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ABSTRACT As high voltage DC power system is gaining popularity, power electronic switching devices
are becoming increasingly advanced to overcome problems of timely fault isolation. In this context, hybrid
DC circuit breakers (DCHCBs), especially, together with wideband gap-based semiconductor devices, play
a crucial role to tackle the current and voltage at high power and frequency. In this paper, a hybrid DC
circuit breaker is designed leading to development of a fault interruption scheme for HVDC power system,
as in HVDC system, fault interruption is considered more critical compared to the conventional high voltage
AC (HVAC) power system. The proposed design of hybrid circuit breaker (HCB) involves combination of
mechanical and electronic switches for efficient fault interruption. The mechanical part is covered by using
vacuum circuit breaker (VCB) and the electronic switching part involves use of SiC-MESFET as these are
more powerful and fast switching elements. For the fault interruption schemes to be valid, artificial current
zero is created using current commutation. The system model is designed using Simulink and comparisons
are carried out between the proposed hybrid scheme and the recent fault interruption schemes in terms of
power loss and fault clearing time. The results of the proposed design are measured in terms of system
current, commutation current and voltage across the commutation capacitor.

INDEX TERMS Hybrid DC circuit breaker (DCHCB), vacuum circuit breaker (VCB), MOSFET and
MESFET as switch.

I. INTRODUCTION
Fault interruption is an essential part of any power system, but
in high voltage DC (HVDC) power system, it is considered
as a crucial function because of artificial current zero (ACZ)
state. The main difference between AC and DC current is due
to frequency. In conventional high voltage AC (HVAC) power
system, the current zero state is achieved automatically due to
its alternating nature, but in DC there is no current zero cross-
ing point due to which it is very important to force current to
zero, called as ACZ, so that fault interruption processes can be
carried out smoothly [1]. The working process of DC circuit
breaker becomes complicated due to the absence of frequency
in the HVDCpower system. Therefore, on very high voltages,
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DC circuit breakers cannot work quickly and efficiently. This
process becomes even more complex and critical with the
introduction of multi terminal direct current (MTDC) power
system [1], [2]. To deal with the issue, several circuit breaker-
designs have been proposed, using simple mechanical circuit
breakers (MCBs) and combination of mechanical and elec-
tronic switches called as hybrid circuit breakers (HCB). For
HVDC applications, limited work has been performed on DC
circuit breaker designs, where each has certain advantages
and disadvantages, but no contribution has tried to give an
overall picture [3], [4]. In this work, the MOSFET / MESFET
based hybrid DC circuit breaker design is proposed to develop
fault interruption scheme for HVDC power system.

A hybrid DC circuit breaker can be a combination ofMCBs
connected in series or combination of MCB and solid-state
devices. The latter is the focus of this research. The design of a
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simple DC-MCB is much like an AC circuit breaker, the only
difference is absence of resonance response. The tripping
speed of a MCB is much slower as compared to an HCB
and it does not perform optimally in voltage source convertor
(VSC) based network, as explained in [1]. Furthermore, HCB
have quick interruption response but with a tradeoff of heat
losses [5].

In an advance HVDC system, the quick fault interruption
process should be controllable, easy to maintain and should
have low cost with lower losses which is only possible by
using DC-HCB approach. The working principle and the
proposed design are explained latter in this paper after the
related works section.

The remaining paper is segmented as follows; section 2
gives the state-of-the-art recent related works, section 3 pro-
vides the design andworking principle of the proposed hybrid
DC circuit breaker, section 4 provides the simulation-based
results followed by conclusion in section 5.

II. RELATED WORKS
Early works on HVDC circuit breaker design were based on
MCBs, that mainly include vacuum circuit breaker (VCB)
and SF6 gas interrupting unit (GIU) etc. But these breakers
alone were not considered fast enough to provide opti-
mal fault interruption, increasing the risk factor of creat-
ing economical losses, especially, because of short circuit
faults [6]. Later, to reduce the fault interruption timing,
researchers started working on hybrid approaches for HVDC
circuit breaker design that included combination of mechan-
ical breakers and solid-state devices. Furthermore, MCBs
are good in current-carrying function and solid-state circuit
breakers (SSCB) are well in high-speed arc less interrupting
function. So, HCB, having combination of MCB and SSCB,
have advantages of both [7]. To-date several works have been
published presenting fault interruption system using hybrid
HVDC circuit breakers. Recent, state-of-the-art related work
to such systems is as follows.

In [5], the authors have proposed a DC circuit breaker
which consists of semiconductor devices connected in series
with a snubber circuit. The proposed circuit realizes high
blocking voltage and reduces the surge voltage accompa-
nying the current clearing by using a freewheeling diode.
In [8], four-terminal radial HVDC network model is pre-
sented, where DC fault interruption current as well as fault
clearing time are achieved by using a DC-MCB together
with forced current zero formation scheme. In [9], two
kinds of interruption testing methods, i.e., power frequency
current peak method and charged reactor method, are pre-
sented for improving DC current interruption performance
using saturable reactor implementation that reduces the value
of C and L.

During fault occurrence, high stresses is created on the
DC circuit breaker, for investigating such problem four basic
circuits are discussed in [10]. Two basic working configu-
rations of hybrid DC circuit breaker are discussed in [11].
First configuration uses a current impulse generated by the

high voltage commutation branch itself, which provides an
artificial current zero crossing in the mechanical switch and
second working configuration uses an additional low volt-
age commutation switch which is connected in series to the
mechanical switch. The authors in [12] have presented a cost
effective and efficient DC fault protection strategy for a multi
terminal (MT) DC system by developing a solid-state device-
based hybrid DC circuit breaker. Similarly, three types of
IGBT models are adopted in [13] for the purpose of DC
breaker design. Another approach is adapted by the authors
of [14] using hybrid current limiting circuit (HCLC) which
consists of a current limiting inductor (CLI) and an energy
dissipation circuit used in parallel with the CLI. HCLC effec-
tively works in term of fault isolation at low voltages cannot
operate on high-voltage system.

To improve the efficiency of fault interruption schemes,
researchers are working on hybrid approaches for DC circuit
breaker designs. The authors in [15] have proposed a hybrid
model with SF6 interrupter and Vacuum interrupter con-
nected in series to improve dynamic electric recovery strength
(DDRS), which is an important factor for arc extinguishing
in fault interruption process of HVDC system. Switching arc
is important parameter for designing of an HVDC circuit
breaker. The study of arc behavior in arc-based current limit-
ing AC circuit breakers helps to develop effective method for
interruption of DC fault currents [16]. During the separation
of CB contacts the shorter arc time and larger electrode
separation is required to improve the dielectric strength [17].
In [18], the authors have worked on DC line fault identifi-
cation based on pulse injection from hybrid HVDC breaker
designed using solid-state devices. In [19], modelling, experi-
mental validation, and application of voltage source converter
(VSC) assisted resonant current (VARC) based HVDC circuit
breakers is presented. Similarly, multiple circuit topologies
of HVDC breakers are proposed in [20]. For a bi-directional
conduction and circuit blocking the state grid corporation
of China (SGCC) designed a hybrid circuit breaker using
IGBTs and full-bridge circuit as a load commutation switch
presented in [21]. In [22], multiple full bridge cells are used in
series with main breaker to achieve bi-directional conduction
and blocking. A unique liquid metal switch with two stage
commutation circuit used in [23] as an alternative of line
commutation switch (LCS) for hybrid HVDC circuit breaker.
In [24], the authors presented a current commutated hybrid
DC circuit breaker which includes mechanical switches for
the normal current path to reduce the transmission losses.
Similarly, the authors in [25] preformed research on the cur-
rent commutation measures of a hybrid DC breaker. They
proposed a current commutation drive circuit (CCDC) used
in series with a mechanical vacuum switch to reduce the fault
interruption time.

Multiple review articles like [26] have been published
to date giving different concepts and challenges related to
HVDC breakers using different technologies presented by
different contenders. The power loss in hybrid HVDC breaker
was studied in [27] andMultiple challenges in HVDC breaker
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development were discussed in [28]. To the best of authors
knowledge all the works investigated so far, emphasis on
efficient fault interruption in terms of fast and timely isolation
of the faulty system in a safe manner. Similar trend is fol-
lowed for works performed in hybrid approaches comprising
of semiconductor devices-based HCBs. The fault interruption
optimization in HVDC is still on going, especially, for faults
like short circuiting where timely interruption is of utmost
importance [6]. Similarly, in this context, this work provides
an efficient and fast fault interruption process for HVDC
system using a hybrid SiC-MESFET and VCB based circuit
breaker compared with hybrid approach using MOSFET and
with MCB. One important thing to remember here is that
SiC-MESFETs can operate at high temperatures as they have
high thermal conductivity, making themmore suitable for the
HVDC applications, however, testing of their thermal con-
ductivity is not part of this work as it is already awell explored
area [30]. Major contributions of this work are summarized
as follows:
• Design of fast and efficient fault interruption process
for HVDC system using SiC-MESFET and VCB based
hybrid DC circuit breaker.

• Validation of the proposed design using Simulink based
MATLAB simulations at high voltages and currents for
HVDC system.

III. SYSTEM MODEL
This section presents the system model of the proposed
HVDC fault interruption scheme containing description of
both mechanical and solid-state part of the breaker. In the
proposed design, VCB is used as a mechanical circuit breaker
and MOSFET / MESFET is used as solid-state device for
hybrid switchingmechanism. This work also provides perfor-
mance analysis between MOSFET and MESFET, that which
one is better for the proposed HCB. To start, the description
of fault interruption handling using VCB is provided first,
followed by the description ofMESFET part to develop better
understanding of latter proposed hybrid DC breaker.

A. DC HIGH-VOLTAGE INTERRUPTION USING VCB
The block diagram of fault interruption process using VCB
is shown in Fig. 1. As shown in the figure, there are three
branches in this scheme for fault interruption, i.e., vacuum
circuit breaker (VCB), metal oxide varistors (MOVs) and
commutation branch that further consists of pre-charged
capacitor C connected in series with inductor L as shown
in Fig. 1(b). When fault occurs, considering that impulse
of fault current reaches a certain safe value, the contacts of
VCB open, creating an arc between the contacts. This process
is followed by closing of the commutation branch switch S
allowing the pre-charged commutation capacitor along with
the inductor to generate high frequency oscillations which
are then overlapped on the VCB current. This produces an
artificial zero crossing which forces the arc to quench, that
was generated due to VCB contacts. VCB has higher arc
extinguishing ability due to perfect insulation. The VCB

FIGURE 1. Fault interruption mechanism using vacuum circuit breaker
(VCB). (a) Block diagram, (b) Schematic diagram.

operating mechanism is based on electromagnetic repulsion
mechanism (ERM) and permanent magnet (PM) system as
shown in Fig. 2. In case of fault occurrence, the ERM part
provides quick response and PM reduces the mechanical
impact produced by the ERM. The process is further elab-
orated in the work published in [29]. For easy and efficient
operation, in this work two small gap VCBs are used with
low voltage over a single long gap VCB with high voltage as
in case of fault interruption, time of VCB can be minimized
due to smaller moving parts with smaller axial dimension.
Furthermore, the transient recovery voltage (TRV) will be
decreased with the use of two small VCBs. TRV is the voltage
that appears across the contact gap when the interruption
occurs. It is a function of the reactive elements on the line
and load side of the VCB [30]. Normally a VCB working is
based on following main factors:
• Dielectric strength between contacts when opening.
• High frequency current Quenching capability at zero
crossing.

1) DIELECTRIC STRENGTH
The dependency of contact distance and dielectric strength is
given by [30]:

U = A
(
t − topen

)
+ B (1)

where, topen is the moment of contact separation, A is the rate
of rise of dielectric strength and B is the breaker TRV just
before current zero. In the case of restriking effect produced
by restrike voltage, the strength of dielectric is measured
as:

U = TRV Limit −
(
A
(
t − topen

)
+ B

)
(2)
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FIGURE 2. Vacuum circuit breaker (VCB) structure diagram [29].

where, TRV Limit is the strength of dielectric that the breaker
can handle and is calculated as:

TRV Limit = k_af .k_pp.E_mag.
√
(2/3) (3)

where, kaf is the amplitude factor, kpp is the first pole of clear
factor andEmag is the breaker rated voltage.When the breaker
contacts open mechanically, the dielectric strength between
the contacts increases with time and when the TRV increases
the dielectric strength, reignition occurs hence leading to high
frequency currents after which quenching takes place [30].

2) QUENCHING CAPABILITY
Vacuum circuit breakers have the capability to quench high
frequency currents, therefore current may be quenched at
artificial zero crossing for arc extinction. The rate of change
of current at the artificial zero crossing determines the
arc extinction. The VCB quenching capability is calculated
using [30]:

di
dt
= C

(
t − topen

)
+ D (4)

where, topen gives the moment of contact separation.
The TRV can be controlled in each submodule, given in

Fig. 1, by resistance and capacitance part. In case of fault,
the surge arrestor limits the fault current value and absorbs
energy during interruption process. After forcing the current
to zero there is a chance of presences of some residual current.
To prevent the residual current, two backup circuit break-
ers (BCB) are used. BCBs are used on each side of the VCB
as shown in Fig. 1. The main benefit of using BCBs on each
side is: as the commutation capacitor is charged by BCB so
if the generating voltage system is on the right side and fault
occurs on the left side, then capacitor can be charged from
the BCB on the right side. Furthermore, BCB can isolate the
whole DC system.

After the detailed description of and working of VCB fault
mechanism, next subsection provides the description of metal

FIGURE 3. Behavior of electron drift velocity v as a function of variation
in electric field E and temperature T [34].

FIGURE 4. MESFET (a) Cross-sectional view (b) AC equivalent circuit
model.

semiconductor field effect transistor (MESFET) as they are
used in combination with the VCB for the proposed hybrid
DC breaker design.

B. METAL SEMICONDUCTOR FIELD EFFECT TRANSISTOR
(MESFET)
Silicon Carbide (SiC) and Gallium Nitrate (GaN) based
semiconductors are 3rd generation wideband gap (WBG)
devices mainly MESFETs. These devices have high electron
mobility, high thermal conductivity, radiation hardness and
are immune to hot carriers degradation, which makes them
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FIGURE 5. Transit time delay (τ ) of Lg = 0.5 µm SiC-MESFET [35].

superior to other semiconductor devices [31]. Furthermore,
they have better performance at high temperatures and high
biasing leading to high switching speeds, as the electrical
parameters of these devices, such as field velocity v and
mobility µ are temperature dependent. The average proper-
ties of different semiconductor devices in comparison to GaN
and SiC based devices is given in Table 1 [32]. The behavior
of electron drift velocity v as a function of variation in electric
fieldE and Temperature T forMESFETS is provided in Fig. 3
and is given by [33], [34]:

v (E) = E × µ (E) (5)

µ (E) =
µo (N ,T )(

1+
(
µoE
vs

)α) 1
α

(6)

where, µo(N ,T ) is the low field mobility which is function
of carrier concentration N and temperature T and vs is the
saturation velocity.

FIGURE 6. SiC-MESFET input/output power characteristics [36].

Cross-sectional view of MESFET device is shown in
Fig. 4(a). Gate controls the flow of current by handling the
Schottky barrier height. A MESFET operates by applying
drain to source voltage (Vds) and gate to source voltage (Vgs),
and the current is biased by both Vds and Vgs. Fig. 4(b)
shows the AC equivalent model of the MESFET device,
where Cpd and Cpg denotes the pad capacitors of drain and
gate, respectively, RS , RG and RD represent source, gate, and
drain resistances respectively, LS , LG and LD are the source,
gate and drain inductances respectively. The high frequency
characteristics of the device depends on the gate length Lg
(Fig. 4(a)) which ensures fast switching and due to this reason
MESFET as a circuit breaker can provide optimal results.
Transit Delay τ is the main characteristic on which switching
frequency of the device is dependent. Transit delay τ is the
device charging and discharging time of the gate depletion
and depends on gate length Lg, and gain of the device Gm.

FIGURE 7. The block diagram of hybrid DC interruption with MESFETs.
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TABLE 1. Average properties of semiconductor materials [30].

It is always desirable to have low τ (approximately 1 psec)
and is expressed as:

τ =
Lg
Vgs
=

(
Cgs + Cgd

)
2Gm

(7)

where, Gm is the transconductance and Cgs and Cgd are the
gate to source and gate to drain capacitances of the device
respectively shown in Fig. 4 and the τ performance is shown
in Fig. 5 [35]. Furthermore, another reason for choosing
4H-SiCMESFET, for the proposed hybrid scheme, is because
these devices can perform better in harsher environments due
to their power performance [36]. For MESFET operation,
power added efficiency (PAE), power density (PD) and power
gain are important parameters for the measurement of device
performance. These characteristics are shown in Fig. 6 [37],
where PAE is observed as 21.1% for maximum input power
with gate length of Lg = 0.5 µm at 2 GHz. To understand
additional working and advantages of MESFETs the refer-
ences provided in this subsection can be investigated further.

As aforementioned that SiC based MESFETs can give
optimal performance with respect to switching frequency,
so the proposed hybrid approach makes use of 4H-SIC
based MESFET together with the VCB explained in next
sub-section.

C. PROPOSED HVDC HYBRID CIRCUIT BREAKER (HCB)
SCHEME
The proposed DC HCB can contain multiple n series of mod-
ules each having four main parallel parts, i.e., A VCB work-
ing at low voltage, MOV as varistor, commutation branch
and semiconductor part using MESFET. Increasing n results
in size reduction of mechanical breaker part as well as ease
in commutation process. The proposed breaker in this work
has two modules connected in series as shown in the block
diagram given in Fig. 7, where the VCBs are working as
mechanical switches and are controlled by the MESFETs.
As aforementioned in subsection A of this section, VCB
works on the principle of ERM given in Fig. 8. It is shown
that in case of fault occurrence, the MESFET is triggered
first generating a pulse current i1 in the coil, inducing a
pulse magnetic field around it. This magnetic field further
induces eddy current in the metal plate. This process creates
a repulsive force Fr between the metal plate and the coil,
resulting in rapid movement of the metal plate. The topology
given in Fig. 8(a) first works in RLC discharging mode
and when capacitor’s zero crossing voltage is achieved, the

TABLE 2. Simulation parameters.

diode D stops the reverse charging of the capacitor. At this
point, the circuit starts working in RL discharging mode. The
equivalent circuit of ERM is provided in Fig. 8(b) where the
metal plate is shown as an equivalent to inductance and a
resistance connected in series. The pulse current generated
by the MESFET is given as:

i1 (t) =


Uc
ωLeq

−αt
sin (ωt) 0 < t < t1

Uc
ωLeq

−αt(2t−t1)
sin (π − β) t ≤ t1

(8)
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FIGURE 8. MESFET-VCB (a) ERM working principle (b) ERM equivalent
circuit.

where, Leq is the metal plate’s equivalent inductance, Uc is
the pre-charged capacitor voltage, M is the metal plate and
coil’s mutual inductance, and L1 & L2 are the self-inductances
generated across the coil and the metal plate respectively.
Furthermore, α, β, ω, t1, and Leq in (8) are given by:

α =
R
2L

(9)

β = arctan
(ω
α

)
(10)

ω =

√
1

LeqC
−

(
R
2L

)2

(11)

t1 =
π − β

ω
(12)

Leq = L1 −
M2

L2
(13)

The electromagnetic repulsive force Fr is given by [38]:

Fr = i1i2
dM
ds
=

1
2
i12

dLeq
ds

(14)

where, s gives metal plate’s displacement. ERM can be addi-
tionally determined by:

m
d2s
d2t
= Fr − Fd − Fh (15)

where, Fh is the holding force produced by the holding spring
and the PM, Fd gives the resistance during the ERM motion
process, and m presents the movable part’s mass. The ERM
process is followed by the opening of VCB which is further
followed by the closing of commutation switch to start the
commutation process for achieving artificial current zero.
As mentioned earlier in the subsection A (for VCB) of this
section, here also MOV limits the fault current value and
absorbs energy during interruption process and BCB prevent
the residual current. This whole interruption process is pro-
vided in Fig. 9 and is summarized as follows according to
time T:

T0: The system is stable and is working in normal condi-
tion with commutation capacitor fully charged.

T1: Fault takes place and fault current appears in the system
current. As the fault occurs, the MESFET is triggered it gen-
erates a pulse current to initiate the ERM process explained
earlier in this section. ERM further initiates the contacts
opening mechanism of VCB for quick response and arc starts
to appear across the contacts.

T2: As the fault current reaches a certain limit, the com-
mutation switch will check the TRV, if its value increases
the dielectric strength, high frequency current (commutation
current) is injected to start the commutation process.

FIGURE 9. The block diagram of hybrid DC interruption with MESFETs.
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FIGURE 10. Simulink model for DC MCB using VCB.

T2 - T3: After the commutation switch closes, current starts
shifting from VCB to commutation branch. At the same time
commutation capacitor starts discharging.

T3: After the current is completely transferred to commu-
tation branch, the first commutation process is completed.
As the VCB opens and TRV appears, the arc quenching
process starts, and snubber circuit comes into action. There
are two responsibility of snubber circuit.

• First, the high capacitance in the snubber branch equally
shares the TRV in the entire circuit.

• Secondly, the resistance in the RC circuit limits the
oscillating frequency of TRV hence limiting the rising
recovery voltage.

T3 - T4: When the arc is quenched, due to forcefully cre-
ated current zero, high energy is generated. This energy is
absorbed by the inductor connected in series with the MOV.
Furthermore, after the voltage of pre-charged commutation
capacitor declines toward zero, second commutation starts
where the current starts to transfer from the commutation
branch to MOV branch.

T4: Second commutation is completed when the total cur-
rent is shifted to MOV branch.

T5: The total current flowing through the system is sum of
the varistor branch current, commutation current, and charg-
ing capacitor, which needs to be fully quenched. Some resid-
ual current always remains, even after the MOV absorbs most
of the energy. Due to this reason, BCB is used to remove the
residual current. The significance of using BCB for removing
the residual current is also shown in the simulation section.

FIGURE 11. (a) Simulink model for HVDC HCB using MOSFET / MESFET. (b) VCB subsystem block (c) MOV subsystem block.
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FIGURE 12. System Current is results: (a) MCB using VCB, (b) HCB with MOSFET and VCB, (c) HCB with MESFET and VCB, (d) Comparison
between the results in (a), (b), and (c).

FIGURE 13. VCB TRV curve of the system.

After detailed explanation of the proposed hybrid fault
interruption scheme, next, the simulation model and results
for validation of the proposed work are provided.

IV. SIMULATION MODEL, RESULTS AND DISCUSSION
This section presents the MATLAB Simulink based simula-
tion model of the proposed HVDC fault interruption scheme.
The simulations are provided in three parts, i.e., HVDC
MCB using VCB, HVDC HCB using MOSFET with VCB
and HVDC HCB using MESFET with VCB. The Simulink

TABLE 3. Summary of the DC breaker.

models for HVDC MCB using VCB (Fig. 1) and for HVDC
HCBusingMESFET (Fig. 7) are given in Figs. 10 and 11. The
simulation parameters are given in Table 2 and the results are
provided in Figs 12 – 14. The system is designed using two
VCB modules connected in series. It is assumed that source
voltage is on the left side of the system while fault occurrence
is on the left side as shown in Fig. 11.

The results provided in Fig. 12 show that 1KA current is
flowing in normal condition where the fault occurs at 2ms
in all three cases, i.e., (a) MCB with VCB, (b) HCB with
MOSFET and VCB (c) HCB with MESFET and VCB. It is
shown that as the fault occurs at 2ms the current starts to rise
and as it reaches a limit of 4.3KA the VCB contacts initiate
the opening process and the commutation switch S closes.
The results show that the quenching of arc is completed
at 6.8ms for the case in Fig. 12(a), 4.8ms for the case in
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FIGURE 14. Commutation current ic results: (a) MCB using VCB, (b) HCB with MOSFET and VCB, (c) HCB with MESFET and VCB, (d) Comparison
between the results in (a), (b), and (c).

TABLE 4. Comparison (simulation).

Fig 12(b) and 3.8ms for case in Fig 12(c) at the zero crossing,
but in (a) it can be seen that, even with arc quenched, there
is some residual current remaining. This is because for the
case in Fig. 12(a) BCB is not considered and the result is
derived to show the effect of BCB absence in the circuit. For
results in Figs 12(b) and 12(c), it can be seen that there is
no residual current after the arc is quenched and the system
current becomes zero due the presence of BCB. The result
provided in Fig. 12(d) shows the comparison between the
results of Figs 12(a, b, c).

When the contacts of VCB open, the transient recovery
voltage TRV appears across the contact gap shown in the
result in Fig 13. As mentioned earlier in previous section of
this paper, that appearing of TRV leads to high currents and at

the same time commutation switch is closed which results in
high oscillating currents being injected into the system [30].
The impact of using MOSFET and MESFET with VCB on
this commutation current is shown in Figs 14(b) and 14(c)
respectively, compared with results of using only VCB in
Fig 14(a). Figure 14(d) shows comparison of all three. It can
be seen that the commutation current for MESFET based
HCB in Fig. 14(c) after, high frequency oscillations, reaches
zero earlier at 3.8ms than the other two. Due to this rea-
son the system current in Fig 12. (c) settles to zero earlier
than the other two cases. Which shows that MESFET based
HCBs have better performance compared to MOSFETS
based HCBs and simple VCB based MCBs.

The results in Fig 15 are given for the voltage across the
commutation capacitor. The results show the behavior of
the commutation capacitor when the commutation switch S
closes. As soon as the commutation switch closes, the com-
mutation capacitor starts to discharge creating commutation.
The oscillation in the result of MCB using VCB in Fig 15(a)
show the charging and discharging of the commutation capac-
itor due to the absence of BCB, whereas there is no oscil-
lation in the results of HCB using MOSFET and MESFET
in Figs. 15(b) and 15(c) respectively once the discharging
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FIGURE 15. Results of voltage across the commutation capacitor uc : (a) MCB using VCB, (b) HCB with MOSFET and VCB, (c) HCB with
MESFET and VCB, (d) Comparison between the results in (a), (b), and (c).

FIGURE 16. Simulation comparison of fault current breaking time of the
proposed design with works provided in [23] and [39].

starts because of the presence of BCB. The results show that
charging of the commutation capacitor, in case of MESFET
based HCB, is more abrupt as compared to the other two
cases.

The findings of cases under consideration, based on the
simulation results, are summarized in Table 3. Considering
that each research on HVDC system has its unique require-
ments, so the purpose of this work is not to contest anyone’s
contribution. However, for the sake of providing significance

of the proposed HCB design using SiC-MESFETs in terms
of fault current breaking time, a few comparisons, using
simulated data, are provided with the existing research in
Fig 16 and Table 4. The results are provided are for two
configurations, i.e., 200KV with peak current of 15KA and
360KV with peak current of 6KA. The results show that the
given design in this work performs better in both configura-
tions. The summary of the simulation comparison is provided
in Table 4.

V. CONCLUSION
The work performed in this paper provides a new fault inter-
ruption scheme using SiC-MESFET and VCB based hybrid
circuit breaker for HVDC system. This work provides the
benefits of using multiple series modules each having four
main parallel parts, i.e., A VCB working at low voltage,
MOV as varistor, commutation branch and semiconductor
part using MESFET, i.e., easy commutation with cost reduc-
tion due to reduced size of VCB. The main contribution of the
proposed work is to reduce the fault clearance time, which
is visible from results that the proposed scheme performs
better than compared to MCB using VCB, and HCB using
MOSFET & VCB, as well as the previously proposed works.
The proposed design is much better than the MCB in terms of
time interruption, less commutation current, higher frequency
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in commutation process, and minimummagnitude of residual
current due to BCB presence. Furthermore, it is signified that
MESFET shows better performance than MOSFET, when
used as CB, because of its fast-switching mechanism. The
material chosen in fabrication of MESFETs plays a vital
role. MESFETs with wide band gap materials (SiC/GaN) are
very promising for microelectronics and power electronics
industry, especially when it comes to breaker design, as they
can perform better in harsher environments like high temper-
atures. To continue the work further hardware testing of the
proposed design will be performed for further validation.
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