
and two RDF triples — (S, P, ?ans) and (?ans, P, S) — are
created. Finally, each RDF triple in one group will be con-
catenated into one RDF triple in another group. As a result,
four SPARQL queries are created which are shown in Table 7.

TABLE 7. Four SPARQL query templates.

Number | Templates of SPARQL
queries

QT1 (S,P,?ans), (?ans,?p,S)
QT2 (S,P,?ans), (S,?p,?ans)
QT3 (?ans,P,S), (?ans,?p,S)
QT4 (?ans,P,S), (S,?p,?ans)

Based on the results of entity mapping, it is assumed that
France and sparkling_wine are mapped to dbr:France and
dbr:Sparkling_wine, respectively. Additionally, produced
is mapped to dbo:musicComposer and dbo:wineProduce.
Noted that there are more than two relation entities in
practice. By plugging these entity URIs into four SPARQL
query templates shown in Table 7, we have eight SPARQL
queries, which are listed in Table 8. For example, since
dbr:France was tagged as S2, it would be plugged into
(?ans, ?p, S) and become (?ans, ?p, dbr:France) in QT1.
Similarly, dbr:Sparkling_wine and dbo:musicComposer
were tagged as S1 and PI1, respectively. They would be
plugged into (S,P,?ans) and become (dbr:Sparkling_wine,
dbo:musicComposer, ?ans). The SPARQL query generated
for this template is shown in QR1 of Table 8, including
four fields, template number (T_no), SPARQL query number
(SQ_no), SPARQL queries (SQ), and query results (QR).
After all SPARQL queries are generated, they will be used to
query the remote DBpedia knowledge base. The query results
are shown in the last column (QR) of Table 8. As you can see,
there only one result is obtained.

5) EVALUATION AND ANSWER TYPE FILTERING

If there is more than one query result, it is necessary to
check whether the result is correct. We used w; which is
tagged as V to determine if a result is of the right rdf:type.
If w;is “What”, “Which”, “Give”, “List”, or “Show”,
it is not necessary to check result types. If w; is “Who”,
the appropriate rdf:type in DBpedia is either dbo:Person or

158646

TABLE 8. Example SPARQL queries and their result.

T_no| SQ_no| SQ QR
QTI QRI1 (?ans ,?p, dbr:France)
(dbr:Sparkling_wine ,
dbo:musicComposer,
?ans)
QR2 (?ans, ?p, dbr:France)
(dbr:Sparkling_wine,
dbo:wineProduced, ?ans)
QR3 (dbr:France, ?p, ?ans)
(dbr:Sparkling_wine,
dbo:musicComposer,
?ans)
QR4 (dbr:France, ?p, ?ans)
(dbr:Sparkling_wine,
dbo:wineProduced, ?ans)
QR5 (?ans, ?p, dbr:France)
(?ans,dbo:musicComposer,
dbr:Sparkling_wine)
QRO (?ans, ?p, dbr:France)
(?ans,dbo:wineProduced,
dbr:Sparkling_wine)
QR7 (dbr:France, ?p, ?ans)
(?ans,dbo:musicComposer,
dbr:Sparkling_wine)
QRS (dbr:France, ?p, ?ans)
(?ans,dbo:wineProduced,
dbr:Sparkling_wine)

no result

no result

QT2

no result

no result

QT3

no result

dbr:Loire_Valley_(wine)

QT4

no result

no result

dbo:Organisation. If w; is “Where”, the appropriate rdf:type
is dbo:Place. If w; is “When”, the appropriate rdf:type is
either xsd:date or xsd:dateTime. If w; is of type auxiliary
verb (ex. do/does, be, etc.), the result is either True or False.
In our system, if the query result is not empty, “True” is
given; otherwise, “False” is given. If the first word of w; is
“How”, the query result is generally a value. Thus, we first
check to see whether the query result is a literal of numeric
type such as xsd:integer. If none exists, we count the number
of results to obtain a number. For example, if a book entity
has the property dbo:numberOfPages and its value is of type
xsd:integer, then the value then is our answer. If a person
entity has the property dbo:child and its value is not a number,
we then count the number of objects as our answer.

If the query is “Where in France is sparkling wine pro-
duced?”, “Where” was tagged as V by the entity type tag-
ger, and thus the type of query result should be of type
dbo:Place. Because the query result of QR6 in Table 8 is
dbr:Loire_Valley_(wine), and dbr:Loire_Valley_(wine) is of
type dbo:Place, it is our final answer.

IV. EXPERIMENTAL RESULTS

Java was employed to develop the system used in this study.
During preprocessing, Stanford CoreNLP 3.9.1 was used
in preprocessing for word segmentation, POS tagging, and
lemmatization. The Part-of-Speech Tagger 3.9.1 developed
by Stanford was used for MEMM training.

A. DATA

The multilingual question datasets from both QALD-7 and
QALD-8 were used as the experiment datasets. The QALD-7
dataset comprises 241 sentences in the training set and

VOLUME 9, 2021

Y.-H. Chen et al.: Intelligent SPARQL Query Generation for Natural Language Processing Systems

IEEE Access

43 sentences in the test set. These 43 sentences contain com-
paratives, superlatives, and skos:Category entities. Because
this study did not consider the aforementioned sentence types,
those types of sentences were excluded, leaving 23 questions
in the test set. Similarly, the QALD-8 dataset has 219 sen-
tences in the training set and 41 sentences in the test set. Only
33 of 41 sentences were used in the experiments. We con-
ducted the query experiment between June 28 and August 10,
2019 utilizing the official online DBpedia service.

Additional datasets employed including gAnswer?2,
DBRDict-A, DBRDict-B, and DBRDict-C. The so-called
gAnswer2 dataset generated by Hu er al. [23] is basically
an up-to-date version of PATTY based on DBpedia 2016.
The tables DBRDict-A, DBRDict-B, and DBRDict-C were
created based on DBpedia 2016, and they contain 4,872,244
named entities, 6,883,195 entities with URL redirection, and
760 class entities, respectively.

B. EXPERIMENTS

In Experiment-1, we calculated the accuracy of the trained
entity-type tagger model. In Experiment-2, we calculated the
accuracy of the trained RDF tagger model. In Experiment-3,
we fully tested our system and compared the performance of
our system with other QALD systems using the same test set.

1) EXPERIMENT-1: ACCURACY OF THE ENTITY-TYPE TAGGER
MODEL

As stated previously, we designed many features for the
entity-type tagger model. Because our training dataset was
small (a couple of hundred sentences), unknown word fea-
tures, such as word-shapes, prefix, and suffix, were used.
Because the feature functions for natural language processing
have been well developed, we used L3W feature set, which
is similar to left-3-words as suggested by the Stanford devel-
opment team. In addition to L3W, we also used L5W, B3W,
and BSW. All four different feature sets are listed in Table 9.

TABLE 9. Four different feature sets.

Name of feature set Features

L3W words(-1,1), et-sequence(2) ,
wordshapes(-1,1), suffix/prefix

L5W words(-2,2), et-sequence(2) ,
wordshapes(-2,2), suffix/prefix

B3W words(-1,1), et-sequence(-2,2),

et-pair(-1,1),word-et(0,-1),word-et(0,1),
w-sequence(-1,1),wordshape(-1,1), suffix/prefix
B5W words(-2,2), et-sequence(-2,2),
et-pair(-1,1),word-et(0,-1),

word-et(0,1), w-sequence(-1,1),
wordshapes(-2,2), suffix/prefix

The accuracy of entity-type tagger model is defined as
follows:
the number of words labeled with correct tags

accuracy = -
the number of words in a sentence

(6)

For example, if the question “How many pages does
War and Peace have?” was tagged as How/V-B many/V-1

VOLUME 9, 2021

pages/C-B does/N War_and_Peace/E-B have/C-B, “‘pages”
was incorrectly tagged as C which it should have been
tagged as R based on the answer provided by QALD. Sim-
ilarly, “have” was tagged as C, yet “have” is not used in
SPARQL query as shown in Figure 4, suggesting that its
correct entity-type tag should be N. To calculate the accuracy
of entity type tagging for this example, the number of words
with correct tags is 6 and the total number of words in this
example is 8. Therefore, the accuracy for this example is 6/8.

The experimental results for QALD-8 using L3W, L5W,
B3W, and BSW are summarized in Table 10, including
three fields, dataset, name of feature set (NFS), and average
accuracy of entity-type tagging (Avg_accuracy). It can be
easily seen that BSW has the highest accuracy on both the
QALD-7 (89.86%) and QALD-8 (86.94%) datasets. Accord-
ingly, we conducted the subsequent experiments using the
entity-type tagger model trained using BSW.

TABLE 10. Accuracy of the entity-type tagger model using different
feature sets.

Dataset NFS Avg_accuracy

L3W 84.78%

L5W 86.23%
QALD-T 53w 86.23%

B5W 89.86%

L3W 85.71%

L5W 86.94%
QALD-S 53w 86.94%

B5W 86.94%

2) EXPERIMENT-2: ACCURACY OF THE RDF TAGGER MODEL
The feature sets used in Experiment-1 are also employed in
this experiment. The accuracy of the RDF tagger model was
defined as follows:

the number of correct RDF tags

ACCUrACYRDF = N
4 the number of RDF tags in a sentence

Accuracy was calculated by comparing the tagging results
with the standard answer in the datasets. The correctness of
RDF tags was determined as follows:

a) When the entity-type tagging results in R, C, or E, the
correct corresponding RDF tag should be P, T, or S/O;
respectively.

b) When any two entities are in one RDF triple, their RDF
tags should have the same digit number.

For example, if the question “How many pages does War
and Peace have?” was tagged as V-B V-1 R-B N E-B N by
the entity-type tagger and subsequently tagged as P1 S1 by
the RDF tagger, the accuracy would be 1 because R and E
were tagged as P and S/O, and P and S has the same digit
number of 1. Noted that if the RDF tagging result were P2 S2
for the question, the accuracy would still be 1 because they
still have the same digit number. However, if the RDF tagging
results in T S1, the R tag would have been incorrectly tagged
as T, and the accuracy would be 1/2.

158647

IEEE Access

Y.-H. Chen et al.: Intelligent SPARQL Query Generation for Natural Language Processing Systems

As shown in Table 11, regardless of which feature set was
used, the RDF tagger model has the same performance on
both QALD-7 and QALD-8. For consistency, the RDF tagger
model trained using BSW (identical to the entity type model)
was used in subsequent experiments.

TABLE 11. Accuracy of the RDF tagger model using different feature
functions.

Dataset NFS Avg_accuracy

3W 97.92%

5W 97.92%
QALD-7 B3W 97.92%

B5W 97.92%

3W 9B.73%

5W 98.73%
QALD-8 B3W 9B.T3%

B5W 9B.73%

3) EXPERIMENT-3: THE OVERALL PERFORMANCE OF THE
PROPOSED SYSTEM

QAWizard utilized a two-stage MEMM model to resolve the
problems of entity type identification and SPARQL query
generation as a multiclass classification problem. In Exper-
iment 3, we also assessed the overall performance of our sys-
tem using the QALD-8 test multilingual question set. As done
in Usbeck er al. [45], QAKIS, gAnswer2, and WDAqua were
evaluated in QALD-8, with both gAnswer and WDAqua
winning the QALD-8 challenge.

The performance of a QALD system can be measured
based on precision, recall, and Fl-measure as proposed by
Usbeck et al. [45]. The recall and precision were defined as
follows, where gold standard answers refer to the correct
answers of the questions in the QALD test set:

number of correct system answers for ¢

Recall(q) =
ecall(g) number of gold standard answers for ¢

®)

. number of correct system answers for ¢
precision(q) =

number of system answers for g

€))

We also assess the overall performance of our system
using the QALD-8 test multilingual question set. As found
in Usbeck et al. [45], QAKIS, gAnswer2 and WDAqua were
evaluated in QALD-8, and both gAnswer and WDAqua won
the QALD-8 challenge. The system QAKIS, gAnswer, and
WDAqua were all design for answering simple question with-
out comparatives, superlatives, and interrogative sentences
requiring URIs with sko:Category entities.

Table 12 shows the average of precision (Avg_P), average
of recall (Avg_R), and average of the F1-measure (Avg_F1).

TABLE 12. Comparison of the proposed system (QAWizard) with other
QA systems using the QALD-8 test set of multilingual questions.

System Avg_P Avg_R Avg _F1
QAWizard 0.315 0.633 0.421
QAKIS 0.061 0.0528 0.0566
gAnswer2 0.3862 0.3902 0.3882
WDAqua 0.3912 0.4065 0.3987

158648

The performances of QAWizard’s Avg_R and Avg_F1 were
63.3% and 42.1%, respectively, indicating that the proposed
QAWizard outperformed QAKIS, gAnswer2, and WDAqua.

However, the Avg_P of our system is slightly lower than
those of gAnswer2 and WDAqua. After further analysis,
we observed that the process of entity mapping due to the
limitations of PATTY design. For example, in a QALD-8
sentence ‘“‘How much is the total population of the European
Union?”, although our system correctly tagged ““total popu-
lation” as a property P, it failed to find the correct property
entity “dbp:populationTotal” due to the limitation of PATTY
(neither ““total” nor ‘““population” is a verb). It is likely that
both gAnswer2 and WDAqua have built dictionaries that
considered both verb and noun words.

In summary, the impacts of the proposed work are as

follow:

1) Unlike the past researches, the entity type identifica-
tion and RDF tagger identification in this work are
dynamic processes trained by the QALD-7 and QALD-8
datasets. Thus, the entity type and RDF tagger are adap-
tive according to the experiences of the training data.
The average accuracy of entity type identification on
QALD-7 and QALD-8 are high; 86.77% and 86.63%,
respectively. The accuracy of RDF tagger identifica-
tion remains high at 98.73%. The positive outcomes in
the experimental results confirm the feasibility of our
approach.

2) Instead of utilizing the dependency tree structure
of questions, SPARQL generation is automated to
pre-define the general syntax generated on the basis of
entity type identification and RDF type identification
results.

V. CONCLUSION

The objective of a QA system is to understand a question
entered by a user and then answer that question. However,
many challenges exist in developing a robust QALD sys-
tem [22]. In past researches, the accuracy of entity type
identification has remained low. Moreover, prior SPARQL
query generation techniques have been based on sequences
produced by a fixed rule, such as a dependency tree or
DAG, such that they cannot adapt to all question statements.
To resolve such issues, this paper studies how to identify
correct words or phrases from natural language questions,
assigning appropriate entity types to them, and then deter-
mine the relationships between entities.

We proposed a two-stage classification model that includes
entity-type and RDF tagging models. The entity type tag-
ging model enables the designed system to select the correct
words/phrases from natural language questions and assign the
correct entity types to them. The RDF tagging model enables
the system to determine the relationships between entities
identified in the first stage, so that they can be used to generate
SPARQL queries based on the designed templates.

The experimental results demonstrate that the tagger mod-
els used in the first and second stages improve accuracy

VOLUME 9, 2021

Y.-H. Chen et al.: Intelligent SPARQL Query Generation for Natural Language Processing Systems

IEEE Access

rates to 89.86% and 98.73%, respectively. Based on the RDF
tagging model and the designed templates, the F1-measures
for QALD-8 of the proposed system is 0.421. The outstanding
performance surpasses that of all other QALD-8 systems
evaluated.

Although the performance of the proposed system is
strong, there is room for further improvement. For instance,
the architecture of the proposed system needs to be modi-
fied so that it can work with the evaluation tool GERBILL
QA platform [44]. Furthermore, the execution time of the
proposed system might last up to a few hours because too
many entities are chosen during the process of entity map-
ping; therefore, a pruning mechanism is required. Lastly, like
most QALD systems developed so far, the proposed system
cannot process complex questions, such as comparatives and
superlatives questions. Further research should be conducted
to overcome the aforementioned limitations.

REFERENCES

(1]

[2]

[3]

[4]
[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

A. Ait-Mlouk and L. Jiang, “KBot: A knowledge graph based ChatBot
for natural language understanding over linked data,” IEEE Access, vol. 8,
pp. 149220-149230, 2020.

C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and
S. Hellmann, “DBpedia—A crystallization point for the web of data,” Web
Semantics, vol. 7, no. 3, pp. 154-165, 2009.

K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase:
A collaboratively created graph database for structuring human knowl-
edge,” in Proc. ACM SIGMOD Int. Conf. Manage. Data (SIGMOD), 2008,
pp. 1247-1250.

Y. Chen, M. M. Kokar, and J. J. Moskal, “SPARQL query generator
(SQG),” J. Data Semantics, vol. 10, nos. 3—4, pp. 291-307, Dec. 2021.
G. R. Chughtai, J. Lee, M. Shahzadi, A. Kabir, and M. A. S. Has-
san, “An efficient ontology-based topic-specific article recommendation
model for best-fit reviewers,”” Scientometrics, vol. 122, no. 1, pp. 249-265,
Jan. 2020.

M. Collins, “Discriminative training methods for hidden Markov models:
Theory and experiments with perceptron algorithms,” in Proc. ACL-Conf.
Empirical Methods Natural Lang. Process.-Assoc. Comput. Linguistics,
vol. 10, 2002, pp. 1-8.

D. Diefenbach, A. Both, K. Singh, and P. Maret, “Towards a question
answering system over the semantic web,” Semantic Web, vol. 11, no. 3,
pp. 421-439, Feb. 2019.

D. Diefenbach, V. Lopez, K. Singh, and P. Maret, “Core techniques of
question answering systems over knowledge bases: A survey,” Knowl. Inf.
yst., vol. 55, no. 3, pp. 529-569, 2017.

D. Diefenbach, K. Singh, and P. Maret, WDAqua-Core0: A Question
Answering Component for the Research Community, Semantic Web Eval-
uation Challenge. Springer, 2017, pp. 84-89.

D. Diefenbach, K. Singh, and P. Maret, “WDAqua-corel: A question
answering service for RDF knowledge bases,” in Proc. Ist Int. Workshop
Hybrid Question Answering With Structured Unstructured Knowl. (HQA),
Lyon, France, Apr. 2018, pp. 1087-1091.

C. Dima, “Intui2: A prototype system for question answering over linked
data,” in Proc. CLEF Working Notes, 2013, pp. 1-12.

C. Dima, “Answering natural language questions with intui3,” in Proc.
CLEF Working Notes, 2014, pp. 1201-1211.

L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, and J. Sachs,
“Swoogle: A search and metadata engine for the semantic web,” in
Proc. 13th ACM Int. Conf. Inf. Knowl. Manage., Washington, DC, USA,
Dec. 2004, pp. 652—659.

D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. A. Kalyanpur,
and N. Schlaefer, “Building Watson: An overview of the DeepQA project,”
Al Mag., vol. 31, no. 3, pp. 59-79, 2010.

A. Freitas and E. Curry, “Natural language queries over heteroge-
neous linked data graphs: A distributional-compositional semantics
approach,” in Proc. 19th Int. Conf. Intell. User Interface, Feb. 2014,
pp. 279-288.

VOLUME 9, 2021

(16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

(24]

[25]

[26]

(27])

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(37]

(38]

(39]

(40]

A. Freitas, J. G. Oliveira, S. O’Riain, J. C. P. da Silva, and E. Curry,
“Querying linked data graphs using semantic relatedness: A vocabu-
lary independent approach,” Data Knowl. Eng., vol. 88, pp. 126-141,
Nov. 2013.

E. Gabrilovich and S. Markovitch, “Computing semantic relatedness using
Wikipedia-based explicit semantic analysis,” in Proc. Int. Joint Confer-
ences Artif. Intell. (IJCAI), Catalonia, Spain, Jan. 2011, pp. 1606-1611.
D. Gerber and A. C. N. Ngomo, “Extracting multilingual natural-language
patterns for RDF predicates,” in Proc. Int. Conf. Knowl. Eng. Knowl.
Manage., Berlin, Germany: Springer, Oct. 2012, pp. 87-96.

Y. Goldberg and O. Levy, “word2vec explained: Deriving Mikolov
et al’s negative-sampling word-embedding method,” Feb. 2014,
arXiv:1402.3722.

G. Vega-Gorgojo, L. Slaughter, B. M. Von Zernichow, N. Nikolov, and
D. Roman, “Linked data exploration with RDF surveyor,” IEEE Access,
vol. 7, pp. 172199-172213, 2019.

S. He, S. Liu, and J. Zhao, “CASIA@ QALD-3: A question answering
system over linked data,” in Proc. CLEF Working Notes, 2013, pp. 1-9.
K. Hoffner, S. Walter, E. Marx, R. Usbeck, J. Lehmann, and A. Ngonga,
“Survey on challenges of question answering in the semantic web,”
Semantic Web J., vol. 8, no. 6, pp. 1-26, 2017.

S. Hu, L. Zou, J. X. Yu, H. Wang, and D. Zhao, “Answering natural
language questions by subgraph matching over knowledge graphs,” IEEE
Trans. Knowl. Data Eng., vol. 30, no. 5, pp. 824-837, May 2018.

Z. Hu, J. Luo, C. Zhang, and W. Li, “A natural language process-based
framework for automatic association word extraction,” IEEE Access,
vol. 8, pp. 1986-1997, 2020.

S. Jaf and C. Calder, “Deep learning for natural language parsing,” IEEE
Access, vol. 7, pp. 131363-131373, 2019.

D. Jurafsky and J. H. Martin, Speech and Language Processing, 2nd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2009.

H. Y. Kuo, “A natural language querying system based on semantic pars-
ing,” M.S. thesis, National Chung Hsing Univ., Taichung, Taiwan, 2017.
J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes,
S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer,
“DBpedia—A large-scale, multilingual knowledge base extracted from
Wikipedia,” Semantic Web, vol. 6, no. 2, pp. 167-195, 2015.

H. Li, Y. Wang, G. de Melo, C. Tu, and B. Chen, “Multimodal question
answering over structured data with ambiguous entities,” in Proc. 26th Int.
Conf. World Wide Web Companion (WWW) Companion, 2017, pp. 79-88.
J. Liu, W. Li, L. Luo, J. Zhou, X. Han, and J. Shi, “Linked open data query
based on natural language,” Chin. J. Electron., vol. 26, no. 2, pp. 230-235,
Mar. 2017.

E. J. Lu, H. Y. Kuo, and T.-A. Ou, “A name-entity linker for question
answering over linked data,” in Proc. TANET, 2017, pp. 986-990.

C. D. Manning, M. Surdeanu, J. Bauer, J. Finkle, S. J. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in Proc. 52nd Annu. Meeting Assoc. Comput. Linguistics, Syst.
Demonstrations, ACL (Syst. Demonstrations), 2014, pp. 55-60.

D. Jurafsky and J. H. Martin, Maximum-Entropy Markov Model, Speech
and Language Processing: An Introduction to Natural Language Process-
ing, Computational Linguistics, and Speech Recognition. New York, NY,
USA: Draft, Jul. 2007.

Q. Mehmood, M. Saleem, R. Sahay, A.-C.-N. Ngomo, and M. D’Aquin,
“QPPDs: Querying property paths over distributed RDF datasets,” IEEE
Access, vol. 7, pp. 101031-101045, 2019.

P. N. Mendes, M. Jakob, A. Garcia-Silva, and C. Bizer, “DBpedia spot-
light: Shedding light on the web of documents,” in Proc. 7th Int. Conf.
Semantic Syst. I-Semantics, 2011, pp. 1-8.

G. Miller, WordNet: An Electronic Lexical Database. Cambridge, MA,
USA: MIT Press, 1998.

N. Nakashole, G. Weikum, and F. Suchanek, “PATTY: A taxonomy of
relational patterns with semantic types,” in Proc. Joint Conf. Empirical
Methods Natural Lang. Process. Comput. Natural Lang. Learn., Jeju
Island, South Korea: Association for Computational Linguistics, Jul. 2012,
pp. 1135-1145.

N. Radoev, M. Tremblay, M. Gagnon, and A. Zouaq, “AMAL: Answering
French natural language questions using DBpedia,” in Semantic Web
Evaluation Challenge. Cham, Switzerland: Springer, 2017, pp. 90-105.
A. Ratnaparkhi, “A maximum entropy part-of-speech tagging,” in Proc.
Conf. Empirical Methods Natural Lang. Process., Sep. 2016, pp. 133-142.
M. A. Smadi, I. A. Dalabih, Y. Jararweh, and P. Juola, ““Leveraging linked
open data to automatically answer Arabic questions,” IEEE Access, vol. 7,
pp. 177122-177136, 2019.

158649

IEEE Access

Y.-H. Chen et al.: Intelligent SPARQL Query Generation for Natural Language Processing Systems

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

F. M. Suchanek, G. Kasneci, and G. Weikum, “YAGO: A large ontol-
ogy from Wikipedia and Wordnet,” J. Web Semantics, vol. 6, no. 3,
pp. 203-217, 2008.

P. N. Tran and D. T. Nguyen, “Mapping expansion of natural language
entities to DBpedia’s components for querying linked data,” in Proc. 9th
Int. Conf. Ubiquitous Inf. Manage. Commun., Jan. 2015.

C. Unger, L. Bithmann, J. Lehmann, A. C. Ngonga Ngomo, D. Gerber, and
P. Cimiano, “Template-based question answering over RDF data,” in Proc.
21st Int. Conf. World Wide Web, Lyon, France, Apr. 2012, pp. 639-648.
R. Usbeck, A. C. N. Ngomo, L. Biihmann, and C. Unger, “HAWK-hybrid
question answering using linked data,” in Proc. Eur. Semantic Web Conf.,
Portoroz, Slovenia: Springer, Jun. 2015, pp. 353-368.

R. Usbeck, A. C. N. Ngomo, F. Conrads, M. Réder, and G. Napolitano,
“8th challenge on question answering over linked data (QALD-8),” in
Proc. CEUR Workshop, Oct. 2018.

K. Xu, Y. Feng, and D. Zhao, “Answering natural language questions via
phrasal semantic parsing,” in Natural Language Processing and Chinese
Computing. Berlin, Germany: Springer, 2014, pp. 333-344.

R. Yus, C. Bobed, and E. Mena, ““A knowledge-based approach to enhance
provision of location-based services in wireless environments,” IEEE
Access, vol. 8, pp. 80030-80048, 2020.

L. L. Zou, R. H. J. X. W. W. Huang Wang Yu He, and D. Zhao, “Natural
language question answering over RDF: A graph data driven approach,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, Snowbird, UT, USA,
Jun. 2014, pp. 313-324.

YI-HUlI CHEN (Member, IEEE) received the
Ph.D. degree in computer science and information
engineering from National Chung Cheng Univer-
sity. Later on, she worked at Academia Sinica
as a Postdoctoral Fellow. Later, she worked as a
Research Scientist at the IBM’s Taiwan Collabo-
ratory Research Center. After that, she worked at
the Department of M-Commerce and Multimedia
Applications, Asia University. She is currently an
Associate Professor at the Department of Informa-

tion Management, Chang Gung University. Her research interests include
data mining, semantic analysis, and multimedia security.

158650

ERIC JUI-LIN LU (Member, IEEE) received
the Ph.D. degree in computer science from the
Missouri University of Science and Technology
(formerly University of Missouri-Rolla), USA,
in 1996. He is currently a Professor with National
Chung Hsing University. His research interests
include machine learning, natural language pro-
cessing, and semantic web.

TING-AN OU received the M.S. degree from the
Department of Management Information Systems,
National Chung Hsing University. His research
interests include semantic web and natural lan-
guage processing.

VOLUME 9, 2021

