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ABSTRACT Since the emergence of coronavirus disease–2019 (COVID-19) outbreak, every country has
implemented digital solutions in the form of mobile applications, web-based frameworks, and/or integrated
platforms in which huge amounts of personal data are collected for various purposes (e.g., contact tracing,
suspect search, and quarantine monitoring). These systems not only collect basic data about individuals but,
in most cases, very sensitive data like their movements, spatio-temporal activities, travel history, visits to
churches/clubs, purchases, and social interactions. While collection and utilization of person-specific data
in different contexts is essential to limiting the spread of COVID-19, it increases the chances of privacy
breaches and personal data misuse. Recently, many privacy protection techniques (PPTs) have been proposed
based on the person-specific data included in different data types (e.g., tables, graphs, matrixes, barcodes,
and geospatial data), and epidemic containment strategies (ECSs) (contact tracing, quarantine monitoring,
symptom reports, etc.) in order to minimize privacy breaches and to permit only the intended uses of such
personal data. In this paper, we present an extensive review of the PPTs that have been recently proposed to
address the diverse privacy requirements/concerns stemming from the COVID-19 pandemic.We describe the
heterogeneous types of data collected to control this pandemic, and the corresponding PPTs, as well as the
paradigm shifts in personal data handling brought on by this pandemic. We systemically map the recently
proposed PPTs into various ECSs and data lifecycle phases, and present an in-depth review of existing
PPTs and evaluation metrics employed for analysis of their suitability. We describe various PPTs developed
during the COVID-19 period that leverage emerging technologies, such as federated learning, blockchain,
privacy by design, and swarm learning, to name a few. Furthermore, we discuss the challenges of preserving
individual privacy during a pandemic, the role of privacy regulations/laws, and promising future research
directions. With this article, our aim is to highlight the recent PPTs that have been specifically proposed for
the COVID-19 arena, and point out research gaps for future developments in this regard.

INDEX TERMS COVID-19, privacy, contact tracing, sensitive data, privacy protection techniques, epidemic
containment strategies, data lifecycle, personal data, emerging technologies, geo-spatial data.

I. INTRODUCTION
The ongoing coronavirus disease–2019 (COVID-19)
pandemic caused by severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) is one of the most extraordinary
challenges humanity has ever faced in terms of infectious
diseases. During this pandemic, an enormous number of
people got infected, and millions lost their lives. Despite
vaccinations on a large scale, there is only a slim chance of
containing the disease in the near future. This pandemic has
severely affected the job market; many have lost their jobs
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amid the lingering pandemic. COVID-19 has forced the clo-
sure of many entertainment facilities, educational institutes,
sports avenues, religious places, tourist spots, and public
facilities in most parts of the world. Researchers are working
towards minimizing the economic effects of COVID-19 by
proposing unique research methods. The number of paper on
COVID-19 are twenty-times higher than previous infectious
diseases [1]. In Figure 1, we present an increase in the number
of articles concerned with the COVID-191 and their effect on
the economics2 of the world in the last three years.

1https://www.ncbi.nlm.nih.gov/research/coronavirus/
2https://sgp.fas.org/crs/row/R46270.pdf
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FIGURE 1. (Left) Economics status of the world, and (Right) number of
research papers concerned with the COVID-19 pandemic in the last
3 years.

In these unanticipated times, the only solution available to
people to keep them socially active or to continue their busi-
nesses is technology (a.k.a. digital solutions). For instance,
people can communicate with their friends using a variety
of social networks (SNs), share activities/events over SNs
via images or videos, identify and make new friends on
SNs, and go online to buy product/services, take classes,
attend religious events, and work from home. Governments in
each country have implemented a variety of digital solutions
(e.g., epidemic handling systems) such as mobile apps, web-
based frameworks, and integrated platforms in order to reduce
the effects of this pandemic, and to constrain the disease’s
spread as quickly as possible. In these digital solutions, huge
amounts and a wide variety of personal data are collected
to accomplish multiple objectives (e.g., identify the disease’s
hidden routes of transmission, control its spread, and forecast
trends). Additionally, governments have used digital solu-
tions to prevent burnout in healthcare workers and for appro-
priate resource planning, taking into account the prevalence
of COVID-19 [2]. We present in Figure 2 seven key lessons
about data strategies in COVID-19’s context.

As shown in Figure 2, data are essential for fighting the
pandemic, but collecting them can be subject to manipu-
lation/misuse if ample attention is not paid to individual
privacy amid this digital surge in recent times. In some
sense, privacy issues have put digital innovations under
immense pressure [3]. Due to the extensive use of digital
solutions as a mechanism to fight COVID-19, privacy vio-
lations have significantly increased, and the need for diver-
gence from data-first to privacy-first becomes inevitable [4].
Interestingly, convincing people to use pandemic-related
apps for their own well-being has also become challeng-
ing for many governments across the globe due to privacy
concerns [5].

In this pandemic, the chances of group privacy breaches
are relatively higher, rather than individual privacy breaches,
because most countries are using the latest technologies like
big data and artificial intelligence. One incident happened in
South Korea when COVID-19’s spread was linked to a minor
religious sect (the Shincheonji church) [6]. Consequently,
the government accessed a huge variety of fine-grained data,
including the credit card usage, telephone and social security
numbers, transactions, and pharmacy visits of all Shincheonji

FIGURE 2. Overview of seven important lessons from COVID-19 regarding
data strategies (adapted from Deloitte’s website).

church members. As a result, some members committed sui-
cide due to these privacy violations and the interference in
their personal lives due to the aggressivemeasures adopted by
the South Korean government against them. In countries such
as Singapore, the balance between public safety and individ-
ual privacy is largely maintained through legal mechanisms
(i.e., for the collective benefit), but it may lead to a range
of negative consequences in the post–COVID-19 era due to
the huge data transition into digital space [7]. Importantly,
in the absence of legal mechanisms for COVID-19–like dis-
aster scenarios, the preservation of privacy against corpo-
rate and government misuse is challenging [8]. Furthermore,
the amount and variety of personal data collected have sig-
nificantly increased, and that might help corporate/political
players take advantage of the current situation to advocate
even more intrusive use of data for political campaigns in
the near future. In the post–COVID-19 era, besides the surge
in digitization, privacy and cybersecurity issues are likely to
emerge in large numbers [9].

Thus far, a considerable effort has been made to address
privacy concerns stemming from COVID-19–related digital
solutions and the data collection/processing to curtail
the pandemic. Noticeable and remarkable development/
research efforts include the decentralized and privacy-ensured
contact tracing systems of Apple and Google [10],
privacy-assured contact tracing based on call data record
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analysis (CDRA) [11], privacy-preserved tracking of sus-
pected COVID-19 infections [12], personal data–protection
laws [13], informed processing of personal data [14],
consent-based data utilization [15], statistical disclosure
control (SDC) techniques [16], data sharing based on the
recommendations of the RDA [17], responsible data gov-
ernance [18], blockchain-based privacy preserving sys-
tems [19], anonymized data based cluster identification [20],
artificial intelligence–driven software for privacy protec-
tion [21], and differential privacy-based privacy protection
methods [22], to name a few. Although these methods have
contributed firmly to addressing different privacy require-
ments, cohesive and substantial efforts are still needed from
the research and development community to curtail pri-
vacy breaches and personal-data abuses in the ongoing/
post–COVID-era.

Prior surveys related to privacy in the context of COVID-19
covered various important aspects, such as privacy issues in
digital solutions, anonymization operations and techniques
for healthcare data, privacy requirements amid the digital
surge, personal data–anonymity frameworks, ethical issues
with the information technology used to fight the pan-
demic, balancing privacy versus public safety during the
pandemic, and privacy problems in contact-tracing applica-
tions. A survey by Sowmiya et al. [23] highlighted privacy
and security issues in contact-tracing apps that have been
developed to curtail the spread of COVID-19. In addition,
the authors suggested valuable guidelines to protect personal
data in the cloud setting. A study by Vadrevu et al. [24] dis-
cussed many state-of-the-art methods for privacy preserva-
tion in video surveillance and healthcare data. Zeinalipour
and Claramunt [25] discussed the main privacy implications
of contact-tracing apps in the post–COVID-19 era through a
set of eight questions with multidisciplinary panelists. This
study provides a solid understanding of the benefits from
contact-tracing apps and the privacy risks. Schmidtke [26]
discussed the privacy issues and challenges in implement-
ing digital solutions that harness location data for contain-
ing COVID-19 infections. The author stressed the need for
situation-adapted models when addressing privacy issues
while fighting COVID-19–like pandemics. Shuja et al. [27]
discussed the privacy problems of open source data related
to COVID-19. These authors highlighted the need for a
data federation to fight the pandemic, and for user pri-
vacy preservation through anonymity. Sihombing et al. [28]
discussed the privacy protection methods adopted by nine
different countries. In addition, other researchers have pre-
sented reviews about the country-specific privacy-protection
methods used in the COVID-19 era [29]–[31]. Furthermore,
some surveys have been published on the quantification of
privacy risks [32], as to the nature of digital solutions (e.g.,
centralized or decentralized) [33], on the (non)acceptability
of digital apps [34], on emerging technologies’ privacy
issues in COVID-19 context [35], about privacy controver-
sies towards aggressive use of information technology amid

the pandemic [36], and on healthcare privacy challenges in
COVID-19 period [37].

Although we fully agree with the contributions of previ-
ous surveys, the concepts/techniques covered in those sur-
veys were limited, and privacy protection techniques (PPTs)
were not covered from broader perspectives. To the best of
our knowledge, none of the existing surveys covered PPTs
that have been proposed for most epidemic containment
strategies (ECSs) and the data lifecycle. To cover this gap,
we present an insightful review of PPTs that were recently
proposed (i.e., 2020 and beyond) in the era of COVID-19. The
main contributions of this review paper are summarized as
follows. (i) It presents various state-of-the-art PPTs that have
been proposed to address the diverse privacy requirements
arising from the ongoing pandemic, and the fundamental con-
cepts and ideas related to PPTs. (ii) It provides an overview
of personal data enclosed in heterogeneous types, and the
corresponding PPTs used for alleviating privacy concerns
in the context of COVID-19. (iii) It describes various PPTs
that have been suggested to solve privacy issues in epidemic
containment strategies (e.g., contact tracing, quarantine mon-
itoring, route disclosure of infected people). (iv) It system-
atically categorizes different PPTs in relation to the phases
(e.g., collection, storage, processing, and use) of the data
lifecycle adopted by most countries to fight the pandemic by
leveraging digital solutions. (v) It highlights the latest devel-
opments leveraging emerging technologies (e.g., federated
learning, blockchain, swarm learning, searchable encryption)
to address the privacy concerns during the pandemic. (vi) It
describes various PPTs that have been proposed, consider-
ing privacy regulations and laws, in order to curtail privacy
violations in recent times. (vii) It presents the challenges in
preserving user privacy amid the pandemic, and lists promis-
ing avenues for research that need further development. With
this review, we aim to provide broader coverage of the pri-
vacy concept in the COVID-19 context that will lay a solid
foundation for future research.

The rest of this paper is organized as follows. Section II
provides background about the privacy definition and scope,
the information embedded in different types of data, the pri-
vacy threats, the PPT types, and the notable operations of each
PPT. Section III presents a conceptual overview of this paper
and the paradigm shifts brought about by the pandemic in per-
sonal data handling. Section IV describes PPTs that have been
proposed for heterogeneous data types. Section V presents
PPTs that have been proposed to protect privacy in mul-
tiple epidemic containment strategies. Section VI presents
PPTs that have been proposed to protect privacy in the eight
different phases of the data lifecycle. Section VII presents
various proposed PPTs that leverage emerging technologies.
SectionVIII discusses PPTs that adhere to privacy regulations
and laws. Section IX discusses the challenges in protecting
user privacy during a pandemic, and suggests promising
future directions for research. Finally, this paper concludes
in Section X.
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II. BACKGROUND
Privacy is highly subjective,meaning its perception/definition
varies from person to person [38]. Generally, privacy is
mainly concerned about keeping private information away
from public access. Privacy is paramount for individualism,
autonomy, and self-respect. The scope of privacy is mainly
classified into four categories, as shown in Figure 3.

FIGURE 3. Classifications in the scope of privacy (adapted from Mendes
and Vilela [39]).

Most researchers have primarily focused on privacy
preservation in the first two categories (information and com-
munication privacy). In this work, we mainly cover concepts
and techniques related to information privacy that encom-
passes personal data. Personal data can be collected, stored,
processed, and distributed in different ways. For example,
SN data are mainly represented/modeled with the help of
graphs. In contrast, the hospital/healthcare sector manages
personal data in tabular form. We present a generic overview
in Figure 4 of the different types/styles in which personal
data are enclosed. In some cases, the same personal infor-
mation can consistently be represented in multiple styles. For
example, user data can be interchangeably represented in both
tables and graphs.

The different types of data shown in Figure 4 can also
be classified as unstructured, semi-structured, and struc-
tured data. Cunha et al. [40] recently presented a detailed
taxonomy of data considering the structure. The authors
also presented various privacy-preserving mechanisms for
each data type. However, they primarily focused on the
data and corresponding privacy preserving mechanisms in
pre–COVID-19. In contrast, we consider different data types
and corresponding PPTs specifically in the era of COVID-19.
Due to the proliferation of the digital solutions in most
sectors, the amount and nature of privacy threats are also
increasing drastically with the passage of time. Figure 5
presents an overview of the different well-known/traditional
and emerging privacy threats.

In Figure 5, we classify privacy threats into two categories:
traditional and emerging. The privacy threats listed in the
first category are well-known to the research community;

FIGURE 4. Generic overview of different data types, and the personal
information included.

FIGURE 5. Overview of different information privacy-related threats.

however, the second category is relatively new, and has not
been explored much. To that end, substantial and cohesive
efforts are needed to cope with privacy threats that are emerg-
ing from heavy reliance on digital technologies during the
pandemic.We invite readers to learnmore about these privacy
threats and the corresponding countermeasures from previ-
ous studies [41]–[46]. To preserve individual privacy from
malevolent adversaries, many PPTs modify private values
or break the associations between values. In some cases,
noise is added to sensitive-attribute values to preserve privacy.
PPTs can be categorized based on privacy threats, data types,
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FIGURE 6. Brief overview of different operations performed by each privacy protection technique (PPT).

applications, and whether they are provable/non-provable
and/or online/offline. In Table 1, we classify the existing PPTs
based on such uses.

TABLE 1. Classification of privacy protection techniques.

The PPTs listed in Table 1 perform a variety of oper-
ations with personal data in order to preserve individual
privacy. We briefly summarize the taxonomy of operations
performed by each PPT in Figure 6. Each operation has
some advantages/drawbacks in terms of conceptual simplic-
ity, superiority in utility/privacy results, robustness, number
of intermediate sub-operations, and computing complexity.
For example, generalization and suppression operations per-
formed in anonymization techniques have a distinct impact on
individual privacy and anonymous data utility, respectively.
Generalization retains more utility for information seekers;
however, suppression ensures better privacy preservation.
Cryptography-based operations can be slow in practice, but
they enable trans-border data flow with privacy guarantees.
Obfuscation-based operations are extremely useful in pri-
vacy protection of geo-spatial data (i.e., location-based sys-
tems/services) by injecting an appropriate amount of noise.
The operations performed by pseudonymization techniques

assist in preserving privacy of sensitive items in data. More-
over, the hybrid PPTs employ multiple operations based on
data type, the nature of the attributes, and privacy/utility
objectives to effectively preserve privacy.

The main PPTs presented in Table 1 can be further
classified into subcategories based on the operations in each
category. For example, anonymization methods can be clas-
sified into syntactic (a.k.a. non-perturbative) and seman-
tic (perturbative) methods. The famous and state-of-the-art
anonymity methods in the former subcategory are the
k-anonymity model [47], the `-diversity model [48], and
the t-closeness model [49]. These models are recognized as
pioneers in privacy, and many ramifications of these models
have been proposed for privacy preservation in different con-
texts [50]–[52]. Similarly, differential privacy (DP) is one of
the state-of-the-art perturbative methods for privacy preser-
vation while answering statistical queries [53]. Recently,
many researchers have extended the DP concept for privacy
protection from different perspectives [54]–[60]. Similarly,
cryptography/encryption-based PPTs can be further classi-
fied into cryptographic protocols and cryptography-based
mechanisms for heterogeneous data types (images, time
series, genomics, streaming data, etc.). For example, the
garbled circuit is a well-known cryptographic protocol that
enables two parties to perform computing on sensitive data
in a privacy-preserved way [61]. We invite readers to gain
insights from previous studies into the detailed classification
of PPTs based on data types [40], [62], [63].

Recently, in contrast to the conventional PPTs cited above,
machine learning (ML) techniques open new opportunities
and challenges in the privacy preservation domain [64].
Therefore, the relationship betweenML techniques and PPTs
is likely to increase in the near future. The existing work in
this regard can be categorized from three aspects (as shown in
Table 2). Some ML techniques can belong to more than one
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TABLE 2. Role of ML in the privacy preservation domain (adapted
from [64]).

category (e.g., privacy preservation and launching attacks,
simultaneously) based on their generality and adoption in
diverse fields.

Although many data-type–specific, domain-specific,
attack-specific, application-specific, sector-specific, and
ML-powered PPTs have been proposed, the current pan-
demic has spotlighted the privacy issues in different contexts.
Therefore, the rest of this paper solely explores privacy
issues/developments in the context of COVID-19.

III. PRIVACY PARADIGM SHIFT DURING THE COVID-19
PANDEMIC
The COVID-19 pandemic has swiftly increased personal
data generation, collection, utilization, analysis, storage, dis-
tribution, mining, aggregation, and transmission/transfer to
cloud/third-party infrastructures. As a result, people’s con-
cerns regarding privacy have significantly increased, and
privacy has become one of the most discussed topics in
the current literature. Recent examples, such as a lack of
digital solution uptake by 45% of people in most coun-
tries [65], exposure of people’s identifiable information by
digital contact–tracing mobile apps [66], mass data collection
and online tracking of people [67], 48.7% disclosure of social
relationships via contact-tracing data [32], movement and
contact tracking of individuals by governments [68], predict-
ing the behavior and hobbies of a person by using location
data [69], and data manipulations by algorithms [70] have
highlighted the need for aggressive privacy protection solu-
tions. In Figure 7, we present an overview of the paradigm
shifts in the data privacy domain amid the COVID-19 pan-
demic. As shown in Figure 7, the pandemic brought a drastic
change to the domain of personal data handling. Conse-
quently, the possibility of privacy threats has also increased.
Aside from the analysis presented in Figure 7, to fight
the pandemic in some countries, more data-intensive digital
solutions are in place that can precisely predict sensitive
data about individuals [71], [72]. We next summarize a few
paradigm shifts related to recent experiences from South
Korea (i.e., from January 2020 on) that can contribute to
privacy breaches.

• Before the pandemic, there was no obstacle to entering
any facility (e.g., universities, cafes, public offices, and
institutes), but during the pandemic, entry logs (i.e., data
donations) are maintained digitally that can contribute
to data misuse in the absence of laws/regulations for
COVID-19–like pandemics.

• Many external institutions, such as police forces, mobile
carriers, credit card companies, and insurance providers,
have been closely working with healthcare workers
since the COVID-19 outbreak. Although this close
co-operation can help find infected individuals and any
close contacts, it can jeopardize an individual’s privacy
due to fine-grained data transfer between the different
stakeholders.

• Hospitals and related institutes were publishing per-
sonal data once or twice a year before the pandemic,
but the frequency has increased significantly with
COVID-19. Health authorities are continuously publish-
ing the routes, facilities visited, mask-wearing status,
and demographics of infected individuals, which can
lead to a range of privacy breaches (i.e., identity/attribute
disclosures of infected people). Furthermore, infected
individuals can face discrimination and/or social stigma
from the community.

• The extensive and rigorous use of multiple mobile apps
for handling the pandemic in South Korea increases
the chances of privacy violations via data aggregation.
These apps enable continuous and detailed data collec-
tion about individuals, and they are utilized in different
contexts. As mentioned in Section I, detailed inspection
of infected/suspected individuals via such apps has led
to many social problems (stigma, depression, suicide
ideation, etc.).

• The tendency towards, and sources of, data collection as
a proactive measure to fight the pandemic are relatively
higher in South Korea. For example, while entering any
facility, contact information is collected on paper, via
QR codes, and with cameras, etc. Although collection
of contact data with the help of different media is handy,
secure disposal of data from all sources is challenging,
and can lead to privacy breaches of various kinds.

• Due to extensive usage of heterogeneous sources of
data, such as CCTV, mobile phone signals, and credit
cards, to find who infected individuals had contact with,
disclosure of activities based on spatial/temporal infor-
mation can occur. Furthermore, the chances of family
and community privacy disclosures is likely to increase.

• To curb the spread of COVID-19, the South Korean
government is keeping an eye on purchasing histo-
ries in pharmacies and convenience stores to enable
immediate testing of suspected individuals if they pur-
chase body temperature measuring instruments and/or
COVID-19–related medicine. Although it is essential
to curtail the spread of COVID-19, such monitoring
can lead to sensitive item–set disclosures. Furthermore,
there is a relatively higher probability that sensitive data
can be manipulated for business objectives.

• The use of government-designated mobile apps for most
tasks (e.g., symptom reporting, test reservations, dis-
semination of relief funds, getting vaccinations) means
personal data transfer to government-owned, centralized
servers has increased significantly. Since the data are
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FIGURE 7. Generic overview of the privacy paradigm shifts amid the COVID-19 pandemic across the
globe.

stored in centralized servers, they are subject to manip-
ulation/disclosures to third parties without explicit con-
sent, and thereby, privacy risks/leakage can be higher.

• One of the potential solutions adopted by the South
Korean government in order to contain the spread of
COVID-19 is by collecting location information in real
time by calling people at random times of the day.
Although this procedure was proven effective to prevent
quarantine violations, it can disclose the spatial and
temporal activities of those people. Furthermore, it can
lead to the disclosure of social relationships if many
people are located in close proximity to each other.

• The majority of the young people in South Korea use
mobile phones extensively for a variety of purposes

(e.g., gaming, information sharing/seeking, social inter-
actions, hotel/room reservations, and online shopping).
Each phone number is one of the most commonly used,
and explicit identifiers because the majority of service
subscriptions (e.g., health insurance, taxation, driving
license, and underlying disease information) are linked
to a person’s phone number. Thus, privacy issues of
various kinds (e.g., subscribing/terminating, mobility
tracking) can occur based on phone numbers [73].

Besides the experiences/measures cited above, the govern-
ment of South Korea has a partnership with many tech giants
who apply analytics to aggregated personal data in order to
analyze the dynamics of COVID-19 spread. Although it is
handy to get insights about the pandemic via multi-party
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computations, this can raise many privacy concerns pertain-
ing to the personal data in question.

IV. PRIVACY PROTECTION TECHNIQUES FOR DIFFERENT
DATA REPRESENTATIONS/TYPES
Generally, an individual’s data can be enclosed/represented
in multiple formats (e.g., tables, graphs, matrix, text, doc-
uments, and multimedia) as shown in Figure 4. Similarly,
data owners (hospitals, healthcare units, policy makers, agen-
cies, etc.) are maintaining personal data in different formats
in the COVID-19 era to use it effectively. For example,
underlying-disease data can be managed via tables [74], and
the relationships between different COVID-19 entities can be
modeled with the help of graphs [75]. The choice of data
representation type is generally made based on the nature
of the data. In Table 3, we classify different PPTs based on
the data representation types in the context of COVID-19,
and we briefly summarize the details. In some approaches
listed in Table 3, more than one PPT/data-type was reported,
which we classified as hybrid. Moreover, in some studies,
only privacy problems were highlighted, and we therefore
placed a hyphen in the cells for the PPTs employed. The PPT
approaches named in the fifth column (Encryption, Obfus-
cation, Anonymization, etc.) relate to the data types (Table,
Graph, Multimedia, etc.) named in the third column. The
detailed analysis presented in Table 3 lays a solid foundation
for future studies in this regard.

V. PRIVACY PROTECTION TECHNIQUES FOR DIFFERENT
EPIDEMIC CONTAINMENT STRATEGIES
In this section, we summarize the contributions of previous
studies regarding privacy protection in different epidemic
containment strategies (contact tracing, quarantine monitor-
ing, etc.). The utilization of ECSs varies from country to
country. In some countries, only contact tracing is used to find
who infected individuals had contact with in order to contain
the spread of COVID-19. On the other hand, some coun-
tries rely solely on quarantine/social-distance monitoring to
fight the pandemic. In some countries, multiple ECSs were
employed to curtail the spread of the virus as quickly as
possible. In this work, we select and discuss six of the most
widely used ECSs that have played a vital role in COVID-19
containment. A generic overview of the selected ECSs is
shown in Figure 8. Each ECS has a unique role in handling
the pandemic. For example, contact tracing can help find the
people an infected individual came into contact with, and
reporting symptoms can help contain the disease proactively.
We briefly summarize the overview of each ECS before
presenting PPTs for them.

A. DIGITAL CONTACT TRACING
In this ECS, the close contacts of an infected individual are
determined in order to test them or have them self-isolate.
With the help of this ECS, not only is the spread contained
but the potential carrier can also be treated immediately [124].
Meanwhile, digital contact tracing has raised several privacy

FIGURE 8. Overview for six of the main ECSs employed to fight COVID-19.

concerns in developed countries [125]. Apple and Google
are working on development of privacy-preserved contact-
tracing apps [11].

B. QUARANTINE MONITORING
In this ECS, individuals believed to be exposed/infected with
COVID-19, but who do not show any symptoms, are sep-
arated from other people. This ECS requires provision of
essentials (i.e., food and medicine), a private space, and an
investment in enforcement [126]. Many digital apps have
been developed to monitor and enforce quarantines.

C. SOCIAL DISTANCE MONITORING
In this ECS, close contact with other people is avoided in
both indoor and outdoor environments. It is one of the main
solutions recommended by health authorities to lower the
spread of COVID-19 [127].

D. SYMPTOMS/OTHER DATA REPORTING
In this ECS, the disease’s symptoms, risk factors, and other
related data are collected via smartphones or surveys to
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TABLE 3. Summary and classification of recently proposed PPTs for the COVID-19 pandemic based on the different data representation types.

proactively contain disease spread. It can assist in fighting
an ongoing pandemic with the help of digital solutions [128].

E. COLLECTED DATA ANALYTICS
In this ECS, analytics performed on COVID-19-related data
helps to understand the spatial–temporal dynamics of this
deadly disease. Analysis of epidemiological data with the

latest big data technologies helps to find insights into the
COVID-19 pandemic [129].

F. SHARING COVID-19 PATIENT DATA
In this ECS, clinical/general data about COVID-19 patients is
shared with domestic/international researchers to understand
the progression of the disease. Although data sharing brings
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TABLE 5. Summaries of previous surveys, perspectives,
or country-specific experiences regarding privacy in digital solutions.

innovation, it can lead to privacy issues. For example,
in South Korea, upon positive test results, the places
an infected individual went is shared with other people.
Although it sparked criticism from the general public,
it helped curb the spread of COVID-19 [130].

Apart from the ECSs cited above, alerting people to keep
them away from hot spots and contaminated places, and
implementing other preventive measures, played a vital role.
Table 9 categorizes and summarizes recently proposed and/or
developed PPTs for each ECS.

The abbreviations used in Table 9 are, CT = contact
tracing, RM = remote monitoring, CC = cloud comput-
ing, QM = quarantine monitoring, CN = cellular network,
DR = data reporting, RS = route sharing, SDM = social
distance monitoring, DC = data collection, EI = external-
info., PI = personal information, and AI = artificial intelli-
gence. Moreover, the abbreviations used in methods’ cell are
described in respective studies. The letters A, B, C, D, E, and
F correspond to each ECS in the subsections above. In some
studies, the proposed approaches are applicable to more than
one ECS, and therefore, we mention all of them in the
ECS column. In the evaluation metrics column, we provide
an evaluation of the approach based on extensive reviews.
However, some approaches were only evaluated based on
non-functional requirements (trust, safety, computing power,
availability, ease of use, data collection, etc.) or they are just
an architecture/design/prototype app. Therefore, we provide

exact descriptions of the evaluation metrics along with the
core privacy problem solved. Although we describe relatively
fewer approaches for the last two ECSs, most of them are
already described in Table 3. Besides the detailed coverage of
various representative PPTs discussed in this survey, detailed
knowledge regarding the generic overview of privacy pro-
tection or ECS-specific PPTs can be gathered from previ-
ous studies. To that end, we summarize such representative
studies in Table 5.

VI. PRIVACY PROTECTION TECHNIQUES FOR DIFFERENT
PHASES OF DATA LIFECYCLE
Generally speaking, in most epidemic handling systems
(contact-tracing apps, alert systems, risk estimation, etc.),
data undergo different phases (e.g., collection, pre-
processing, analytics, and use) before finally leaving the
system. Thence, data have a complete lifecycle that mostly
starts with collection and ends at secure disposal. Most

FIGURE 9. Overview of the eight main phases of the data lifecycle.
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TABLE 6. Summary and classification of recently proposed state-of-the-art PPTs for each phase of the data lifecycle.
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epidemic handling systems that are currently used to fight a
pandemic also employ a similar data lifecycle, either fully or
partially [215], [216]. During this lifecycle, data are collected
from the relevant individuals, are processed and used for the
intended purposes, and are then removed from the system
based on defined policies. In Figure 9, we present an overview
of the phases of data lifecycles along with recent PPTs for
each phase. Table 6 summarizes and compares state-of-the-
art and recently proposed/developed PPTs for each phase of
the data lifecycle.

The abbreviations used in Table 6 are GPS = global
positioning system, GDPR = general data protection reg-
ulation, DB = database, MPC = multi-party computation,
ANN = artificial neural network, and PSI-CA = private set
intersection cardinality. In Table 6, we classified the exist-
ing approaches into three categories: practical, theoretical,
and conceptual. Practical approaches have been completely
developed and deployed to some extent for the intended
purposes, whereas theoretical approaches have been tested
in limited scenarios or via simulation only. In contrast, the
conceptual approaches highlight the privacy-enhancing tech-
nologies that will be paramount in the near future in order
to preserve individual privacy, or they critically analyzed
the recently developed PPTs. The evaluation metrics used
to determine the feasibility of these PPTs cover computing
time, accuracy, privacy protection level, resilience against
various potential privacy threats, safeguards from various
active privacy attacks, query result accuracy, probabilistic
anonymity, association-rule hiding, data linkage prevention,
sensitive data division into secret shares, and the whole pro-
cess of data lifecycle/flow privacy preservation.

VII. PRIVACY PROTECTION TECHNIQUES THAT
LEVERAGE EMERGING TECHNOLOGIES
During the ongoing pandemic, emerging technologies such as
blockchain (BC), federated learning (FL), privacy by design
(PbD), and artificial intelligence (AI), to name a few, have
played a vital role in addressing privacy implications of vari-
ous kinds [300]–[302]. These technologies have addressed
the emerging privacy concerns and requirements that have
arisen from digital solutions used to bring the pandemic
under control. These technologies remain an integral part
of many digital solutions developed to fight the pandemic
in a privacy-preserving way. Additionally, these technolo-
gies have assisted in alleviating people’s worries regarding
personal data manipulation. We refer to these technologies
as emerging technologies because they are relatively new,
and their potential has not been fully investigated in dif-
ferent contexts. Nevertheless, many studies have reported
their unique advantages in alleviating privacy concerns from
the COVID-19 pandemic due to their proliferation in digital
solutions.

These emerging technologies have helped to significantly
restrict privacy breaches from digital solutions developed
for different epidemic containment strategies, in the data

lifecycle phases, and for general e-health services. For
example, BC can be used for multiple services in the
healthcare industry (e.g., contact tracing, EHR privacy,
and collaboration between different entities in a privacy-
preserving manner) [303]. FL has reshaped the whole health-
care industry (e.g., in transitions from hospital-centered
procedures to patient-centered or device-centered proce-
dures) by performing analytics federally without revealing
actual data to centralized servers [304]. AI has played a vital
role in developing privacy-aware approaches [305], and the
PbD concept plays a dominant role in developing digital
solutions by keeping privacy in focus from the early devel-
opment stages [306]. In Figure 10, we present an overview of
five emerging technologies that have helped reduce privacy
breaches of various types. Later, we describe various PPTs
that have adopted some unique features of these emerging
technologies in order to protect an individual’s privacy.

Key characteristics in BC technology, such as
decentralization, distributed ledgers, immutability, and trans-
parency, make it suitable for private data sharing, collabo-
ration between different entities in a confidential manner,
data leakage prevention, and smart-contract–based agree-
ment execution among different parties [307]. This is one
of the most widely used technologies for data protection,
and its use in the healthcare industry is increasing day by
day. PbD is an emerging concept for privacy protection in
digital solutions [308]. Its seven key principles (listed in
Figure 10) lay a solid foundation for software development
that keeps privacy inmind, addressingmany privacy concerns
that can arise due to digital solution use. Furthermore, PbD
principles are highly flexible, meaning they can be modified
to fulfill the diverse privacy needs of different sectors. FL has
revolutionized the data privacy domain by keeping data in
local devices instead, with only model parameters/weights
shared centrally [309]. By keeping data at the edge or within
devices, privacy can be effectively guaranteed in most cases.
Swarm learning (SL) is one of the recent technologies for data
protection, and is an enhancement of the FL concept [310].
In this model, not only the data but the model parameters are
kept at the edge or in the devices. By not sharing the model’s
parameters and the underlying data, privacy can be preserved
significantly. SL has the potential to become a real game
changer for privacy-preserved data sharing in the near future.
Finally, searchable encryption (SE) can assist in privacy
protection by enabling analytics to be applied to encrypted
data. By performing analytics on encrypted data, a user’s
privacy can bemaintained consistently, and privacy violations
can be restricted to the extent possible [311], [312]. All
these emerging technologies have contributed significantly
to addressing the diverse privacy requirements arising at the
present time. Furthermore, adoption of these technologies
is likely to grow in the near future, because personal data
circulation in cyberspace has increased significantly.

In Table 7, we present an overview of PPTs that employ
emerging technologies in order to preserve a user’s privacy.
Apart from the state-of-the-art studies listed in Table 7,
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FIGURE 10. Conceptual overview of emerging technologies in the context
of COVID-19.

other studies have reviewed the potential application of these
emerging technologies to privacy protection in the healthcare
industry. Shah et al. [313] discussed the potential applica-
tion of BC to protecting an individual’s privacy from the
authorities, snoopers, and mutual contacts. Wei et al. [314]

TABLE 7. Summary of PPTs that employ emerging technologies to protect
user privacy.

discussed the uses and designs of various FL algorithms to
protect the privacy of patient data. Gerunov [315] discussed
the potential uses of the PbD concept to address privacy
concerns of individuals. Bahmani et al. [316] discussed SL
use in protecting an individual’s privacy from malevolent
attackers. Wang and Papadopoulos [317] discussed three SE
approaches to effectively preserve privacy while outsourcing
data to cloud settings. Zerka et al. [318] discussed the privacy
implications of adopting AI-based techniques in the health-
care sector. Zapechnikov et al. [319] discussed privacy pro-
tection in ML algorithms and suggested FL architectures for
effective privacy preservation. All these authors emphasized
the need for algorithmic solutions in effectively preserving
individual privacy.

VIII. PRIVACY PROTECTION TECHNIQUES THAT ADOPT
PRIVACY REGULATIONS/LAWS
Privacy laws and regulations have enormous benefits for
the people of any country. They are essential to pre-
serving an individual’s rights against powerful authorities,
including governments, corporate/political players, service
providers and other stakeholders. They enable accountability
for privacy violations and personal data abuses. Amid the
COVID-19 pandemic, the necessity for legal measures to
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TABLE 8. Summary of privacy laws/regulations and their respective
studies.

protect the privacy of minor sects/tribes has been greatly felt
under many circumstances around the globe [351]. Further-
more, privacy laws and regulations are paramount for the
greater good. Despite World Health Organization (WHO)
recommendations regarding discrimination prevention
against infected/exposed people, some communities have felt
insecure or stigmatized when a virus connection was linked to
them. Furthermore, due to non-availability of laws and reg-
ulations governing COVID-19–like pandemics, many com-
munities were discriminated against with regard to mobile
app use and data collection. Considering the need for laws
and regulations, cohesive and substantial efforts are needed
to devise rational legal measures. In this work, we present
in Table 8 five relevant privacy laws and regulations and
recent corresponding studies. Although these laws were pro-
posed before the pandemic, their need has been greatly felt
amid the ongoing pandemic. Therefore, some parts and/or
chapters have been adopted to address emerging privacy
concerns/requirements in recent times.

Although legal measures have tangible benefits for
people in general and for service providers, some studies have
recently regarded these legal measures (i.e., privacy laws and
regulations) as a barrier to system development [377], [378].
Nevertheless, substantial efforts are underway in each coun-
try to amend or propose new privacy laws to ensure people’s
autonomy and self-respect. For example, a new law named
the Personal Data Protection Bill (PDP Bill) was recently
proposed to preserve people’s privacy in India [379]. The
seven points of the PDP Bill adhere to changing technologies,
and can ensure people’s privacy to a great extent. To preserve
people’s privacy in unanticipated situations like COVID-19,

significant amendments are needed in existing laws to better
cope with the emerging privacy requirements. Furthermore,
new laws that can take into account the unique charac-
teristics of the ongoing pandemic are needed in the near
future [380]. In addition, incorporating the role of emerging
technologies like BC, FL, SL, and PbD in legal measures in
order to address privacy concerns has become more emergent
than ever. Additionally, creating awareness among people
as to what constitutes privacy, and communicating the risks
of privacy disclosures via legal measures, is of paramount
importance.

Finally, we demonstrate the quantitative analysis such as
the percentage of successful privacy protection rates of PPTs
described in the previous five sections in Figure 11. These
results are average results obtained from the studies who have
reported the privacy-protection-related statistics. This anal-
ysis shows the success of PPTs in preserving privacy from
different perspectives in the context of COVID-19 pandemic.

FIGURE 11. Quantitative analysis of recently proposed PPTs in terms of
percentage of successful privacy protection rates in the context of
COVID-19.

IX. CHALLENGES IN PRESERVING INDIVIDUAL PRIVACY
AND PROMISING RESEARCH DIRECTIONS
In this section, we discuss the challenges of preserving indi-
vidual privacy in recent times, and we suggest promising
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research directions regarding privacy preservation for the
future.

A. CHALLENGES IN PRESERVING INDIVIDUAL PRIVACY
Due to the significant rise in digital-solution adoption and
use, privacy preservation has become more challenging in
recent times. Owing to drastic technological developments,
many people are concerned about the privacy of their personal
information because sensitive data about their daily activities
and routines can easily be gathered now. In addition, a 34%
increase in digital tracking tools amid the pandemic has spot-
lighted privacy as an essential requirement for future software
development. The collection of personal data is increasing at
a rapid pace, and the tendency and scale of the privacy issues
is likely to grow in the near future. We summarize 13 unique
challenges in preserving individual privacy in recent times.
• Hidden data collection: In many digital solutions,
personal data are often collected without the user’s
knowledge and are transferred to corporate/political
players. These data can be subject to manipulation for
individual tracking and spatial–temporal activity disclo-
sure. Hence, to protect against hidden data collection and
the corresponding privacy issues is very challenging.

• Sensitive information derivation and prediction: Due
to the significant increase in AI use and data avail-
ability, sensitive data about a targeted person can now
be easily predicted/derived. For example, by correlat-
ing demographics and publicly available information,
disease/salary information can easily be predicted using
AI. To this end, safeguarding sensitive information
against AI-based prediction/derivation attacks is very
challenging.

• Illegitimate data aggregation: Recently, many compa-
nies have been collecting massive amounts of personal
data for various purposes, including job creation, mak-
ing recommendations, marketing products, etc. On one
hand, the data are handy for data-driven analytics.
On the other hand, the practice increases the risk of
hidden profiling and misusing aggregate information
(e.g., average-age people vs. their interests), because
people are mostly unaware of such data processing and
handling. To control data aggregation amid this digital
surge is challenging.

• Contextual information disclosure via heterogeneous
sources data fusion: Many individuals use multiple
digital solutions (mobile devices, laptops, and online
portals) simultaneously. To this end, collection of dif-
ferent information, such as spatial–temporal activities,
residential information, social interactions and their fre-
quency, workplaces, etc., can easily be obtained. This
information can be fused with other data collection
sources (e.g., cellular network data and credit card
data) to infer sensitive information about individuals
derived via analytics [381]. Hence, providing sufficient
resilience against privacy threats that can occur due to
heterogeneous source data fusion is challenging.

• Implementation of strict privacy-enhancing technolo-
gies (PETs): To preserve an individual’s privacy from
malevolent adversaries, some strict PETs (e.g., PbD,
zero-knowledge proofs, and confidential computing)
have recently been suggested. However, the true realiza-
tion of these PETs in order to restrict privacy breaches
is very challenging from all perspectives.

• Shifting most computations from centralized to decen-
tralized/hybrid settings: Thus far, personal data are
mainly collected from relevant individuals, and are pro-
cessed in centralized settings (e.g., servers). By remov-
ing the data from the users, processing at a central server
can be subject to manipulation and/or abuse. In some
cases, personal data can be stolen from the server or
sold to third parties to accomplish scientific/business
goals. Hence, transitioning from centralized settings to
hybrid/decentralized settings has become imperative,
but it is not straightforward, because processing personal
data in a decentralized/hybrid manner can still be subject
to manipulation, and can result in less utility. Thence,
devising methods in order to move computation from
central to local/hybrid settings is a challenging task.

• Inadequate mechanisms for appropriate data collection:
Generally, personal data are collected from individuals
without communicating the risks from doing it. In some
cases, unneeded (but private) data are collected as a
pro-active measure. For example, in South Korea at the
beginning of the pandemic, everyone was supposed to
report medical information every morning before going
to work. On one hand, that can assist in understanding
the problem from multiple perspectives, or can help
lower disease propagation. On the other hand, it can
increase the chances of privacy violations and personal
data misuse. Hence, devising mechanisms to collect
fewer—but relevant—data is very challenging.

• Chain of custody of personal information: Generally,
after collecting personal data, the use of those personal
data no longer remains visible to the data providers.
Thus, personal information can be subject to hidden
manipulations and cross-system transfers. On top of that,
complete trails of personal information (where it goes,
who processed it, where it is now), and whether it has
been removed completely from the system or not, remain
questionable. Therefore, addressing all these concerns
by making personal information processing transparent,
and ensuring chain of custody of personal information,
is very challenging.

• Creating personalized privacy protection and user-
centric tools: As mentioned earlier, privacy is highly
subjective, and its perception varies from person to per-
son. Recently, in order to address the varying privacy
requirements of a subset of people, personalized PPTs
have been developed [382]–[384]. Despite the success
of these approaches, incorporating each user’s privacy
requirements is challenging. Furthermore, developing
highly user-centric tools can increase the variability in
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data, which in turn can impact the quality of anal-
ysis. Thence, addressing personalized privacy prob-
lems and developing systems based on user’s expec-
tations/preferences has become challenging in recent
times.

• Developing generic solutions that can work with diverse
data styles: Generally, person-specific data can exist
in multiple styles (graphs, matrix, traces, tables, etc.),
and existing privacy protection tools can find it hard to
process more than one or two data styles. For instance,
PPTs proposed for tabular data yield infeasible results
from graph data, and vice versa. Hence, developing
PPTs that can function with different styles of data
enclosing sensitive and non-sensitive information is
challenging. In addition, evaluationmetrics that quantify
the privacy-preservation and utility-enhancement level
across diverse data styles is also challenging.

• Development of low-cost privacy preserving solutions
that can work on client devices: A lot of effort is
now underway to move computations from centralized
architectures to decentralized architectures (a.k.a. cell-
phones/edge devices) [385]–[387]. Moreover, due to
the resource-constrained nature of these devices, mak-
ing lightweight, privacy-preserving solutions is very
challenging. Additionally, formal analysis and exper-
imental evaluation of such PPTs regarding perfor-
mance is guaranteed to impose significant challenges for
developers/researchers.

• Safeguarding personal information from AI-powered
attacks: Recently, AI techniques have shown great
promise against knowledge extraction from large-scale
and high-dimensional person-specific datasets [388].
These techniques have also been used to secure per-
sonal data from a variety of practical attacks that occur
during data collection, transfer, publishing, and/or stor-
age, etc. [389]–[391]. On one hand, AI techniques are
used to address privacy issues. On the other hand, these
techniques assist malevolent adversaries to compromise
individual as well as group privacy [392]–[394]. Hence,
safeguarding personal information from AI-powered
attacks, and preventing large-scale privacy attacks,
is very challenging.

• Addressing the privacy-versus-utility trade-off: Privacy
and utility are two conflicting goals—optimizing pri-
vacy can downgrade utility [395], [396]. To this end,
devising low-cost solutions that can effectively address
this long-standing problem is very challenging. On top
of that, quantifying the exact amount of privacy and
utility while handling personal data is also very difficult.

B. PROMISING FUTURE RESEARCH DIRECTIONS
Due to the significant rise in digitization, privacy protec-
tion is gaining more and more attention, and it has become
an active area of research in recent times [397]–[399].
Based on extensive analysis of the published literature, the
challenges/threats to individual privacy, and the recently

FIGURE 12. Promising research and development directions for the
future.

developed countermeasures, we suggest in Figure 12 various
promising open problems that need further development and
research from both industry and academia in the near future.

Since the COVID-19 outbreak, location data have been
extensively used for multiple purposes (e.g., flow modeling,
mobility analysis, contact tracing, and compliance monitor-
ing within government guidelines), and many digital services
are harnessing location data constantly. Accordingly, various
PPTs have been proposed to address the emerging privacy
issues in handling location data [400]. Despite the success
of these approaches, devising more practical solutions for
privacy protection in trajectory/location data is an impor-
tant avenue for future research. Recently, due to significant
advancements in AI and computer vision techniques, multi-
media data (i.e., images and videos) are being processed in
multiple applications. However, there is a lack of practical
PPTs to address privacy issues in multimedia. Hence, devis-
ing low-cost and practical solutions to address privacy issues
in multimedia is a vibrant area of research. As stated in a
previous study [40], there is a significant lack of PPTs that
can be applied at data collection time. Therefore, devising
robust PPTs that can address privacy issues at data collection
time is still an open research direction. Many PPTs require
parameter configuration (k, `, t, ε, etc.), and their values can
significantly impact the level of both privacy and utility [401].
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Therefore, devising PPTs with fewer parameters for config-
uration, or possibly self-learning parameter values based on
data, is still an open issue in the privacy domain. In recent
years, ML has been extensively used to address various
privacy concerns emerging from digitization [402]–[405].
Therefore, employing different ML concepts and techniques
to secure personal data is an interesting area of research.

Generally, privacy risks are highly associated with the
nature of the data, the data owners, the settings for data
processing (centralized, decentralized, hybrid), adversaries’
skills, etc. Quantifying privacy risks accurately needs domain
expertise and underlying data knowledge in a fine-grained
manner [406]. Thus, devising accurate privacy-risk quantifi-
cation methods for different data styles/sectors is an impor-
tant avenue for future research. Most of the existing PPTs
are data type–dependent, meaning one PPT that has been
proposed for tabular data yields infeasible results when pro-
cessing, for example, graphs. To increase privacy protection
for different data styles, development of unified frameworks
that can process and ensure privacy in different data styles
is needed in the near future. In some scenarios, utility is
preferred over privacy for the national interest or to under-
stand an underlying problem. To this end, proposing and
evaluating PPTs that can exploit data structures in order to
yield superior utility with considerable privacy is an open
research area. Harms due to a privacy breach varies in nature
(for example, loss of service/benefits due to a privacy breach,
psychological damage due to unconventional sex practices
or cosmetics surgery information disclosures, and/or loss
of an employment opportunity due to personal information
disclosure) [407]. Hence, there is an emerging need for
methods that can accurately characterize harm in different
privacy contexts. Another long-standing challenge in PPT
development is effective resolution of the privacy-versus-
utility trade-off. Despite many developments, this dilemma
is still unsolved [408]. To this end, devising new data-driven
and adaptive PPTs, or improving the performance of existing
PPTs in this regard, is a promising research area.

Due to the change in features and data types of each
domain and application, there is a significant lack of reusabil-
ity in existing PPTs. The PPT proposed for one domain
yields inconsistent performance in another, slightly dif-
ferent, domain. To address this issue, developing flexible
PPTs that can be used in multiple domains/applications
with slight modification/tuning is a vibrant research area.
Recently, there has been increasing focus on developing pri-
vacy preferences–aware PPTs [409]–[411]. Meanwhile, due
to huge diversities in privacy preferences, devising unified
frameworks is very challenging. Thus, in order to preserve
individual privacy, preferences-aware PPTs are needed in
the near future. Apart from the promising directions cited
above, developing PPTs that can ensure resilience against
multiple privacy threats is an emerging area of research.
Recently, many AI-powered methods are using tremendous
amounts of personal data enclosed in tables, images, videos,
and sequences, etc., for training [412], [413]. However, due

to the complex nature of these methods, hidden data leakages
are possible. Thence, augmenting the interpretability and
explainability of the PPTs that employ AI-based methods is
one of the promising avenues for future research. The last
eight directions listed in Figure 12 are mainly related to
development. In this regard, choosing reasonable language
when writing privacy policies, ensuring end-to-end security
of data, protecting against cluster/sparsity effects, data clas-
sification (based on sensitivity) in software, analyzing the risk
ofML techniques, upgrading and following privacy laws, and
controlling data transfer to central servers, need significant
development from industry.

Besides the promising research and development direc-
tions cited above, a promising avenue for future research is
preserving individual privacy in synthetic data. On one hand,
synthetic data can aid in conducting research on personal data
with relatively fewer privacy concerns, and synthetic data can
be extensively used in training ML methods [414], [415].
On the other hand, it can be subject to manipulation and
privacy issues if it is closely tailored by the original data [80].
Therefore, analyzing the privacy and utility levels offered
by synthetic data is a promising avenue to help the com-
munity when access to the original data is restricted due to
privacy issues [416]. In addition, devising feasible synthetic
data–generation tools for the greater good is an interesting
research direction. Recently, due to the advancements in FL
techniques, record-level disclosures can occur while process-
ing personal data [417]. Therefore, practical countermeasures
to avoid such attacks are needed in the emerging technolo-
gies context. Furthermore, applying a weightage concept to
attribute values in order to safeguard individual privacy is a
relatively new research area [418]–[420]. Therefore, devising
PPTs that can extract attribute information to the greatest
extent possible in order to enable secure personal data sharing
is a vibrant area of research. Last but not least, there is a lack
of unified privacy and utility evaluation metrics. The existing
metrics are highly domain- and data style–dependent. There-
fore, feasibility analysis of the existing metrics based on the
emerging types of data (e.g., sensors, SNs, and wearables),
and proposing new evaluation metrics that can have wider
applicability, are emerging avenues for future research.

X. CONCLUSION
In this paper, we reviewed and described the findings of
most of the recent studies that have proposed ways to com-
bat emerging privacy threats in the context of the ongoing
COVID-19 pandemic. Recently, there has been an increasing
focus on developing practical PPTs as quickly as possible
due to the significant rise in personal data transitions into
cyberspace via digital solutions, and the corresponding rise
in privacy issues. Owing to the drastic software develop-
ment in the ‘‘new normal,’’ a huge amount of personal data
can now be easily collected about individual activities, daily
routines, stay points, hobbies, social interactions, and work
schedules, to name a few. Although such data are invalu-
able for managing and containing the pandemic, collecting
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them can increase the chances of privacy breaches. Thus,
privacy protection will likely remain in the spotlight in the
near future amid continuous technical developments. In this
work, we provided detailed background about information
privacy before discussing the paradigm shifts triggered by
the ongoing pandemic in personal data handling and the
corresponding privacy issues. We categorized the existing
PPTs based on the different types of data and anonymity
operations employed to protect privacy in the respective data
types. We provided a systemic mapping of PPTs to different
epidemic containment strategies (contact tracing, quarantine
monitoring, symptom reporting, etc.) that are used to fight
the pandemic. We mapped the existing PPTs to eight phases
of the data lifecycle adopted by most epidemic handling
systems across the globe. In addition, we discussed PPTs that
employ the concepts of five emerging technologies in order
to preserve individual privacy effectively. We summarized
the recent PPTs that have followed the guidelines of famous
privacy laws and regulations in order to preserve individual
and minority sects/communities’ privacy. Finally, promising
avenues for future research in the privacy area, and chal-
lenges involved in protecting privacy amid continuous tech-
nical developments, were discussed. The detailed analysis
presented in this article provides deeper insights into recently
developed PPTs and future research dynamics. Based on
extensive analysis, we found that no single PPT can mitigate
all kinds of privacy threats stemming from the ongoing pan-
demic. However, PPTs that employ emerging technologies
concepts are believed to be the most efficient solution for
safeguarding individuals’ privacy from contemporary privacy
threats such as tracking, profiling, and daily activities dis-
closures. Recently, federated analytics has emerged as a new
paradigm that effectively solves the tasks related to data ana-
lytics without centralizing personal data from devices [421],
[422]. In future work, we plan to analyze the efficacy of
federated analytics regarding individual privacy protection,
and examine the recent developments in this regard.
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