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ABSTRACT Go is a popular global game whose win or loss is only determined by the number of intersection
points surrounded by black or white pieces. Among all the counting methods, the traditional manual counting
method is time-consuming. Additionally, the current Go game images recognition technology cannot endure
light reflection attacks or extreme image capture angles effectively. In this paper, a reliable Go game images
recognition method is proposed which not only can resist light reflection attacks but also can endure various
image capture angles. To obtain this goal, we propose a detection method based on the optimized CNNs
(Convolutional Neural Network) framework. Experiments on recognizing 3220 images show that the average
accuracy with our proposed method is over 99.99%, which is 22 times better than the accuracy of the state
of the art approach on Go game images recognition. Besides, our study provides the potential references for
recognition of interfered small objects in groups that have few features. It provides a reference in similar
application scenarios such as the detection of animal crowds, industrial parts, physiological tissues and

micro-particles, etc.

INDEX TERMS Go board detection, Go pieces recognition, CNN, model ensemble.

I. INTRODUCTION

Machine-assisted methods have been applied in many com-
petitive games [1]-[3]. Compared with manual methods, they
can record the real-time play and judge the final result with
faster speed and higher accuracy. As one kind of competitive
sport, the Go game also needs machine assistance.

Go game originated in China and soon spread all over
the world. It uses a square chessboard and black-and-white
circular chess pieces where 19 vertical and horizontal lines
divide the chessboard into 361 intersection points. When
playing, two contestants put pieces alternately until the end
and confirm the final result by counting methods (the contes-
tant who has more territory including pieces and the intersec-
tion points surrounded by them is the winner) using manual
or machine-assisted methods. However, the manual method
is inefficient and the current machine-assisted technology
cannot endure some special circumstances. So the problem
of reliably recognizing Go game images is still unsolved [4].

This problem can be split into two stages: The first stage is
to detect the chessboard and then recognize chess pieces and
their location. When detecting the chessboard, most studies
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simply combined common transformations. For example,
Dela used the corner detection method proposed by Harris
and make Hough Transform to enforce linearity constraints
and abandon substandard chessboard lines [5]. However, their
methods made extra simplifications and assumptions and
required too many manual operations. They were sensitive
to image capture angles where the shooting angles needed
to be fixed directly above the chessboard. When detecting
crosslines and intersections in chessboards, related technolo-
gies were applied in the field of camera calibration and three-
dimensional surface reconstruction [6]. Canny tried to catch
the desirable properties by making a set of edge detection
criteria. His system cannot work well in conditions with
unsatisfactory lighting and shooting angles [7]. By utilizing
intensity features, the ChESS (Chessboard Extraction by Sub-
traction and Summation) detector spent 5.82 ms processing
a single image without prior assumptions. A drawback of
this approach is that this algorithm can only handle simple
situations which had difficulty identifying grid points around
obstacles [8]. Afterward, the author continued to present the
LAPS (LAttice Points Search) detector which was directly
inherited from the ChESS detector acquiring an accuracy rate
of 99.5% in grid points detection. To handle the problem of
detecting images with partial occlusion and corner-missing,
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Chen proposed an intersection point detection framework
based on the CCDN (Checkerboard Corner Detection Net-
work) [9], [10] model. During recognitions on chess pieces,
most systems combined computer vision with robotic devel-
opment for application in a real usage scenario [11]-[14].
They can trace each move in a chess game with a real-time
speed by finding differences between two neighboring move-
ments [15]. However, most tracing systems must run under
the premise that the initial layout of the chess map is known,
which added redundant manual interventions. Fortunately,
Illeperuma got rid of this premise using basic algorithms such
as the color histogram and edge detection and finally got a
95% accuracy [16].

The recent breakthroughs in DNN (Deep Neural Net-
works) [17] had provided an astonishing advance in the appli-
cation of image classification algorithms. Many researchers
had tried to apply DNN-based methods or compare the per-
formance of their methods with DNN. Xie introduced an
oriented chamfer matching method whose performance was
comparable with CNNs [18]. Delgado synthetized virtual 3D
chess images on Blender and improved the VGG16 convolu-
tional network using Python API [19], which achieved a 97%
accuracy for chess pieces classification. In 2020, Quintana
implemented a functional framework called LiveChess2FEN
which was able to digitize a chess game image in real-
time [20]. This system employed CNNs to classify all
individual divided squares after locating the board. When
classifying, they tested six kinds of deep learning models to
select one with a reasonable speed-performance ratio. As a
result, LiveChess2FEN reached a speed of 1 fps and an
accuracy of 92%.

When it comes to the digitization of the Go game images,
relevant researches are sparse and most of them mainly utilize
traditional approaches. As early as 1997, Huang adopted the
chain coding theory to recognize chess records on paper [21].
In 2016, Liang used geometric transformation, histogram
threshold, and image projection to locate Go pieces [22].
In 2020, Gui applied traditional transformations such as bina-
rization, color space transformation, threshold segmentation,
high-pass filtering, Hough transform, etc. to detect, locate,
and segment chess pieces [23], achieving an accuracy rate of
93.3%. In addition to taking photos, some studies also tried
to apply video content for Go game images recognition. For
example, Zhang used the planar measurement technology for
pieces locating, which got a 10fps speed and a 98% accuracy.
However, this system had a limitation that the shooting angle
must be fixed directly above the chessboard [24]. Unlike
Zhang, a team called Opensoft from South Korea solved this
problem. Their system can withstand a low capture angle
leading to a 99.99% accuracy. But it acted poorly on chess-
boards under light reflection attacks [25]. Besides the above
scientific researches, commercial Go software with Go game
images recognition functions also appeared based on these
technologies. Among all software, Go Sweep, Go Camera,
Go Eye and Tencent Go were most commonly downloaded.
Instead of recognizing Go games in a real scenario, Go Sweep

VOLUME 9, 2021

can only identify Go game images on paper with a limitation
that the chessboard should keep in the recognition frame with
a frontal angle. The second software, Go Camera, can convert
both photos and videos into electronic records with a real-
time speed. These records were saved as an SGF format file
which can be added with remarks information such as player
names and Go ratings and then copied to other platforms.
However, the recognition accuracy of Go Camera needed to
be improved since sometimes users had to manually adjust
the sensitivity of black-and-white color and fine-tune the final
position of the chess pieces. The third software is Go Eye that
worked on IOS (Internetworking Operating System-Cisco)
devices. It can recognize both Go games in a real scenario
and computer-synthesized images with an accuracy of 90%.
Before identifying pieces, users must manually locate the four
corners of the chessboard. The last introduced software is
Tencent Go. It employed CNN-based image object detection
models with an accuracy of 99%. Its accuracy will slightly
lift since more images would be automatically collected for
further training of the deep learning model with increasing
players applying this function. When recognizing Go games
in a real scenario, the chessboard must be kept in the recog-
nition frame with a frontal angle. Finally, it should be noted
that this function was remotely operated online through the
server, leading to the limitation that an account can only use
it 20 times a day to relieve the computational pressure.

In this paper, we propose a Go game images recognition
method. Firstly, we collected 3,220 images and segmented
them into three different types of data sets. Then we trained
three optimized detection networks based on the CNN frame-
work. Next, Go board images were detected by these three
networks. At last, a model ensemble was employed to find
an optimal result. Experiments on recognizing 3,220 images
show that the average accuracy with our proposed method is
over 99.99%.

Il. MATERIALS AND METHODS

A. IMAGE ACQUISITION AND PRE-PROCESSING

The quality of data sets affected the performance of deep
learning heavily. To confirm the quality of our datasets,
we collected 3,220 Go game images in chess clubs using
mobile phones, tablets PC, and digital cameras whose resolu-
tions ranged from 960 x 720 to 4, 208 x 2.368 instead of gener-
ating synthetic images. Meanwhile, various conditions were
considered such as light-reflective areas and locations, cap-
ture angles, chessboard types and background colors, which
enriched the diversity of the data sets. Fig.1 shows some
examples in the image dataset. Images in Fig.1(a)(b) are cap-
tured under light attacks with different positions, sizes, and
intensities. There are different levels of brightness in Fig.1(a)
resulting in various sensitivity of color recognition between
black pieces, white pieces, and background. Fig.1(b) shows
special chessboard types and background colors. In Fig.1(c),
chessboards tilt in different directions under low capture
angles.
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FIGURE 1. The original Go board images.

We pre-processed images utilizing graying, cropping,
non-linear transformation and histogram equalization. The
original images were firstly converted into gray-colored
since useful features depended on gray value and texture
when recognizing Go game images. This pre-processing
helped to reduce the calculation and storage space. Subse-
quently, we performed non-linear transformation and his-
togram equalization processing to adjust the image brightness
in a reasonable range. After that, these images were split as
follows: 80% (2,576) of the images were chosen as the train
set, 10% (322) the validation set, and the remaining 10%
(322) the test set.

As mentioned above, our method needed to detect the
chessboard and the Go pieces one after the other. Therefore,
we needed to label the chessboard and each intersection point
(for placing chess pieces) separately. The ground truth of
four corners in each chessboard was annotated with Labellmg
software [26]. When labeling intersection points, we aban-
doned the method of manual annotation and adopted the per-
spective algorithm to calculate every location automatically.
It was worth noting that we labeled the intersection points in
two ways. That is to say, the ground truth encircled two sizes
of target detection areas which can learn different reflective
features. In the first way, there were 19 x 19 = 361 rectan-
gular boxes in an image and each box included one point.
In the second way, an annotated image had 18 x 19 = 342
boxes and each of them contained two neighboring points in
the horizontal direction.

B. BOARD DETECTION AND PIECES RECOGNITION

We need to locate the chessboard first before recognizing
Go pieces since the chess pieces that were scattered outside
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FIGURE 2. An overview of our proposed Go game image recognition.

the chessboard would interfere with the detection results
and increase the detection time. Besides, a single Go piece
occupied a little space in the whole image, leading to a low
recall rate of deep learning networks [27]-[29].

As illustrated in Fig.2, our Go game images recognition
system contained four sub-stages using three deep learning
networks. In the first sub-stage, we pre-processed all images
utilizing graying, cropping, non-linear transformation and
histogram equalization and then split them into train set,
validation set and test set. After successfully locating all Go
boards by the trained network GO_CORNOR, we employed
perspective transformation to straighten all tilted boards cap-
tured with various angles and cut out the board area. The
purpose of this stage was to create new Go game images
with standard shooting angles, which was more conducive
to the detection of Go pieces. Subsequently, two networks
named GO_PIECEX1 and GO_PIECEX2 recognized all
intersection points on the chessboards simultaneously and
then generated two kinds of predictions. In the third sub-
stage, we sorted all two predictions by positional information
and mapped each Go game into electric records Go_Board1
and Go_Board2 (where a; j and b; ; respectively represented
the mapped result of the intersection point (i, j) in Go_Board1
and Go_Board?2). At last, model ensemble was applied to get
an optimal result.

1) BOARD DETECTION

In the stage of board detection, we chose a one-stage tar-
get detection algorithm YOLO (You Only Look Once) [30].
YOLO discards the step of regional nomination and pre-
dicts the bounding box and class probabilities directly. The
framework YOLOVS is the latest release of YOLO that offers
one-third size of YOLOV3 but has quicker surmising speed.
YOLOVS5s (a small version), YOLOvS5m (a medium version),
YOLOVSI (a large version) and YOLOvVSx (an extra-large
version) are four versions in this series that need a trade-off
between accuracy and speed when chosen.
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FIGURE 3. The framework of the Go game images detection.

As shown in Fig.3, the detailed Go game images detection
processes are described as follows:

Feature Extraction: After being resized to 640 x 640,
Go map images were successively received by a Focus mod-
ule and four BottleNeckCSP (BottleNeck Cross Stage Partial)
modules, generating four feature layers with different sizes.
These layers passed basic operations such as up-sampling,
convolution, and channel fusion to get three feature maps
which constituted a feature pyramid. In a feature pyramid,
the largest map was responsible for identifying small target
objects and vice versa.

Feature Map Division: Our model divided the three feature
maps into Sx ~ § equal-sized grids (S was chosen as 20,
40, and 80 separately in this study). Each grid had B kinds
of prior bounding boxes and each bounding box produced
a coordinate vector (x;,y;, wi, h;), a confidence score and
C class probabilities, where (x;, y;) was coordinate of an
upper-left point and (w;,h;) was the width-height of a box.
In total, the number of outputs from each feature map was
SXSxBx(B+C0).

Bounding Box Prediction: During the surmising period,
predictions with the largest IOU (Intersection Over Union)
were considered as a positive example. At the same time,
detections would be ignored once the confidence score was
under 0.6. Finally, we employed NMS (Non-Maximum value
Suppression) to find the best match from overlapping redun-
dant boxes.

To measure the performance of the model being trained,
we adopted the following loss function which mainly
included box loss, object loss, and classification loss (see
Equation1-4).

Loss = Lpoyx + Lobj + Leis M
bj 2 A2
Lpox = Acoord Z Z CIZ]] [ - -xl + (yi — )7[)
i=0 j=0

(=) + (ﬁi - \//7)2} @
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where Acoord, AnoobjAclass denote the weight coefficients in
box detectlon object detection, and classification respec-
tlvely ‘1[ / = 1 represents the object that appears in the

h the bounding box of cell i and ql =0 represents

the non-appearance. The value of q equals tol — ql
(xi, yi, wi,hy) is coordmate vector offsets of the bounding box
in cell i and (%;, y;,w;, hi ;) is related to the positive sample.
pi (c) denotes the probability when the object is the target
class, while p; (c) is the true label.

2) BOARD IMAGE POST-PROCESSING

When the network GO_CORNOR completed detecting,
we performed post-processing on board images including
perspective transformation and cropping operation. Firstly,
we calculated the center of each bounding box to get the
specific coordinates of four chessboard corners. These coor-
dinates were used by perspective transformation to correct
the tilted Go boards, which eliminated deformation of Go
pieces and crosslines on the chessboard caused by low capture
angles. The next step was cropping the images to cut out the
chessboard area alone, which was helpful for the locating
and classification of Go pieces. Moreover, our system could
generate new coordinates of four corners employed to map
each Go game into Go_Boardl and Go_Board2 in the next
stage.

3) GO PIECES RECOGNITION AND LOCATION

In this stage, we built our pieces recognition networks
GO_PIECEX1 and GO_PIECEX2 with the following
features:

Add CBAM (Convolutional Block Attention Module):
We added CBAM to the first and last convolution layers in
the backbone of the network (colored green in Fig.4). special
modules, channel attention module and spatial attention mod-
ule, contained in CBAM helps to extract useful features and
ignore irrelevant features. Therefore, the accuracy in target
detection can be effectively improved.

Change NMS (Non-Maximum Suppression): In the original
NMS algorithm, all bounding boxes below the preset con-
fidence value will be filtered out, remaining the one with
the highest probability. Then all predictions were traversed
by class and sorted from big to small, which led to a draw-
back that our system may detect the same intersection point
more than once. To solve this problem, all predictions were
sorted at once without considering the value of class when
surmising. With the improved NMS algorithm, our model
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can first generate many bounding boxes and then delete extra
predictions at one intersection point.

Adjust Evolutionary Hyperparameters: Hyperparameters
that match a specific data set are essential since they can help
minimize the monitoring indicator’s total loss and improve
the training efficiency. To find optimal hyperparameters of
our own data set, we used GA (Genetic Algorithm) for
Hyperparameter evolution. GA not only can work well in
high-dimensional search space but also can avoid excessive
calculations compared with traditional methods such as grid
searches.

After building our pieces recognition networks
GO_PIECEXI1 and GO_PIECEX2, we began to train them.
All Go game images were split into 2,576 train datasets,
322 validation datasets and 322 test datasets and resized
to 640 x 640 pixels before being received by models. The
network was trained for 1,000 epochs with a batch size of 16.
The initial learning rate was set to 0.01. From a functional
point of view, Both GO_PIECEX1 and GO_PIECEX2 were
responsible for identifying and classifying every intersec-
tion point on the chessboard. However, the sizes of target
detection areas when they worked were slightly different:
GO_PIECEXI1 detected one point in a single bounding box
while GO_PIECEX?2 detected two neighboring points in the
horizontal direction. By combining outputs from these two
networks, the last result would be optimized since two various
target detection areas could learn more features, especially
the features of areas under strong light attacks. Moreover,
we can weigh two outputs and minimize the defects of each
network for pieces recognition as much as possible. See
the results and discussion section of the paper for specific
analysis.

When networks finished detecting all 322 test datasets,
we ordered bounding box predictions and mapped them
into two electric records by location information. As shown
in Algorithm 1, the precise positions of 19 x 19 = 361
intersection points were calculated by the perspective algo-
rithm with new coordinates of four corners outputted by
GO_CORNOR. Each point was matched with a bound-
ing box (the prediction from GO_PIECEX2 needed to
be split into two one-piece-sized boxes). The correspond-
ing values of the chosen box in point i was recorded
as basic data (cls’i,conf i clsé, conf é,labeli), which repre-
sented class and confidence score of GO_PIECEXI, class
and confidence score of GO_PIECEX2 and true class of
point i. We set the class and confidence score to (—1, 0)
when the point was undetected. At last, we obtained a
total of 322 x 361 = 116, 242 intersection points data which
would be applied for the model ensemble in the next
sub-stage.

4) MODEL ENSEMBLE FOR OPTIMAL RESULT

The network GO_PIECEX2 that encircled two points in a
single bounding box learned more reflective features but
increased the numbers of the target object classes while the
GO_PIECEX?2 was the opposite. In other words, a single Go
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pieces recognition network cannot meet the requirement of
reflective feature learning and high target object detection
accuracy at the same time. To solve this problem, we used
model ensemble to optimize the output of the two networks.
Among all model ensemble methods like voting, averaging,
blending, stacking, etc., we adopted stacking since it uses a
hierarchical model integration framework and hardly needs
parameters adjusting or features selection. Fig.4 shows the
diagram of stacking. Multiple basic learning models formed
the first layer which received the original data set; The second
layer consisting of one learning model was trained with data
predicted by the first layer. By generalizing the output results
of these multiple models, stacking improved the overall pre-
diction accuracy.

first layer
new feature

learn l, prediction5
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predict IR MEETR prediction3
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l.learn | learn | learn | learn
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FIGURE 4. Architectural diagram of stacking.

As shown in Fig.4, the first layer was constructed by KNN
(K-Nearest Neighbor), XGB (eXtreme Gradient Boosting)
and RF (Random Forest) in this study; The second layer
was LR (Logistic Regression). Unlike deep learning, these
weak classifiers in the algorithm can work well with a small
amount of low-dimensional data. Therefore, we only need to
select 5 x 361 =1, 805 as training data and the remaining
317 x 361 = 114, 437 as testing data among all intersection
points data, which increased the utilization of data sets. The
specific calculation process is as follows:

IIl. RESULTS AND DISCUSSION

A. EXPERIMENTAL SETUP

All networks were trained on a computer with an Intel(R)
Xeon(R) Gold 6226 2.70GHz CPU, 512 GB of RAM, and a
GeForce RTX 3090 GPU card. The algorithm was developed
using Python 3.7. To use our system without the limitation
of locations and hardware devices, the neural network model
has been deployed with Android studio2019 and transplanted
to the mobile phone with GPU (Graphic Processing Unit)
Adreno 200.

To evaluate the performance of networks, we adopt the
following three indicators: precision, recall and mAP@0.5.
The mAP@0.5 (mean Average Precision) is the value of the
area under the P-R curve with the value of IOU > 0.5. it is
the most commonly used performance evaluation metric for
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Algorithm 1 Model Ensemble
Input: (5,1,805) train data ) ]
//(cls', conf’|, clshy, conf?,, label') for data i
(4,114,437) test data
//(cls', conf'|, cls, conf?) for data i
Output: 114,437 results after model ensemble
Sfunction five_fold_stacking
input

train data, test data, basic model in the first layer
output
train data and test data for the second layer
begin
for iterm 1 to 5 step 1 do
learn, predict < train_data_split
(train_data, iterm)
trained_model < train_model(model, learn)
prediction[iterm] < trained_model(predict)
predict [iterm] < trained_model(test_data)
end
model_train_pred < vertical_overlay(prediction)
model_test_pred <— mean (predict)
return model_train_pred, model_test_pred
end
// the first layer
KNN_train_pred, KNN_test_pred <
five_fold_stacking (train_data, test_data, KNN)
XGB_train_pred, XGB_test_pred <
five_fold_stacking (train_data, test_data, XGB)
RF_train_pred, RF _test_pred < five_fold_stacking
(train_data, test_data, RF)
// the second layer
train_data2 < concat(KNN_train_pred, XGB_train_pred,
RF_train_pred)
test_data2 < concat(KNN_test_pred, XGB_test_pred,
RF_test_pred)
trained_model < train_model(LR, train_data2)
results < trained_model(test_data2)
return results

object detection.

. TP )
T n= ———
precisio TP+ FP
TP
recall = —— (6)
TP + FN
S5
=1
average error = 7
g N 7N
N
>
average missing rate = l:;\/ ®)

where TP is true positives. FP is false positives, FN is false
negatives. E;, M; are the numbers of counting errors and
missing errors of the i image. N is the number of total
images. T; is the actual number of objects for detection in
each Go board image which equals 361.

B. TEST RESULTS
The performance assessments of the three networks are as
follow:

As we can see, GO_CORNER can correctly locate all
target chessboards. Sometimes it will repeatedly detect the
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TABLE 1. Index scores of three networks.

Model Precision Recall mAP@0.5
GO_CORNER 95.72% 100% 99.48%
GO_ PIECEX1 93.50% 99.98% 99.50%
GO_ PIECEX2 84.46% 94.51% 93.40%

corners of other chessboards close to the target one in the
same image. The network GO_PIECEX1 may ignore chess
pieces at the corners and classify undetected reflective areas
as white pieces. As mentioned before, it covers a small tar-
get detection area and learns a few reflective features. The
performance of the network GO_PIECEX2 has a similar
disadvantage but it shows better performance in reflective
areas than GO_PIECEX1 does. We also found that most of
the missed examples of GO_PIECEX1 and GO_PIECEX2
are in different non-piece areas, which means that combining
their two output results can greatly reduce the missing rate.

After mapping predictions into electric records, we evalu-
ated the performance of our method in an end-to-end manner.
Detailed results are listed as:

TABLE 2. Index scores of our method.

Model average error average missing rate
GO PIECEX1 0.1626% 0.1503%
GO_PIECEX2 8.8582% 1.2417%
After ensemble 0.0087% 0.0000%

The average accuracy of our method is up to 1 —
0.0087% = 99.9913%. Compared with the best result of a
single network, the mean accuracy after the model ensemble
rises 18.7 (equals to 0.1626/0.0087) times. Therefore, it is
necessary to employ the method of model ensemble that
combines results from two pieces recognition networks.

C. COMPARISON WITH OTHER METHODS

Some research teams have studied commercial Go game
images recognition systems for years. For example, the team
Opensoft from Korea has implemented the function of con-
verting video content into a digital Go board. They claimed
that their system has an excellent performance except on
images under strong light attack. Many mobile applica-
tion software (such as Tencent Go, Go Eye, Go Camera,
Go Sweep) also supported the images-to-records function.
To show the performance of our method more intuitively,
we selected Tencent Go as the comparison system using the
same test sets because it has the highest accuracy rate among
all software.

All 317 test images having 114,437 intersection points
are subdivided into 135 images with light reflection attacks
and 182 images without light reflection attacks. As shown
in Table 2, our method has 10 erroneous detected results in
the location and classification of all intersection points on
8 images. Among these 10 errors, 8 erroneous results appear
in images with light reflection attacks and 2 erroneous results
show in images without light reflection attacks. As shown in
the third column of Fig.5(c), the reflective area is wrongly
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TABLE 3. Average error rate under comparison.

Test sets Numbers Symbol Our method ~ Tencent Go
All images 317 NEIP 10 219
AEREIP 0.00874% 0.19137%
NIEP 8 31
AERI 2.52366% 9.77918%
NIEMD 1 10
AERIEMD  0.31546% 3.15457%
Images 135 NEIP 8 160
with light AEREIP 0.01642% 0.32831%
reflection NIEP 6 24
attacks AERI 4.44444% 17.77778%
NIEMD 0 7
AERIEMD  0.00000% 5.18519%
Images 182 NEIP 2 59
Wll,thl‘l)t“t AEREIP  0.00304%  0.08978%
1
reﬂegction NIEP 2 7
attacks AERI 1.09890% 3.84615%
NIEMD 1 3
AERIEMD  0.54945% 1.64835%

2 NEIP = numbers of erroneous intersection points, AEREIP = average
error rate of erroneous intersection points, NIEP = numbers of images where
errors appear, AERI = average error rate of images where errors appear,
NIEMD = numbers of images where errors may disrupt the judgment of the
winner, AERIEMD = average error rate of images where errors may disrupt
the judgment of the winner.

FIGURE 5. Comparison results between our method and Tencent Go
software. The first columns mean original images. The second columns
are outputs from Tencent Go. The third columns are mapped images from
our method for comparison. All erroneous results are labeled in green
boxes.

recognized as a white piece. Its edge seems rounded which
differentiates from conventional reflective situations. Despite
these errors, the players’ scores are affected in only one Go
game competition and the final judgments of the winner are
completely correct in all test images. In contrast, Tencent Go
gets 219 errors on 31 Go images where 160 errors appear in
images with light reflection attacks and 59 errors in images
without light reflection attacks. When counting the game
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scores, 3.15457% of results get wrong, which is far more
than the value of 0.31546% from our method. In general, the
results illustrate that the average error of Tencent Go is 21.9
(equals to 0.19137/0.00874) times higher than ours where
the erroneous predictions mainly gather on images under
strong light attacks or abnormal shooting angles. Moreover,
our method works 20 (equals to 0.32831/0.01385) times
better on images with reflection attacks and 29.5 (equals to
0.08978/0.00304) times better on images without reflection
attacks. Here are comparison results between our method and
Tencent Go software:

Images in Fig.5(a) have a low brightness, which makes
white chess pieces much darker than light reflection areas.
These pieces will be easily detected as black if we skip the
step of brightness adjustment. In Fig.5(b)(c), the chessboards
are under extreme image capture angles where Go pieces and
crosslines deforms on the board. In this case, the pieces are
easily missed or located in other positions.

IV. CONCLUSION

In this paper, we have proposed a Go game images recogni-
tion method that outperforms the state-of-the-art techniques
with an average accuracy of Go piece recognition over
99.99%. It works well in situations where the game boards
are under light reflection attacks and extreme capture angles.
Notably, this is the first attempt at combining two kinds of
features from target areas with different sizes. Two networks
were adopted in the Go pieces recognition process, which
ensures the learning of reflective features and the accuracy
of classification at the same time. Besides, we make the
perspective transformation to eliminate the distortion of the
pieces caused by the shooting angles after locating chess-
boards. The result of the experiment on real Go board images
demonstrated that our method has defeated current recogni-
tion technology used in markets, which attracts several people
who hope to put our method into practical applications.

In addition to detecting Go game images, our method can
indirectly apply in other fields. For example, self-driving car
systems can adopt the way of recognizing chessboard because
the feature of road lines is similar to Go board lines. Face
recognition which has an outline close to a circle can benefit
from the stage of detecting pieces. Besides, the properties of
our proposed method suggest the potential performance for
recognition of interfered small objects in groups that have
few features. Consequently, it matches conditions such as
animal crowds, industrial parts, physiological tissues, micro-
particles, crops.

All datasets and project files of this study are avail-
able at https://github.com/zhuoyiyao97/YOLO-GO.git for
free access.
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