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ABSTRACT Over the past few years, automatic recognition of human interactions has drawn significant
attention from researchers working in the field of Artificial Intelligence (AI). And feature extraction is one
of the most critical tasks in developing efficient Human Interaction Recognition (HIR) systems. Moreover,
recent researches in computer vision suggest that robust features lead to higher recognition accuracies.
Hence, an improved HIR system has been proposed in this paper that combines 2D and 3D features extracted
using machine learning and deep learning techniques. These discriminative features result in accurate
classification and help avoid misclassification of similar interactions. Ten keyframes have been extracted
from each video to reduce computational complexity. Next, these frames have been preprocessed using
image normalization and noise removal techniques. The Region Of Interest (ROI), which contains the two
humans involved in the interaction, has been extracted using motion detection. Then, the human silhouettes
have been segmented using the GrabCut algorithm. Next, the extracted silhouettes have been converted
into 3D meshes and their heat kernel signatures (HKS) have been obtained to extract key body points.
A Convolutional Neural Network (CNN) has been used to extract full-body features from 2D full-body
silhouettes. Then, topological and geometric features have been extracted from the key body points. Finally,
the combined feature vector has been fed into Long Short-Term Memory (LSTM) and each interaction
has been recognized using a Softmax classifier. The proposed system has been validated via extensive
experimentation on three challenging RGB+D datasets. The recognition accuracies of 91.63%, 90.54%,
and 90.13% have been achieved with the SBU Kinect Interaction, NTU RGB+D, and ISR-UoL 3D social
activity datasets respectively. The results of extensive experiments performed on the proposed system suggest
that it can be used effectively for various applications, such as security, surveillance, health monitoring, and
assisted living.

INDEX TERMS 3-D mesh, depth videos, geodesic distance, heat kernel signature, human interaction
recognition, RGB videos, topological features.

I. INTRODUCTION
The task of Human-Human Interaction (HHI) recognition
involves detecting and understanding social interactions
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between two humans. These interactions can be everyday
activities like talking, passing objects, hugging, and wav-
ing. Similarly, these can be assisted living activities such as
helping a person stand up, helping another person walk,
or drawing another person’s attention. Moreover, suspicious
activities including touching someone’s pocket, pushing
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someone, or fighting are also of interest for researchers in this
field. HIR has become a trending topic in the field of artificial
intelligence because of its wide range of applications, includ-
ing security [1]–[3], content-based video retrieval [4]–[6],
healthcare [7]–[11], and surveillance [12]–[15].

Even though significant progress has been made in this
regard and many efficient HIR systems have been developed
for various purposes, detecting human interactions remains
challenging because of multiple reasons, such as different
viewpoints, change of clothing, poor lighting, different inter-
actions containing similarmotions, and unavailability of large
datasets. However, low-cost depth sensors, such as Microsoft
Kinect [16] are now being used excessively since these are not
as affected by lighting conditions as RGB cameras.Moreover,
many interactions seem similar and are often misclassified.
For example, two humans exchanging a very small object
may look very similar to two people shaking hands. On the
contrary, the same interaction appears different when viewed
from various viewpoints. Hence, it is very important to extract
distinctive features from images that can easily differentiate
between two interactions that look the same.

This research paper proposes a novel approach for effi-
cient video-based human interaction recognition using both
machine learning and deep learning techniques. Human sil-
houettes have been extracted from both RGB and depth
frames using GrabCut. Additional masking has been used
to improve the output of the GrabCut algorithm in com-
plex scenarios. Next, the full-body RGB and depth silhou-
ettes have been fed into two separate CNN models and the
extracted features have been concatenated. Then 3D meshes
have been generated from the full-body silhouettes and their
heat kernel signatures have been obtained. These have been
used to extract six key body points. These key points have
been used to extract topological and geometric features. The
three different types of features have been combined and fed
into LSTM. Finally, the Softmax classifier has been used for
interaction recognition. Three publically available datasets
have been used that provide RGB, depth, and skeletal infor-
mation of human interactions. The major contributions of this
research work include:
• Silhouette segmentation from both RGB and depth
images using GrabCut algorithm.

• Training and concatenation of two separate CNNmodels
for RGB and depth images.

• 3-D mesh generation from 2-D silhouettes.
• Detection of key points via heat kernel signatures based
on geodesic distance.

• Extraction of topological and geometric features using
key body points.

• Extensive experimentation on three large and challeng-
ing RGBD video datasets.

Section II of the paper describes similar research work
and the proposed system architecture has been discussed in
Section III. Section IV presents the implementation details
and results of the proposed method. Section V contains a
discussion on various aspects of the designed system and

section VI contains the conclusion of this paper and proposes
future work of the authors.

II. RELATED WORK
Researchers have been actively contributing to the develop-
ment of efficient HIR systems. The existing systems have
been divided into two categories: marker-based systems and
video-based systems. Researches falling into each category
have been discussed in detail below:

A. MARKER-BASED HIR SYSTEMS
In marker-based HIR systems, different types of sensors,
for example, reflective spheres, light-emitting diodes, and
infrared markers, are mounted on the bodies of the humans
whose movements are being monitored. These systems are
commonly used for rehabilitation treatments [17]. For exam-
ple, a marker-based motion tracking system is proposed
in [18] to analyze the movement of various body parts. The
authors have argued that accurate detection of movement
of different parts can result in better therapeutic decisions.
However, the system was evaluated on a small dataset of
only 10 real patients. Similarly, the authors in [19] attached an
IR camera and an infrared emitter with a passive hand skate-
board training device for conventional upper limb training.
The proposed device was used to train eight patients with
abnormal upper limb function. After four weeks of training,
all the patients were able to move the hand skateboard along
the designated ‘figure of eight’ path.

Capturing body movements is also critical for sports.
Hence, researchers have used marker-based sensors for
movement detection in walking gait [20], discus [21], dres-
sage [22], and swimming [23] activities. Esfahani et al. [24]
developed a trunk motion system (TMS) using printed
body-worn sensors (BWS). Twelve BWSs were printed on
stretchable clothing to measure the 3D trunk movements and
a neural network data fusion algorithm was used to integrate
the data from sensors. However, one shortcoming of these
marker-based techniques is that they require the installation
and calibration of multiple cameras. Hence, these systems
are quite expensive. Moreover, they can only encode two-
dimensional motion information.

B. VIDEO-BASED HIR SYSTEMS
In video-basedHIR systems, video cameras are used to record
human interactions. In such systems, the first step is to extract
important features or interest points [25], [26]. Based on
these distinctive features, the interaction that has been per-
formed in the video is identified. Khan et al. [27] proposed
a deformable part-based modeling technique to detect the
body parts of a patient and track them in subsequent frames.
Their system then performed movement analysis to detect
various movement disorders in infants. They captured the
data in a local hospital using Microsoft Kinect but it was
only RGB data. Khan et al. [28] proposed a system for
analyzing a patient’s body movements during Vojta therapy.
They proposed the use of color features and pixel locations
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FIGURE 1. The architecture of the proposed HIR system.

for segmenting the patient’s body in the images. Then they
employed a multi-dimensional feature vector to classify the
correct movements using multiclass SVM.

Some researchers [29], [30] also prefer extracting various
features and then combining them since hybrid features have
yielded better classification results in the past. For example,
Jalal et al. [31] combined four different types of features
including blobs, multiple orientations, Fourier transforms,
and geometrical points. Similarly, the hybrid features intro-
duced in [32] included energy, sine, distinct body parts
movements, and 3D Cartesian views of smoothing gradi-
ents. The authors of [33] also used a hybrid of four differ-
ent local descriptors: spatio-temporal features, energy-based
features, shape-based angular and geometric features,
and Motion-Orthogonal Histograms of Oriented Gradients
(MO-HOG). However, all these approaches only employed
2D features.

III. THE PROPOSED APPROACH
The proposed system can be divided into four main sections:
image preprocessing, image segmentation, feature extraction,
and interaction recognition. The used methodologies and
results of each section are discussed in detail below. Fig. 1
shows a flow chart of the proposed system architecture.

A. IMAGE PREPROCESSING
The RGB videos taken from the NTU RGB+D dataset have
been converted into image frames at the rate of 31 frames
per second. The image frames of the other two datasets were
already available. Since there are multiple videos for each
interaction class and each video consists of a large number
of image frames, 10 keyframes have been extracted from
each video to reduce complexity. The extracted frames have
been normalized and noise has been removed from them.

Finally, regions of interest (ROI) have been extracted from
each frame. These four subsections are explained in detail
below. Moreover, Algorithm 1 explains each step of the pre-
processing stage.

1) KEYFRAME EXTRACTION
The number of frames varies from video to video. So, to get
a fixed number of frames, 10 keyframes have been extracted
from each video of every dataset. To extract the keyframes of
a video, the histograms of all the image frames have been
obtained. The histogram of an image x can be computed
using (1).

Px(i) =
ni
N
, i = 0, 1, 2 . . . 256 (1)

where ni is the number of pixels with intensity i and N is the
total number of pixels in the input image. Then the histograms
of every two consecutive frames have been compared and
their differences have been stored in a sorted array. The
indices corresponding to the top ten differences have been
fetched and the images at those indices are referred to as
keyframes. In other words, these frames are the ones with the
highest differences in their histograms.

2) IMAGE NORMALIZATION
The purpose behind image normalization is to change the
pixel values of an image to a common scale so that the image
appears more normal to the senses. The depth images in
two out of the three datasets used are too dark to be seen
by the naked eye. Moreover, features on drastically differ-
ent scales can be problematic for an HIR system. In other
words, features with a larger scale will dominate others and
cause the system to make inaccurate assumptions. Hence, all
images have been normalized. Each pixel xi in the normalized
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Algorithm 1 Preprocessing
Input: raw frames
Output: ROI coordinates (x,y,w,h) in preprocessed frames

%key frame extraction%
for i in range(total frames)
diff(i)← hist(frame(i))-hist(frame(i + 1))
indices← nlargestindex(10, range(len(difference)))
key_frame(j)← frame(indices[j])
end

%normalization and noise removal%
img← key_frames(i)
norm_img← zscore_norm(img)
denoised_img← nonlocalmeans_denoising(norm_img)

%ROI extraction%
diff_img← absdiff(key_frame(i), key_frame(i + 1))
contours = FindContours(diff_img)
for contour in contours:
(x, y, w, h)← boundingRect(contour)
if contourArea(contour)> min_area:
draw_rectangle(img1, (x, y), (x + w, y+ h))
coordinates.append(x, y, w, h)
end
returncoordinates

image Inorm is normalized using (2).

Inorm(xi) =
Iorg(xi)− E(Iorg)

Var(Iorg)
(2)

where E(Iorg) and Var(Iorg) are the mean and variance of the
original image Iorg.

3) NOISE REMOVAL
The technique of ‘‘non-local means denoising’’ has been used
to remove noise from the images. Local-means filters replace
the value of a pixel with the mean of a group of pixels
surrounding it. However, a non-local means filter takes the
weighted mean of all the pixels in the image. The weight of
each pixel depends on how similar it is to the target pixel.
A pixel in the denoised image u(p) at point p after applying
non-local means denoising technique on a pixel at point q in
the original image v(q), is defined by (3).

u(p) =
1

C(p)

∫
v (q) f (p, q) dq (3)

where f (p, q) is the weight and C(p) is a normalization factor
defined by (4).

C(p) =
∫
f (p, q) dq (4)

4) ROI EXTRACTION
The regions of interest have been extracted from images
through motion detection. Frame differencing technique has
been used to detect motion in subsequent frames and rectan-
gular boxes have been drawn over the points where motion
has been detected. Since different body parts show different
movements, rectangular regions of various sizes for different
body parts have been obtained. Each region has a starting
point x, y, width w, and height h. A minimum area condition

has also been set for these rectangular regions to be consid-
ered valid. The minimum and the maximum values of x and
y and the maximum values of w and h have been obtained.
Finally, one rectangular region comprising all the smaller
regions has been extracted as the region of interest. Its starting
position is the minimum value of x and y obtained from all the
smaller regions and its width is equal to the maximum value
of x added to the maximum value of w. Similarly, its height
is equal to the maximum value of y added to the maximum
value of h.

B. IMAGE SEGMENTATION
Image segmentation is the process of segmenting the image
into two parts: foreground and background. The GrabCut
algorithm proposed by Rother et al. [34] has proven to be
an efficient foreground extraction technique. It takes a rect-
angular region as input and assumes that all the pixels outside
that region belong to the background. Then it uses a Gaussian
Mixture Model (GMM) to define the area inside the rectangle
by labeling each pixel as probable background and probable
foreground depending upon their relation to the provided
data.

Using this pixel distribution, a weighted graph is created.
All pixels are treated as nodes in the graph. Then two addi-
tional nodes are added: the Source node and the Sink node.
Every foreground pixel is connected to the Source node and
every background pixel is connected to the Sink node. The
weights of edges connecting pixels to the Source node depend
on the probability of a pixel of belonging to the foreground or
background. The weights between the pixels depend on pixel
similarity, that is, if there is a large difference in pixel color,
the edge between them will get a low weight and vice versa.
Next, the graph is segmented using a Min-Cut algorithm. The
graph is cut separating the Source node and the Sink node
with a minimum cost function. The cost function is the sum
of all weights of the edges that are cut. After cutting the
graph, all the pixels connected to the Source node are labeled
foreground and those connected to the Sink node are labeled
background. The process continues until convergence.

However, in some cases, the extracted foreground contains
portions that belong to the background. This problem came
up while segmenting images from the NTU RGB+D dataset.
In all those images, a major portion of the region of interest
is the floor. Hence, a floor mask has been created by extract-
ing a certain range of the intensity values from the original
image and the GrabCut output is masked to get accurate
results. The results of the segmentation process are shown
in Fig. 2.

C. KEY BODY POINTS SELECTION
First, the full-body silhouettes have been converted into
3d meshes [35] as shown in Fig. 3. The center points of the
3dmeshes have been considered the source and then geodesic
distance-based heat kernel signatures (HKS) of the 3dmeshes
have been achieved as shown in Fig. 4. HKS, as introduced
by Sun et al. [36], is based on a heat kernel, which is a
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FIGURE 2. Segmentation results on RGB images showing (a) the original
RGB image, (b) GrabCut output, and (c) segmented humans after applying
floor mask.

FIGURE 3. 2D images and the respective 3D meshes of both humans
involved in interactions: (a) walking apart; (b) talk.

fundamental solution to the heat equation. The heat equation
describes the variation of heat distribution with time. HKS is
one of the many recent shape descriptors which are based on
the Laplace–Beltrami operator associatedwith the shape [37].
The thermal diffusion process can be described by the heat
equation as given in (5).

(1− ∂/∂t)u (x, t) = 0 (5)

where 1 is the Laplace–Beltrami operator and u (x, t) is the
heat distribution at any point x at a given time t . The solution
to this heat equation can be expressed in (6).

u (x, t) =
∫
ht (x, y)uo(y)dy (6)

where ht (x, y) is called heat kernel function. The heat kernel
equation is the fundamental solution to the heat equation.
The Eigenvalue decomposition of the heat kernel is expressed
in (7).

htu (x, t) =
∑∞

i=0
exp(λit)∅i(x)∅i(y) (7)

Algorithm 2 Key Body Points Extraction
Input: segmented silhouettes
Output: key body points (p1,p2,p3. . . pn)
mesh← Get3Dmesh(segmentedsilhoutte)
HKS← GetHeatKernelSignature(mesh)
Clusters← GetIntensityBasedClusters(HKS)
for cluster in Clusters:
KeyPoint← GetClusterCentroid(Cluster)
KeyBodyPoints.append(KeyPoint)
end
returnKeyBodyPoints

FIGURE 4. Heat kernel signatures of humans involved in interactions:
(a) walking apart; (b) talk.

FIGURE 5. 2D leaf skeleton models using key body points of humans
involved in interactions: (a) walking apart; (b) talk.

where λi and ∅i are the ith eigenvalue and Eigen function of1.
For a concise feature descriptor, HKS restricts the heat kernel
only to the temporal domain.

ht (x, x) = exp(−λit)∅2i (x) (8)

After obtaining the heat kernel signatures, all vertices in
a mesh are grouped into multiple clusters based on their
color or intensity value. Moreover, the centroid of each clus-
ter is detected and is stored as a key body point. In this
way, six key body points are obtained for each silhouette.
When a geodesic path is drawn from the source vertex
to the other five target vertices, a 2D leaf skeleton model
is obtained as shown in Fig. 5. Algorithm 2 explains the
process of extraction of key body points from full-body
silhouettes.
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FIGURE 6. Different layers of the VGG16 architecture with configurations.

D. FEATURE EXTRACTION
This section can be divided into two phases. In the first
phase, a Convolutional Neural Network (CNN) has been
used to extract features from full-body silhouettes. Full-body
silhouettes have been extracted from the segmented images
by removing the black background from the images and
making them transparent. In the second phase, topological
and geometric features have been extracted using key body
points. Both these phases are described in the following
sub-sections.

1) FULL BODY SILHOUETTES: CNN-BASED FEATURES
For extraction of features from images, a convolutional neu-
ral network has been used. The transfer learning approach
has been employed, which includes using VGG16 as the
base model and then fine-tuning its weights according to
the used datasets. Visual Geometry Group-16 layers deep
(VGG16) [38] is a CNN model that achieved 92.7% on the
ImageNet dataset which has 1000 classes. Fig. 6 shows all the
layers in the VGG16 model. All images have been reshaped
to 224 × 224 × 3 to match the desired input size of the
VGG16 model. After training on the VGG16 base model,
input images are resized to 7×7×512. These are then trained
on the proposed CNN model.

There are three convolutional layers in the proposed model
with 128, 64, and 32 filters respectively. The size of each
filter is 3×3. The convolutional layers compute the output of
neurons that are connected to local regions in the input. Con-
volution is similar to sliding a filter over an image, computing
the dot product of filter weights and image pixels. Rectified
Linear Unit (RELU) is used as the activation function for all
three convolutional layers. It simply rounds up all the negative
values to zero as shown in (9).

yk = max(0, xk ) (9)

The convolutional layers are followed by a batch normal-
ization layer. The pixels xk of input images of each batch are
normalized using (10).

x̂k =
xk − E(xk )
Var(xk )

(10)

where E(xk ) is the mean and Var(xk ) is the variance of pixel
values.

TABLE 1. A brief summary of the cnn model.

The batch normalization layer is followed by a flatten layer
that remaps the output of the batch normalization layer to a
column vector. Lastly, a drop-out layer of 0.2 has been used
to avoid overfitting. Two such models have been trained: one
for RGB images and one for depth images. The two CNN
models are then concatenated. Table 1 shows a summary of
the CNN model.

2) KEY BODY POINTS: TOPOLOGICAL FEATURES
Topology can be defined as the spatial relationship between
adjacent or neighboring features. Topological features are
the properties of a geometric object that are preserved under
continuous deformations. In the proposed architecture, four
types of topological features have been extracted using the
key body points:

1. Geodesic distance from the source.
2. Geodesic path.
3. Connected faces.
4. Nearest neighbors.
A mesh is a collection of vertices, edges, and faces that

describe the shape of a 3D object. Every single point in a
mesh is a vertex, a line connecting two vertices is an edge,
and a flat surface enclosed by edges is called a face. In the
proposed approach, the 3d meshes have been converted into
graph models and these four topological features have been
extracted for each key point.

First, the geodesic distance gdi between the source ver-
tex and each key point or target vertex has been obtained.
Geodesic distance gives the distance between two vertices in
a graph along the shortest path between the vertices. Hence,
unlike Euclidean distance, geodesic distance considers the
shape of the object while computing the distance between
two points. If any two vertices are not connected in a graph,
the geodesic distance between them will be infinite. After
storing the value of geodesic distance, an array of all the
vertices lying on this shortest path from source to target vertex
has been stored as the geodesic path gpi. For finding the
connected faces, each key point or target vertex has been
compared with the three vertices in each face of the mesh.
In this way, the faces containing one or more of these target
vertices have been found and stored as connected faces cfi.
Finally, the distance of each target vertex from all other
vertices in the graph has been computed and stored in a
sorted array. Then the top 128 vertices corresponding to the
shortest 128 distances have been acquired. These have been
stored as the nearest 128 neighbors nni. These features are
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FIGURE 7. Topological features including: (a) connected edges
(full mesh + zoomed in on one face) and (b) nearest
neighbors (full mesh + zoomed in on vertex).

shown in Fig. 7. Hence, for each key point, a topological
feature vector [gdi, gpi, cfi, nni] has been obtained.

3) KEY BODY POINTS: GEOMETRIC FEATURES
Similar to topological features, some geometric features have
also been obtained using the key body points. Ten triangular
shapes have been drawn by joining different combinations
of key points as shown in Fig. 8. These key points are
labeled as left hand (LH), right hand (RH), left foot (LF),
right foot (RF), head (H), and torso (T). Finally, the feature
vector is also updated as geometric features are added to it.
Algorithm 3 explains how these topological and geometric
features have been extracted and concatenated in the pro-
posed system.

Algorithm 3 Topological and Geometric Features
Input: key body points
Output: combined feature vectors (f1,f2,f3. . . fn)

%Graph Model%
input← mesh

points, faces← getpointsandcellsfrompolydata(input)
for i in range(len(points)):
actor1← createSphere(points[i], radius =0.003)
end
for j in range(len(faces)):
actor2← createLine(points[faces[j][0]], points[faces[j][1]])
actor2← createLine(points[faces[j][0]], points[faces[j][2]])
actor2← createLine(points[faces[j][1]], points[faces[j][2]])
end

%Feature Extraction%
for i in range(len(target)):
Distance← GetGeodesicDistance (source,target[i])
Path← GetGeodesicPath(source,target[i])
Connected← GetConnectedEdges(target[i])
Neighbors← GetNeighbors(target[i])
Geometricfeatures← GetGeometricShape(target[i])
FeatureVector.append(Path, Distance, Connectedfaces, Neighbors,
Geometricfeatures)
end
return FeatureVector

E. INTERACTION RECOGNITION
At this stage of the proposed model, the interaction that
has been performed in the input video has been recognized.

FIGURE 8. Geometric features including (a) H+LH+LF, H+RH+RF,
(b) H+LH+RH, H+LF+RF, (c) H+LH+T, H+RH+T, (d) T+LH+RH,
T+LF+RF, and (e) T+LH+LF, T+RH+RF.

FIGURE 9. LSTM cell structure.

After concatenating the different features extracted using
full-body silhouettes and key body points, the feature vector
has been fed into an LSTM model which is followed by a
dense layer and a Softmax classifier. Hence, this section is
subdivided into two sections: LSTM and Softmax classifier.

1) LSTM
Long Short-Term Memory (LSTM) [39] is a special type of
Recurrent Neural Network (RNN) that is capable of learning
long-term dependencies. The cell structure of LSTM is shown
in Fig. 9. The working of LSTM has been described as
follows:

1. The output value at a previous time ht−1 and the input
value at the current time xt are entered into the for-
get gate, and the output value of the forget gate ft is
obtained using (11).

ft = σ (Wf [ht−1, xt ]) (11)

2. The output value at a previous time ht−1 and the
input value at the current time xt are also entered into
the input gate. The output value it and the candidate
cell state čt of the input gate are obtained using (12)
and (13).

it = σ (Wi.[ht−1, xt ]) (12)

čt = tanh(Wc.[ht−1, xt ]) (13)
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TABLE 2. A brief summary of the datasets.

3. The current cell state ct is updated using (14).

ct = ft ∗ ct−1 + it ∗ čt (14)

4. The output and input are received as input values at the
output gate at time t , and the output of the output gate
ot is obtained using (15).

ot = σ (Wo.[ht−1, xt ]) (15)

5. Finally, the output value of LSTM is calculated by
using the output of the output gate ot and the state of
the cell ct , as shown;

ht = ot ∗ tanh(ct ) (16)

2) SOFTMAX
The Softmax classifier has been used to recognize human
interactions. The Softmax function is a popular choice for
multiclass classification [40]. It is an activation function that
computes the probabilities of all the classes based on the
output of the fully connected layer. The probabilities are
between the values of 0 and 1 and the normalized sum of these
probabilities is always equal to 1. It uses cross-entropy loss.
The Softmax output for each class is computed using (17).

SM
(
zj
)
=

ezj
n∑
i=1

ezi
(17)

where z is the probability of each class, i is a vector of the
inputs to the output layer, j is the set of the output units, and
n is the total number of classes.

IV. EXPERIMENTAL SETUP AND RESULTS
This section explains the details of the experiments con-
ducted to validate the proposed system. All the processing
and experiments have been performed using Python 3.8 with
Tensorflow 2.5.0 and Keras 2.4.3. A hardware system with
an Intel Core i5 processor and a 64-bit Windows-10 has
been used. The system has an 8 GB and 5 (GHz) CPU. The
proposed system has been tested on three different datasets
and the recognition accuracies for each interaction class have
been computed in the form of their confusion matrices along
with precision, sensitivity, and F1 scores. For further valida-
tion, the accuracies have been compared with those of other
State-Of-The-Art (SOTA) methods. This section is further
divided into two sections: dataset description and experimen-
tal results.

FIGURE 10. RGB and depth frames from the SBU Kinect interaction
dataset. (a) hugging; (b) kicking; (c) punching.

FIGURE 11. RGB and depth frames from the NTU RGB+D dataset.
(a) giving object; (b) pushing; (c) pat on back.

FIGURE 12. RGB and depth frames from the ISR-UOL 3D dataset. (a) fight;
(b) help stand; (c) shaking hands.

A. DATASETS
The three datasets that are used for experimentation
are the SBU Kinect Interaction dataset [41], the NTU
RGB+D dataset [42,43], and the ISR-UoL 3D social activity
dataset [44]. Details of each dataset are given in the following
subsections:

1) THE SBU KINECT INTERACTION DATASET
This dataset consists of RGB, depth, and skeletal information
for various interactions performed by two people. The inter-
actions have been recorded using Microsoft Kinect sensors
in an indoor environment. It consists of eight interaction
classes including approaching, departing, kicking, punching,
pushing, shaking hands, exchanging an object, and hugging.
The dataset has a total of 21 folders with subfolders for
each interaction class performed by seven different actors.
For interactions in which one person is performing and the
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TABLE 3. Confusion matrix of individual classes of the SBU kinect interaction dataset.

TABLE 4. Confusion matrix of individual class of the NTU RGB+D dataset.

other is receiving the action, there are two videos. The person
performing the action in one video is receiving the action in
the second video and vice versa. Videos have been segmented
at the rate of 15 frames per second (fps). The sizes of both
RGB and depth images are 649× 480.

2) THE NTU RGB+D DATASET
This dataset provides RGB, depth, and skeletal information.
It consists of 60 classes, 11 of which are two-person interac-
tions including punching, kicking, pushing, pat on back, point
finger, hugging, giving object, touch pocket, shaking hands,
walking towards, and walking apart. There are 48 videos for
each interaction class. Each session has three sets of videos
since each video has been recorded from three different
viewpoints.

3) THE ISR-UoL 3D SOCIAL ACTIVITY DATASET
This dataset also consists of RGB, depth, and skele-
tal information recorded using Kinect 2 sensor. In this
dataset, some interactions are everyday interactions while
others are assisted living interactions. There are a total of

eight interactions including shaking hands, hugging, help
walk, help stand-up, fight, push, talk, and draw attention. The
actions are performed by four males and two females. There
are ten sessions and each session contains all eight inter-
actions. For each interaction, 24-bit RGB images, 8-bit and
16-bit resolution depth images, and the skeletal information
of 15 joints are available. Each interaction is repeated over a
period of 40–60 repetitions in one video.

B. EXPERIMENTS AND RESULTS
For validating the performance of the proposed system, dif-
ferent metrics have been used. The experimentation phase has
been divided into two categories: classification accuracy of
each class in terms of confusion matrix, precision, sensitivity,
and F1 score, and comparison of the proposed system with
other state-of-the-art methods. The results for each stage are
given in the following sub-sections.

1) INDIVIDUAL CLASS ACCURACY
The results of the proposed model’s performance are given in
the form of confusion matrices showing true positives, true
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TABLE 5. Confusion matrix of individual class over the ISR-UoL 3D social activity dataset.

TABLE 6. Measurements of precision, sensitivity, and F1 scores over the
SBU kinect interaction dataset.

negatives, false positives, and false negatives for each class
individually. The confusion matrices for SBU Kinect Interac-
tion, NTU RGB+D, and ISR-UoL 3D social activity datasets
are given in Tables 3, 4, and 5 respectively. It can be observed,
from the above-mentioned tables that the interaction classes
of all three datasets achieved higher recognition rates with
themean accuracy rates of 91.63%, 90.54%, and 90.13%with
the SBUKinect Interaction, NTURGB+D, and ISR-UoL 3D
social activity datasets respectively.

However, there is still some confusion between interaction
classes that involve similar actions such as the departing
and approaching interactions in the sports dataset. Similarly,
shaking hands and exchanging an object interactions of the
SBU Kinect Interaction dataset are confused with each other
as shown in Table 3. Table 4 shows that the pat on back
and point finger interactions of the NTU RGB+D datasets
are confused with each other. As seen in Table 5, there is
confusion between the hugging and shaking hands interaction
of the ISR-UOL 3D social activity dataset.

Tables 6, 7, and 8 show the precision, sensitivity, and F1
scores of each class in SBU Kinect Interaction, ISR-UoL
3D social activity, and NTU RGB+D datasets respectively.

TABLE 7. Measurements of precision, sensitivity, and F1 scores over the
ISR-UoL 3D social activity dataset.

The precision, sensitivity, and F1 scores of all the interaction
classes for each dataset have been calculated as;

Precision =
TP

TP+ FP
(18)

Sensitivity =
TP

TP+ FN
(19)

F1score =
2(Precision× Sensitivity)
(Precision+ Sensitivity)

(20)

where TP, FP, and FN stand for True Positives, False Positives
and False Negatives respectively.

2) COMPARISON WITH STATE-OF-THE-ART METHODS
In this section, the proposed method is compared with differ-
ent methodologies adopted by researchers for HIR recogni-
tion from recent years. The action recognition accuracies of
each evaluatedmethodology are used for comparison with the
proposed system. Tables 9, 10, and 11 give the comparison
of the proposed system with other state-of-the-art (SOTA)
systems evaluated on SBUKinect Interaction, NTURGB+D,
and ISR-UoL 3D social activity datasets respectively. The
results show that the proposed hybrid descriptors are more
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TABLE 8. Measurements of precision, sensitivity, and F1 score over the
NTU RGB+D dataset.

TABLE 9. Comparison with other SOTA methods over the SBU dataset.

TABLE 10. Comparison with other SOTA methods over the NTU RGB+D
dataset.

robust than the different types of features used in the recent
SOTA systems.

V. DISCUSSION
The proposed system is a complete HIR solution that should
be applicable to many real-world problems involving the

TABLE 11. Comparison with other SOTA methods over the ISR-UoL
3D social activity dataset.

TABLE 12. Time complexity of the proposed system.

tasks of human behavior monitoring, security, surveillance,
and managing smart homes. It is designed for RGB+D
datasets but can also be used with RGB only or depth only
datasets using only one stream of the proposed CNN model
and skipping the model concatenation stage.

Each step from the preprocessing stages to the classifica-
tion stage contributes to the improved performance achieved
by the system. The proposed feature extraction method suc-
cessfully extracts robust features, which in turn, play a critical
role in accurate classification of the interactions. Using two
CNN models for training RGB and depth images separately
and then concatenating the models gives better results than
those obtained by concatenating both RGB and Depth images
first and then training the 4-dimensional images using only
one CNN model. Moreover, since all three datasets contain
video sequences, the LSTM-based classification step gives
accurate results.

Despite yielding good results, the proposed system is not
without limitations. The proposed 2D leaf skeleton model
for the detection of key body points can only extract six key
points so far. However, better accuracies can be achieved if
more key points are identified and their features are extracted.
Moreover, the proposed system is very extensive and com-
putationally expensive. The time complexity of the proposed
system is shown in Table 12.

VI. CONCLUSION
In this paper, a novel HIR framework had been proposed that
uses both machine learning and deep learning techniques for
feature extraction from 2D human silhouettes and 3Dmeshes.
Using efficiently segmented silhouettes of the humans from
images, multiple features using full-body silhouettes and
key body points from their corresponding 3D meshes have
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been extracted. The features have then been fed to an
LSTM and a Softmax-based classifier. The proposed sys-
tem achieved average accuracies of 91.63%, 90.54%, and
90.13%with the SBUKinect Interaction, NTU RGB+D, and
ISR-UoL 3D social activity datasets respectively.

In the future, the authors plan to shift their focus to the
task of human-object interaction recognition and investigate
new features andmodeling techniques for better classification
results.
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