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ABSTRACT The ability to locate users and estimate traffic in mobile networks is still one of the major
challenges when it comes to planning and optimizing the networks. Since indoor location is not always
possible or precise, having the ability to distinguish indoor from outdoor traffic can be a valuable alternative
and/or improvement. In this paper, two different machine learning algorithms are presented to classify
a user’s environment, whether indoor or outdoor, using only data from a Long Term Evolution (LTE)
network. To test both algorithms, two different measurement campaigns were done. Both campaigns used a
smartphone to gather data from the user’s side. The first measurement campaign was done across 6 different
cities, ranging from small rural areas to large urban environments, while the second was only done on a large
urban city. On the second campaign, Network Traces (NT) data was also collected from the network side.
The first algorithm consists on a Random Forest (RF) and the second relies on a Long Short Term Memory
(LSTM), thus covering both more traditional machine learning and deep learning approaches. The results
varied from 0.75 to 0.91 on the F1-Score, depending on the validation strategy, showing promising results.

INDEX TERMS Indoor outdoor detection, machine learning algorithms, long term evolution, measurement
campaigns, smartphone, network traces.

I. INTRODUCTION
According to [1], 4th Generation (4G) technology will
remain the dominant mobile access network for a while
longer. During the first quarter of 2021, 4G subscrip-
tions increased around 100 million, reaching 58% of all
mobile subscriptions. It is projected to peak during the year
at 4.8 billion subscriptions, before dropping to around
3.9 billion subscriptions by the end of 2026, when the sub-
scribers will migrate to 5th Generation (5G). Also, the global
4G population coverage was over 80% at the end of 2020 and
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is forecast to reach around 95% in 2026. 4G networks are
evolving to deliver increased network capacity and faster
data throughputs, and the Communication Service Providers
(CSPs) are continuously adapting their service packaging
towards consumers. Improving network planning by esti-
mating indoor traffic demand will contribute to more effi-
cient network deployments. Predicting an accurate indoor
traffic ratio is especially useful to operators rolling out high
frequency coverage. Traditionally, it has been assumed that
almost 80% of mobile data traffic is generated indoors. Now,
methods are being developed to accurately estimate the pro-
portion of traffic in outdoor base stations that is due to indoor
usage.
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In urban environments, the main mobile traffic is gen-
erally indoor, which is hard to serve from outdoor macro
base stations due to radio signal attenuation. Considering the
high indoor traffic demand, the mobile operators may make
in-building solutions more economic. Still, to properly serve
the outdoor traffic, macro site densification may be needed.
Having a realistic classification of the indoor traffic ratio
provides a solid indicator for network investment decisions
at mid-term. A specific research shows that in a dense urban
scenario, the average indoor traffic from outdoor cells was
about 37%, increasing for 64% in urban environments. These
results suggest that the operator could consider deploying
in-building solutions where possible and then augmenting
the number of outdoor small cells. By quantifying the traf-
fic demand and coverage from both inside and outside, the
additional resources that would be needed can be determined
so that the least amount of radio power is sacrificed to pene-
tration losses [1].

The extensive usage of smartphones in the modern soci-
ety makes these devices a crucial platform that serves the
communication, entertainment and work needs of many peo-
ple. Also, the ability to access the internet anywhere repre-
sent a strong motivation for producing mobile applications
based on Location-based Systemss (LBSs). The LBS field
plays an important role in many domains, including tracking,
navigation, safety-related services, advertising, tourism,
healthcare monitoring, intelligent transportation, among
other services. The commercial location services can be used
for value-added location-aware purposes, such as local area
advertisement and targeted marketing. However, all mobile
applications based on LBS have the current user positioning
as common requirement. Since mobile users can be in many
places such as open sky outdoors, crowded avenues, indoor
environments, the next generation of positioning systems has
to perform well both indoors and outdoors [2]. At the engi-
neering level, the location services available internally inside
the Mobile Network Operators (MNOs) can use the end-user
location to assist in planning and optimizing their networks,
such as optimizing the handover parameters in terms of user
mobility, detecting overshooting, coverage holes, pilot pollu-
tion and interference situations, detecting cells with capacity
problems, among others. For instance, a very dense and high
traffic service area can be optimized by adding more capacity
to the base stations, increasing the Quality of Service (QoS)
and Quality of Experience (QoE) of each user. To perform
this, an Indoor/Outdoor traffic classification can be the way
to adapt the network to enhance the user services, in the
environment type they are in. Understanding if the users are
inside or outside the buildings in a certain area can leverage
the operators to optimize the network in terms of antenna
tilting, power transmission, configured frequency bands or
configuration parameters, among others, in order to com-
pensate (or not) the additional penetration losses. This can
even lead to a specific radio planning in areas high-rise or
highly occupied buildings, such as using outdoor small cells
or indoor distributed antenna systems.

The environment where the connection occurs has a strong
influence on user expectations. Thus, estimating the context
of a specific session is a key to evaluating user experience in
mobile network management. Examples of contextual factors
are the device types, user age and gender, previous experi-
ences, time of day and mainly the user location. Specifically,
the user location has a fundamental role, as it determines
the demanded services, the link conditions or the expected
service performance. To sum up, a precise estimation of the
user environment is critical for evaluating the QoE [3] [4].

Geo-positioning in mobile networks continues to be
demanding for future applications and use cases like
the Internet of Things (IoT), emergency services and vehicle-
to-everything (V2X) [5], [6]. Recently, this type of technique
is being designed to address requirements and needs of sev-
eral 5G verticals, in the business, public and entertainment
spheres. By using radio measurements collected by mobile
devices on wireless networks, it is possible to estimate their
own positions, assuming that the considered location is not
shared by the devices through signaling.

Another important aspect within the MNO business is the
drive testing. These measuring campaigns are often used
in radio planning and optimization, namely for propaga-
tion model tunning, network troubleshooting and bench-
marking. Conventional drive testing is a manual, inefficient,
and expensive process of collecting radio network infor-
mation by conducting measurement campaigns. Typically,
a vehicle equipped with measurement devices and a Global
Positioning System (GPS) receiver to obtain geographical
location, is used to collect and analyse the radio conditions.
For indoor environments, engineers perform ‘‘walk tests’’,
using measurement devices that can be carried by hand [11].
Thus, Minimization of Drive Tests (MDT) is the concept
that allows the operators to use own users’ devices to col-
lect radio measurements and associated location information,
in order to assess network performance while reducing the
Operational Expenditure (OPEX) [12]. Unfortunately, MDT
is rarely enabled for all users and is not continuous over time,
which means that anonymous call traces provided by network
equipment often lack detailed location information. Thus, the
network re-planning and optimization has to be done based
on network traces geolocated by prediction algorithms, with
location errors of hundreds of meters, which is excessive to
estimate the user connection context [3].

Considering the presentedmotivation andwith the detected
lack of efficient classifiers for indoor/outdoor traffic clas-
sification in mobile networks, this research aims to bring
added value in this area. Two different approaches will
be explored, the first one based on traditional machine
learning techniques, and the second one considering deep
learning, using LSTM algorithms. Also, two distinct data
sources from a live cellular network are used. Firstly, data
from Mobile Terminals (MTs) were collected by common
test smartphones. This data was obtained from an in-house
application developed by Fraunhofer Institute that uses the
telephony manager to access and record the cellular data.
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Secondly, NT are also considered. Concretely, signaling
information and radio measurements exchanged between the
mobile users and the network, in dedicated mode are gathered
and used for training the indoor/outdoor classifier. It was con-
sidered a live LTE network based on macro Evolved NodeBs
(eNBs) and with mainly three frequency bands. Because of
the operator deployment strategic, micro eNBswere not used.
Since the goal of this work is not the user precise positioning
inside the buildings, but instead the environment classifica-
tion (indoor/outdoor), it was not considered neither indoor
cells nor other kind of Wi-Fi private networks, as well as
GPS signalling.

In the following, the major contributions of this paper
are to:
• Perform a equivalence demonstration between data col-
lected from a smartphone (MT) and from the network
side (NT);

• Explore an extensive dataset containing several cities,
from densely urban to rural towns, with several daily
activities;

• Present the ability to classify the end user’s environment,
indoor or outdoor, with two different approaches, while
resorting only to the common data fields between the
smartphone (MT) and the network (NT);

• Share the versatility of both solutions regarding the dif-
ferent real world scenarios, such as dense urban environ-
ments and also rural.

This paper is structured as follows. Section II presents
the most recent work related with this topic, where some
performance metrics are compared. Section III shares the
adopted methodology for the identification of indoor (inside
buildings) and outdoor environments. Section IV shows the
model construction details for two different approaches on
the mission to distinguish indoor from outdoor environments.
The first approach uses a traditional machine learning algo-
rithm and the second a deep learning algorithm. Section V
presents the obtained results and analysis, being followed by
the conclusions in Section VI.

II. RELATED WORK
Several methodologies have been proposed that attempt to
distinguish the environment in which a mobile phone is,
whether it is indoor or outdoor. These methodologies also
resort to different sources of data, namely sensors available
inside the mobile phone and also cell data traces available on
the network side, after internal network recordings.

The most favorable results usually come from systems
that use GPS, where it is very common to surpass 90%
accuracy. In [15] and [16], the authors use GPS data to
classify the phone’s environment. In [15], a manually con-
structed decision tree is explored, i.e. the authors devise the
different parameters, such as signal strength, signal to noise
ratio, gain, among others, into different intervals in order to
separate indoor from outdoor samples. The evaluation was
performed on several testing datasets achieving an accuracy
of 89 to 98%, depending on the specific dataset. The authors

in [16] use a Hidden Markov Model with stacking ensem-
ble, which was also tested with several testing datasets and
achieved an accuracy between 92 and 99%. The authors tested
on continuous data, and when the system encountered an
environment transition, the maximum observed classification
delay was of 4 seconds. The problem with the GPS usage is
that it consumes a lot of energy and is only available in the
smartphone. Thus, it cannot be freely used from the network
side.

In [17], the authors used the magnetometer present in
all modern smartphones to solve the classification problem.
The base assumption is that the construction materials used
in today’s buildings, as well as other electrical equipment
present in indoor environments will be sufficient to distin-
guish both environments. The chosen algorithm was a Naive
Bayes and the achieved accuracy was 83%.

A very different and novel approach was presented in [2],
where the authors used the accelerometer and gyroscope,
which are part of the Inertial Measurement Unit (IMU) sen-
sors present in all modern smartphones, to not only classify
six activities: staying still (no activity), skip, jog, walk, going
up the stairs, and going down the stairs, but also if the activity
was performed indoors or outdoors. One of the findings was
that, not only each individual has a unique way of doing
each activity, but they also had slightly different behaviors
depending if it was indoor or outdoor. The constructed dataset
was collected during a five-year period, with several smart-
phones in different positions, and is publicly available. The
chosen algorithm was the Adaboost and the authors achieved
an accuracy of 99%. Similarly to ‘‘using GPS’’, the authors
in [17] and [2] resort to sensors that exist solely in the
smartphone, and are not available from the network side.

Regarding the use of cell data to do this classification,
several works have been published.

In [18], the authors use network cell data from the smart-
phone, along with the light sensor, to construct a map, called
CIMAP, where the different global cell Identifiers are labeled
as either being an indoor cell, outdoor, indoor edge, outdoor
edge or hybrid. An edge cell is a cell that mostly covers
an area, either indoor or outdoor, but it still affects a small
area of the opposite environment. An hybrid cell is a cell
that covers both environments. The map was constructed
using a crowdsourcing approach where the light sensor is
the main environment indicator, and a higher intensity of
light means that the smartphone is most likely outside. This
information was cross-referenced between all smartphones to
find matches for the same location. For example, a cell ID
that is always observed when the light intensity is low, will
be labeled as an indoor cell. After the map is constructed, any
new Base Station (BS) connection is classified based on the
light sensor if available, otherwise the cellular data is used to
perform the classification. The reported result is an accuracy
above 98% but no information regarding the test dataset is
given, only that a real test was conducted.

The authors in [19] started by dividing the indoor/outdoor
classification into four different labels, deep indoor, light
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indoor (close to windows), semi outdoor (close to tall build-
ings), and open outdoor. Then, using a smartphone, the
authors collected exclusively Global System for Mobile
Communications (GSM) (2G) data every 0.5 seconds and cal-
culated statistical features, such as mean and standard devia-
tion, to train a classifier. The training dataset was collected by
volunteers in 4 specific environments on a university campus,
where each volunteer walked around each site for 10 minutes.
The testing dataset was a specified path on the same campus,
making sure that all 4 different environments were present,
but without being at the same locations that were used on the
training set. The chosen classifier was a k-Nearest Neighbors
(k-NN), with a 97% accuracy was achieved when making
sure that at least 4 BSs were visible on each scan. When this
constraint was dropped, the authors used 8-second windows
and achieved a 95% accuracy using a RF. The high accuracy
might be a result of the low coverage area of this study, and
the proximity of the locations inwhich the training and testing
dataset were collected.

The solution proposed in [20] uses a single smartphone
with the TEMS application [21], resulting in 24912 instances
of data, where each instance has: Time stamp, Timing
Advance, Latitude and Longitude, Evolved Universal Mobile
Telecommunications System Terrestrial Radio Access
(E-UTRAN) cell identifier, Reference Signal Received Power
(RSRP) and Reference Signal Received Quality (RSRQ).
From these data, the authors calculated 20 different features
and created a RF of CART trees. Then, theOut-of-Bag (OOB)
method is explored to train and test the RF classifier. This
means that each tree was trained and tested with a different
dataset. The authors also performed feature selection and
varied the number of trees to find the fastest solution without
compromising the results. The final model had 4 features
and 15 trees and achieving a 99% accuracy. Additionally,
the obtained OOB error converges to the cross validation
error. However, for binary classification problems, it has
been shown that OOB can overestimate the true prediction
error depending on several factors, such the choices of
RF parameters, the dataset size and in balanced settings [22].

The authors in [3] use two sources of information to esti-
mate the probability of a mobile device being indoor, while
establishing a connection to a LTE eNB. The first source
was a map divided into small tiles, 10 × 10m, where each
tile has a classification of land use, such as paths, offices,
services, residential, open space. By knowing the location
of the LTE BSs, a circular area, called Cell, is established
based on the TA values, and is then divided into rings of
a fixed thickness. By measuring the amount of connections
that occur in each ring of each cell, and combining the per-
centage of area occupied by each land use type, the authors
calculated the probability of an incoming connection being
from an indoor device. The authors established that this
probability is approximated by the indoor connection ration,
i.e. the ratio of indoor connections in a given cell. This
map based information is, according to the authors, publicly
available through local municipalities or crowdsourcing. The

second source of information are Cell Traces, measurements
done at the BS where information regarding the connection
can be obtained, such as: connection time, throughput and
average RSRP. These Cell Traces are used to train a logistic
regression model to estimate the same probabilities that the
connection is from an indoor device. The training dataset
consisted of a land area of 125 km2, with 400 LTE BSs of
which 320 were used as a training set. For the evaluation
results, the authors used the correlation between the output
of the map-based estimate and the model prediction, which
led to R2 values between 0.79 and 0.99.
A very extensive dataset is used in [23], collected during

a 9 month period, across France, and using different smart-
phone models. 40% of this data was labeled. Using Drive
Tests (DTs) performed by a top North American Operator
in New York as a guide, the authors selected a specific
portion of the dataset from Paris in order to simulate DTs.
This portion only had clearly defined indoor and outdoor
samples. Regarding the indoor samples, these did not contain
unclear indoor locations such as balconies or open buildings.
Regarding the outdoor samples, these were only pedestrian
or vehicular, with a limited speed, above ground and in
urban environments. From these DT, several models were
trained and the results were impressive, 99% F1 weighted
score, which was expectable due to the very clear nature
of the data, either an open space or indoor spaces without
windows and possible signal leaks. When using the original
crowdsourcing data, the results were lower, 83% by choosing
a Support Vector Machine (SVM) algorithm. To improve
the results, the authors developed a two step classifier. The
first part consisted on a Bayesian Gaussian Mixture (BGM),
which is an unsupervised learning model that used the 60%
of unlabeled data, as training data. The second step used a
supervised model, both a SVM and a Feed Forward Neural
Network (FFNN) which received the classification of the
BGM as a feature along with the data. The system achieved
an F1 weighted score of 89% with the SVM and 94% with
the Deep Learning (DL) model.

In Table 1, a comparison between the previouslymentioned
works regarding data type, used algorithm, reported results
and some additional considerations is presented. The first five
references depend on the user equipment to gather specific
data which will be used to classify the environment. Given
the context presented in Section I, that the ability to classify a
user environment as either indoor or outdoor is important to
the planning of mobile networks, this dependence is a major
deterrent to the use of these proposed solutions. In this work,
we intend to use cell data as a viable alternative, which solves
this problem.

Although the authors in, [3], [19], [20], [23], use only
cell data, there are some technical aspects that this work
attempts to improve. The first work from Wang et al. [19]
considers a dataset that includes only a small geographic
area, a university campus, and uses 2G technology, which
is phasing-out and has been replaced by both 3G and 4G.
Regarding, the work of Zhang et al. [20], the dataset is more
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TABLE 1. Comparison of existing solutions for indoor and outdoor environment classification.

extensive than the previous one, however, it only considers
an urban environment of a single city. Additionally, the train
and test approach used by the authors, OOB, is debatable and
can lead to over estimations of true predictions, as previously
mentioned. The novelty presented in [3] depends on the
accessibility to an updated map of the city and the ratio’s
estimation between indoor and outdoor area. A potential
problem could be an outdoor event, which could skew the
typical incoming traffic. The need to constantly update the
map is also a major drawback.

Finally, Saffar et al. [23] present the most complete solu-
tion found at the time of writing, where the authors solve all
of the previouslymentioned problems. However, although the
authors have a large dataset that includes different types of
environments, the details of the data distribution by the type
of environment and the ability of their algorithm to be used
in a new and unseen location is not shown.

This work will focus on showing the impact on the algo-
rithm’s performance when using data from a new and unseen
location from different environment types. Moreover, this
work will also attempt to achieve equal or better results
than the previous works using real-time data collected in
collaboration with a MNO.

III. METHODOLOGY
The adopted methodology for the classification of indoor and
outdoor environments consists of mainly five steps: (1) data
collection; (2) data pre-processing; (3) feature extraction;
(4) training and testing; (5) performance evaluation. Figure 1
shows the general schema including the five steps and its
correspondence with data source, i.e., mobile terminal data
or network traces. Due to the growing availability of smart-
phones and their easy data collection process, the primary
purpose of the proposed solution was to train a model using
cellular network data collected from common smartphones
and then perform a validation using NT data. Therefore,
the data acquisition step includes two different measurement

FIGURE 1. Overview of the proposed methodology for the classification
of indoor and outdoor environments.

campaigns. Firstly, a large scale measurement campaign (1)
using common smartphones was performed through 6 cities
with different characteristics and over the course of 6 months.
This measurement campaign main purpose was to collect a
large and diverse dataset to train machine learning models.
The collected data from this campaign includes only data
acquired from the MT side. On the other hand, a second mea-
surement campaign with the aim of testing the trained models
with NT was planned with a MNO to map the signaling for
each UE profile in the network traces. Thus, this campaign
includes both MT and NT data. The data pre-processing step
consists of parsing raw data, filtering and data segmentation
tasks. The feature extraction step includes the extraction of
features that can describe the environment, namely varia-
tions of serving Cell ID and RSRP. For the model training,
a traditional machine learning approach and a deep learn-
ing approach were tested. Finally, four validation strategies
were used to evaluate the performance of the trained models.
In the following sections, a detailed description of all steps is
presented.
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A. DATA COLLECTION
1) DATA DESCRIPTION
When connected to a BS, an end-user is constantly exchang-
ing data with the network, in order to inform about its
radio conditions. All these data can be recorded and logged
recursively by the mobile operator, by setting a command
on the Operations Support System (OSS). These data are
called Network Traces, and they are recordings of protocol
events resulting from all the exchanged signaling between
the mobile users and the network, making them a powerful
source of analyze, monitor and optimize the network per-
formance. Regarding the LTE network, the Cell Trace is a
file in the original format (.bin) collected directly from the
mobile operator OSS, i.e., from the live network. It contains
all the communications exchanged between the end-users
and the network on the interface Uu in 15-minute Recording
Periods (ROPs). All Cell Trace events contain common types
of information, like the event name and identification, the
timestamp of its recording, user identification in the specific
area, as well as serving cell identification. However, they
all also contain specific information that characterizes their
function. But, the user geography location is unknown in
these data, turning this work useful for operators. Thus, using
these always available data, the mobile operator can classify
the user environment, without its real position given by GPS
and any additional modifications. An useful Cell Trace event
that should be considered is the Radio Resource Control
(RRC) MEASUREMENT REPORT. This event and its pro-
cessing allows the retrieval of parameters like RSRP and
RSRQ, key measures of signal level and quality for modern
LTE networks, Cell ID and Physical Cell Identity (PCI).

On the Mobile Terminal side, data was obtained using
an Android in-house application that uses the Telephony
Manager to access and record the cellular data. The available
fields change from different manufacturers given that each
one has a slightly different Android version, which in turn
reports and allows access to different cell data fields. All
manufacturers allow the access to important parameters, such
as RSRP, RSRQ and PCI. The Cell ID was available to the
registered BS but not for the neighbouring BSs.

In summary, the cellular network datasets consist in the
following fields:
• Time: timestamp of the measurement set.
• RSRP: the average power of Resource Elements
(REs) that carry cell specific Reference Signals over
the entire bandwidth. Reporting range: −140 dBm
to −44 dBm [24].

• RSRQ: the ratio between RSRP and Received Signal
Strength Indicator (RSSI) measured over the same band-
width. It indicates the quality of the received reference
signal. Reporting range: -19.5 dB to -3 dB [24].

• PCI: the identifier of a cell in the physical layer of the
LTE network. The number of PCIs are limited to 504.
Range: 0 to 503.

• Cell ID: a generally unique number used to identify each
LTE cell inside the operator network.

2) MEASUREMENT CAMPAIGN 1
The first dataset was collected using seven smartphones
from different manufacturers (Samsung, Google, Huawei,
Oneplus, Asus, Motorola), with different Android versions
(Android 7-10), from stock to custom Read Only Memorys
(ROMs) in order to assure a more diverse and representative
dataset. An Android ROM is the system image which can
be installed into a smartphone. Depending on the manu-
facturer and Android version, new sensor data is received
every 2 to 10 seconds. Due to restrictions imposed by Apple,
it is not possible to use a smartphone with iOS to collect
cellular data, since the necessary Application Programming
Interfaces (APIs) are not publicly available.

Each batch of data (aggregation of several sensor data)
was collected over a minimum period of 5 minutes where
the user could be stationary, walking, running, riding a bike
or driving. In the indoor scenarios, the user was restricted
to the building itself, and if the acquired environment was
labeled light indoor, the user had to remain close to the
window. If the label was just indoor, the user should not be
too close to windows. The buildings ranged from apartments
to office buildings, assuring that there were no indoor BSs
present. As for the outdoor samples, most are a represen-
tation of everyday life scenarios such as walking through
a city/park, riding a bicycle, walking a dog, and driving.
Some samples also covered the scenario where the user
was outside, near tall buildings. A small number of sam-
ples were collected with a transition between environments.
These had a minimum of 3 minutes, either indoor or out-
door, followed by a minimum of 3 minutes on the opposite
environment.

The dataset has a total of 31 hours, 17 minutes and 43 sec-
onds, over 6 different cities of different types, urban,
sub-urban and rural, and was collected over the course
of 6 months. From this, approximately 18 hours are indoor,
of which 2.65 hours are next to windows. The remaining
15.5 hours are outdoor, of which 4.85 hours are on high speed
roads, such as highways.

In Figure 2, the representation of the entire dataset distribu-
tion divided by each type of environment is shown. Highways
category represent data that was collected in highways or
high speed roads, covering several different locations and
cities. Indoor represents the samples collected indoor far from
windows and the Light Indoor environment represent samples
collected near windows or balconies. Outdoor represents all
samples collected outdoor, from open spaces to samples col-
lected near taller buildings.

Figure 3 shows the representation of the dataset divided
by cities and then by each type of environment. In this figure,
the samples of high speed roads are not represented since they
cover multiple cities.

3) MEASUREMENT CAMPAIGN 2
The secondmeasurement campaign resulted in two additional
datasets, one from the MT and the other from the NT.
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FIGURE 2. Environment type distribution of Mobile Terminal dataset from
measurement campaign 1.

FIGURE 3. Smartphone dataset distribution. The outer chart represents
the distribution over the main six cities of the dataset and the inner chart
represents the environment distribution (indoor, light indoor and
outdoor) for each independent city.

TheMT dataset was obtained using a Samsung smartphone
with Android 9. This device collected data in five different
days in the Lisboa city, for outdoor environments.

The measuring campaign included four different tests,
where the user could be stationary, walking, driving in a urban
and highway environments. For each mobility profile, sev-
eral routes were covered in the measuring campaign. These
different routes were chosen with the goal of reaching as
many radio frequency scenarios as possible, such as Line-of-
Sight (LoS) Non-Line-of-Sight (NLoS) with high buildings
and narrow roads, street canyons, open areas environments
like green parks and gardens, and a university campus, with a
mix of building heights and construction types, and gardens.
One of the urban areas could be characterized by a terrain
morphology quite uniform and city blocks well defined,
presented in Figure 4, instead the other, with an irregular
terrain morphology and city blocks poorly organized, shown
in Figure 5.

This measurement campaign was aligned with the MNO in
order to record the Network Traces of a specific BSs cluster,
corresponding to the same area of the MT measuring cam-
paign. This process allowed to map the signaling obtained

FIGURE 4. Urban environment of measurement campaign 2 characterized
by an uniform terrain morphology and city blocks.

FIGURE 5. Urban environment of measurement campaign 2 characterized
by an irregular terrain morphology and city blocks poorly organized.

from the measurement campaign for each User Equipment
(UE) profile in the network traces, obtaining the NT dataset.

Additionally, a set of different mobile services was period-
ically run for 20 seconds in each profile/environment. These
mobile services included voice, web-browsing, file trans-
fer, and some applications involving data packets exchange.
This measurement campaign resulted in the acquisition of
approximately 16 hours and 30 minutes of network signalling
information from theMT and 1 hour and 33minutes fromNT.

B. DATA PRE-PROCESSING
1) NETWORK TRACES
From the network perspective, as mentioned before, a Cell
Trace is an LTE raw file with a period of 15 minutes contain-
ing all the signalling exchanged between the mobile users and
the network, including the specific mobile terminal used on
measuring campaigns.

In order to identify the MTs used in the measurement
campaigns, the Traces data is filtered by the Temporary
Mobile Subscriber Identity (TMSI) of the measuring termi-
nal, ensuring consistency in both data sources. The TMSI
is used instead of International Mobile Subscriber Identity
(IMSI), which is a unique user identifier on the network,

VOLUME 9, 2021 162677



P. Alves et al.: Novel Approach for User Equipment Indoor/Outdoor Classification in Mobile Networks

to protect subscriber from being identified and also ensure
more security against radio interface hackers. The TMSI
can be intercepted right at the first RRC CONNECTION
REQUESTmessage and is used to link the next protocol mes-
sages, creating the concept of user session. Then, the RRC
MEASUREMENT REPORT message used by the proposed
approach, can be filtered from Network Traces for the same
measuring terminal.

2) MOBILE TERMINAL
Regarding theMT, the cellular data is received in call batches.
Each batch has the registered BS information, followed by,
if existent, neighbour BS information, as well as the batch’s
timestamp. From time to time, a lost batch can also be
received, which comes out of order. Since there is no way
to know the correct timestamp of these lost batches, they are
filtered out from the collected samples.

In a single batch, multiple BS technologies, LTE (4G),
Wideband Code-Division Multiple Access (WCDMA) (3G)
and GSM (2G) can be present. All samples were collected
using the default option of choosing the strongest available
signal, which translated to being connected to LTE BSs most
of the time. Additionally, and since the Traces data was lim-
ited to LTE technology, the cellular data on the smartphone
was also filtered to ignoreWCDMAandGSMdata, including
samples where a connection to a LTE BS was not possible.
This last step was possible since the only situations in which
no LTE connection was available occurred while in deep
indoor, usually in below ground environments.

C. FEATURE EXTRACTION
For the feature extraction process, a set of features that can
describe the character of the environment was extracted.
These features include variations of the serving Cell ID and
RSRP for each time window. A description of each feature
can be seen in Table 2.

D. TRAINING AND TESTING
Due to the nature of NT, it is not always easy to gather
data, more specifically labeled data. It requires planning and
access to specific equipment and software which might not
always be available. To circumvent these limitations, some
samples of cellular data were collected with a smartphone and
compared to the available NT data of the same time and loca-
tion. It was verified that the available information from the
smartphone was a subset of the NT. Thus, by using the smart-
phone, it is possible to gather a dataset which can be used to
train a classifier that can later be applied to NT data as well.
Due to the easy process of data collection using smartphones
and the limitations of acquiring NT data, this strategy was
employed for models training and testing. Thus, the training
set is composed byMT data acquired over 6 cities in Portugal,
ranging from urban to rural environments. As regards testing
set, a set from MT data and an independent set composed by
NT from measurement campaign 2 acquired on two different
locations of the same city were used.

TABLE 2. List of features extracted from serving cell ID and RSRP for each
time window.

Regarding themodel selection, a traditional machine learn-
ing approach and a deep learning approach were selected
to classify an environment as indoor or outdoor. For the
traditional machine learning approach, a range of algorithms
(Naive Bayes, Decision Trees, RF, Adaboost, k-NN, SVM)
were investigated and due to the superior performance of
RF classifier in this particular classification task, RF was
selected. For the deep learning approach, a LSTM was
selected due to be capable of extracting the temporal depen-
dencies of the network data patterns and learning to discrim-
inate labels. A detailed description of models construction is
presented in section IV.

E. PERFORMANCE EVALUATION
As in Figure 1, four different validation strategies were
used for models’ performance evaluation. The validation
strategy (I) and (II) used only MT data and strategy (III) and
(IV) used the independent dataset of NT for performance
validation. The first validation strategy (I) was performed
with a mix of all cities in both train and test set. For the
second validation strategy (II) and given that 6 cities were
available, it was decided to use the leave on out approach,
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in this case with cities, to train and validate the classifier.
The training was done using the remaining 5 cities and the
testing with an entirely new city. This proves a more robust
and faithful approach than most of the literature mentioned in
Section II, since it is common to train and test with data from
a single location/city. Our approach can also show potential
difficulties on passing from an urban environment to a rural
one, where the data collected indoor in an urban location can
be similar to the data collected outdoor in a rural location.
For example, the RSRP and RSRQ might be lower, in a rural
environment, since there are fewer BSs and thus its easier to
be further away from one. The amount of handovers, i.e. when
the smartphone changes the registered BS, can also decrease
and thus potentially raise the overlap between urban indoor
and rural outdoor.

Regarding validation strategies (III) and (IV), their test
set was composed by NT data of measurement campaign
(2) collected in two urban areas with different characteris-
tics (see Section III-A for more details). However, due to
the above mentioned limitations of acquiring NT data, plus
the imposed governmental restrictions due to the covid-19
pandemic status at the time of data collections, the available
data is only in an outdoor environment. For the validation
strategy (III), the training set was composed by all data
from the measurement campaign (1). The main purpose of
this validation strategy was to evaluate the performance of
the models using an independent test set with a different
data source, i.e. network traces. Then, the aim of validation
strategy (IV) was to re-train the models using a training set
with additional data from the same locations of the NT test
set, i.e., all MT data from both measurement campaigns was
used for the training set. Although the added data was from
the same locations, it was guaranteed that data from both sets
set was from different days.

IV. MODELS CONSTRUCTION
In this work, two different approaches to distinguish
indoor from outdoor environment were tested: 1) Traditional
machine learning approach using a Random Forest classifier;
and 2) Deep Learning approach using a LSTM model.

A. TRADITIONAL MACHINE LEARNING APPROACH
A time based sliding-window segmentation method was used
to identify the signal changes over a short period of time. Dif-
ferent overlapping window sizes were used to capture differ-
ent data granularity, namely 15, 30, 60, 90 and 120 seconds.
Higher values usually lead to better differentiation between
the different activities due to the more available information.
However, longer windows increase the estimation latency,
and extra-large windows can worsen the performance as they
may span different scenarios within the same window [15].
Hence, all features were calculated within several overlap-
ping sliding windows with a fixed size. Although a maximum
of 120 seconds window size is used, due to the overlap-
ping strategy, this process results in a classification every
15 seconds, except on the first 120 seconds of data collection.

The reason for the minimum duration of the windows,
15 seconds, is that in a worst case scenario, the smartphone
only updates the cell data every 10 seconds, thus it is not pos-
sible to use short time windows as was used in the literature
as in [19].

Although most of the acquisitions were performed in an
indoor or outdoor environment, there were few acquisitions
where a transition between environments occurred during the
data collection. In this situation, if a transition occurs within
a 15 second window, the label will correspond to the longest
duration within the window, i.e if 10 seconds were indoor,
then the label will be indoor. In the case that it is exactly 7.5 to
7.5 seconds, the label will be of the last type of environment.

For the feature extraction, the set of features described in
Section III-C was extracted, which are the variations of the
serving Cell ID and RSRP for each time window.

In the training phase, a range of traditional machine
learning algorithms were investigated to distinguish between
indoor and outdoor environments. Due to the superior perfor-
mance of RF classifier in this particular classification task,
RF was employed using a bootstrap approach.

As the feature extraction process results in a total of num-
ber of 95 features (5 window sizes times 19 features), a fea-
ture selection algorithmwas used to improve the accuracy and
computational performance of the algorithm. The Sequen-
tial Forward Feature Selection [25] was employed using a
weighted F1-Score as performance metric and a group k-fold
cross-validator as validation method. Depending of the used
approach, the groups can represent a specific day, or an entire
city. Moreover, the RF parameters were optimized using a
cross-validated grid-search.

B. DEEP LEARNING APPROACH
This approach uses the data as a temporal series for classi-
fication. The LSTM model was chosen given its ability to
model and deal with the long-term temporal dependencies
of the input sequences. Unlike traditional Recurrent Neu-
ral Networks (RNNs), LSTM were designed to better deal
with long-short term memory and to overcome the vanish-
ing/exploding gradient problem, where the model may stop
learning early in the process if the error’s gradient value
during backpropagation is too small or to big [26].

LSTM’s, instead of using nodes, are composed of special
‘‘memory blocks’’ containing three key gate units: forget
gate, input gate and output gate. These gates essentially
control the amount of information that the network should
keep and forget from the original input sequence. Concretely,
the forget gate decides which information should be thrown
away from the cell state; the input gate decides which new
information is added to the cell state; the output gate decides
how much the internal state should be passed to the next step.
By using this gatingmechanism, LSTMs can explicitly model
long-term dependencies, making them attractive for a variety
of time-related problems [27].

Similarly to the previous approach, due to the differ-
ent sampling frequency of cellular network data between
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FIGURE 6. LSTM network architecture for the classification of indoor and
outdoor environment.

smartphones, features were calculated within 15 seconds
windows. Within the features, listed in Table 2, the input
features of LSTM were empirically chosen. The selected
features were RSRP average value, unique serving cells and
cell changes, being the total number of features (N ) equals
to 3.

Each time series was divided and grouped with a fixed win-
dow length (W ) of 8, which represents a total of 120 seconds.
This W value is the number of timesteps used as input in the
LSTM architecture. A total number of 5297 sequences were
obtained for entire dataset using a fixed window (W ) and one
timestep shift (15 seconds).

Thus, the LSTM input array is three-dimensional array
given by B×W × N (batch size, timesteps, features).

The neural network architecture is shown in Figure 6. In the
first layer, LSTM receives a three-dimensional array input.
In each recurrent units, sigmoid activation function is used.
LSTM layer returns hidden state of the last time step, addi-
tionally in order to reduce overfitting, the weight constraint
is considered to force the weights to have a magnitude equal
to or less than a certain limit, in this case the maximum norm
type constraint was considered. The next layer is a dropout
layer. This layer is based on random neurons deactivation
during the training process of a neural network, which aim
to minimize the overfitting of the model on the training
data [28]. The third layer is a batch normalization layer
which standardizes layer’s inputs, to have zero mean and unit
variance, for eachmini-batch, allowing the stabilization of the
learning process and reducing the required number of training
epochs. Finally, the output layer is the softmax activation
function, which generates the probability distribution for each
output class.

The hyperparameters were tuned using a 5-fold cross-
validated random grid-search. This method provides multi-
ple hyperparameters for the neural network, in which their
combinations are chosen randomly and applied in cross vali-
dation, in order to find the best model. Table 3 shows the final
range of hyperparameters.

To analyze the impact of different hyperparameters on
the LSTM performance, an illustration of F1-Score versus

TABLE 3. Possible values for each neural network hyperparameter.

the number of epochs for each hyperparameter is shown
in Figure 7. Regarding batch size, three candidates from the
geometric progression of 2 were tested, namely 128, 256
and 512. Figure 7a shows the behavior with different batch
sizes, where the performance improves with the decrease
of batch sizes. In the case of dropout rate (Figure 7b) and
weight constraint (Figure 7e), all tested values show a similar
performance with the increase of epochs. Figure 7c shows
the influence of different learning rates on the performance,
where it is possible to see a significant increase in the perfor-
mance with the increase of learning rate. Finally, regarding
the number of neurons, the more complex the network is, the
higher the obtained performance (see Figure 7d).

V. RESULTS AND DISCUSSION
In this Section a detailed description of the experimental
results and their discussion is presented.

A. PRELIMINARY STUDY
Before the models’ performance evaluation, a preliminary
study comprising an analysis of (1) cell data differences
between different devices, (2) cell data differences between
data acquired from the mobile terminal and network traces,
and (3) cellular network data statistics was conducted.

In order to test potential differences between smartphones,
two collections were conducted with 5 different smartphones,
namely a Google Pixel XL, a OnePlus 6T, a Samsung A9,
a Samsung S10e and aHuaweiMate 20 Pro. The first data col-
lection was indoor, with all smartphones on the same location
and under the same conditions, and the second was outdoor,
in a similar manner as the first. Regarding the signal proper-
ties, the maximum obtained difference between smartphones
was of 2 dB, which is small considering potential signal fluc-
tuations that can occur. Regarding the number of BS seen, the
obtained results were consistent on 4 out of 5 smartphones.
While the Samsung S10e was able to detect, on average
2 to 3 BS, both indoor and outdoor, the other 4 smartphones
had an average of 10 BS while indoor and 11 when outdoor.

The second study was conducted at a shopping center,
in Lisbon, to validate the measurements of the developed
mobile application and compare them to the data from
the NT. The measurement campaign lasted several hours, and
it ranged across the entire building with multiple floors. The
study aimed at matching the exact timestamps on both data
sources and confirming that, for the same timestamp, both
sources agree on the registered BS, Cell ID, RSRP, RSRQ
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FIGURE 7. LSTM performance variation versus number of epochs with different hyperparameters.

TABLE 4. Statistical analysis of network information for each analysed city.

and PCI. The results of this study were successful and it was
possible to verify that the data was the same across both data
sources.

Finally, in Table 4, it is enumerated the different char-
acteristics observed for each city, the average RSRP, the
average number of Base Stations seen, the average number
of handovers per minute, the macro BSs density and average
number of LTE bands per BS. These statistics are divided into
indoor and outdoor environment for each city. A handover is
the switching of the BS to which the smartphone is currently
registered, i.e., the smartphone changes connections from
BS 1 to BS 2. In this table cities are sorted according to
the type of environment. Lisboa and Oeiras are categorized
as urban, Sintra as sub-urban, Vila Real and São Brás de
Alportel as sub-urban/rural and Vila das Aves as rural. Note
that Vila Real and São Brás de Alportel are categorized as
a mixed of sub-urban and rural environment since data was
collected in both the city center (sub-urban environment) and
in more isolated locations, similar to a rural environment. It is
possible to see a slight decrease regarding the average RSRP
as we go to more rural locations, especially when indoor. The
average number of BS also decreases, with Vila Real being
the exception. Regarding the number of handovers, it appears
that there is no direct connection with the type of environ-
ment. The abnormally high number in Sintra is explainedwith
the fact that a more significant amount of outdoor data was
collected while driving, which naturally increases the number
of handovers since the user was covering greater distances in
a smaller amount of time.

B. EXPERIMENTAL RESULTS
To evaluate the models’ performance in distinguishing indoor
and outdoor environments, different combinations of train
and test sets were used, namely:

TABLE 5. Size of train and test set for each validation strategy.

I. Train and test set from the first measurement campaign
using a random group k-fold approach, where each
group represents a given acquisition day;

II. Train and test set from the first measurement campaign
using a leave one out approach, where each city is
left out of the training phase and used exclusively for
testing;

III. Train set composed by all data from the first measure-
ment campaign and test set composed of the Traces
dataset;

IV. Train set composed by all MT data from both measure-
ment campaigns and a test set composed by the Traces
dataset;

The number of instances of both train and test set after
pre-processing for each validation strategy can be consulted
in Table 5.

In order to compare the implemented algorithms with the
literature, the first approach consists of a training and testing
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TABLE 6. Approach II performance measures with Random Forest and LSTM classifiers. Each city name represents the validation set using a leave one
city out strategy. The F1-Score was calculated using a weighted averaging to account for label imbalance.

sets with a mix of all cities was performed. To avoid having
sequential data collections separated, i.e one in the training
dataset and the other on the testing dataset which could lead
to overfitting, it was ensured that a day of data collections
was, in its entirety, either in the training dataset or the testing
dataset. All cities had several days of data collections with
both types of labels ensuring a diverse training and testing
dataset. After applying the group k-fold split, where each
group represents an acquisition day, the training dataset had
66% of the total instances and the testing dataset had the
remaining 34%. The obtained weighted F1-Score using the
RF algorithm was 0.95, which is aligned with the best results
in the literature, even considering the higher diversity in our
dataset. Regarding the LSTM approach, the obtained results
were lower than RF, achieving a value of 0.75.

In the second approach, a leave one city out approach was
employed to show the differences of using an entirely new
location for the testing set. For this, one city was left out of
the training phase and used exclusively for testing phase. The
process is repeated for all the remaining cities and the results
are shown separately for each city. Due to the imbalance
of data within each city, the accuracy, precision, recall and
weighted F1-Score were chosen as evaluation metrics. The
obtained results for the RF and LSTM can be seen in Table 6.

From the Table 6, it is possible to observe that for the urban
and sub-urban environments, the results from bothmodels are
overall higher, ranging from a F1-Score of 0.92 to 0.96 using
the RF model and ranging from 0.92 to 0.77 when using the
LSTM model. This is somewhat expected, firstly since four
out of the six cities are either urban or sub-urban. Secondly,
in an urban environment, there is a higher density of BSs,
which means that not only is the smartphone able to switch
from BS to BS more frequently, but also the received signal
will be stronger, on average, while outdoor, since the BSs
usually have a shorter serving range.

Regarding the rural cities, the results were lower, which
was also expected since a rural environment is inevitably
different from an urban one. The exception being São Brás
Alportel. A possible reason is the differences in the terrain
morphology where data was recorded. Vila das Aves and Vila

Real are located in the north of Portugal, both these cities
have an irregular morphology terrain, which, associated with
buildings can increase the signals’ attenuation. Regarding
the city center of São Brás Alportel, where the majority of
outdoor data was collected, the terrain morphology is flatter
than both Vila Real and Vila das Aves, which mitigates this
problem. Nonetheless, for the RF only in one city, Vila das
Aves, the results (F1-Score of 0.76) were significantly lower
which could potentially be mitigated by collecting more data.
Regarding the lower results of the LSTM, observed in rural
and sub-urban cities, it can be justified by having a strong
temporal dependence, and in these types of environments for
having less variability in the signal level, the model cannot
effectively distinguish the type of environment.

The average results of all cities resulted in a weighted
F1-Score of 0.90 and 0.80 for RF and LSTM, respectively.
RF model obtained a lower performance in approach II when
compared with the approach I. These results prove that using
a test set acquired in the same city/location of the training set
can produce an overfitted result. The performance decrease
from approach I to II can be explained by the ability of the RF
to learn some characteristics that are unique from each city
and/or type of environment. Regarding LSTM the behavior
between approaches is the opposite of the RF. The average
weighted F1-Score of approach II was 0.80 compared with
the 0.75 of approach I. One possible explanation for these
results can be the differences between the training size of both
approaches. In approach I, the training size was composed by
approximately 16.5 hours, and in approach II the training size
ranged from 20 hours to 23 hours depending on the city being
evaluated.

In the approaches III and IV, a different data source,
NT, was used for the test set. As previously explained in
Section III-D, only data from the outdoor environment was
available. For the approach III, the training set contained
the first measurement campaign data, the same which was
used for both scenarios I and II. Regarding the approach IV,
a second measurement campaign was made in the city of
Lisboa, part of which in the same location as the test dataset,
containing the NT, but in different days.
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TABLE 7. Results summary of all tested approaches with Random Forest
and LSTM. The F1-Score was calculated using a weighted averaging to
account for label imbalance.

Table 7 summarizes the results of all approaches and
both models (RF and LSTM) using as metric the weighted
F1-Score.

Regarding the RF, the obtained F1-Score of
approaches III, IV were lower than expected when compared
with approaches I and II. After investigating the reason of
this performance decrease, it was concluded that most of the
mislabeled windows happened in a single location, between
tall buildings, of the measurement campaign represented in
Figure 5. This specific scenario represents an environment
that can be categorized as semi-outdoor, which is an already
difficult situation to classify. In the case of the LSTM, this
challenging situation seems to not affect the performance of
the model, achieving even higher results than in the previous
approaches. This performance increase can also be explained
by the increase in the training set. In these approaches the
training size was 25.5 and 32.3 hours for approach III and IV,
respectively.

Note the increase in the results from scenario III to IV,
which was expected, and consistent with the conclusion that
by gathering more data from a new location, it will improve
the results of the classifiers in that location. This increase was
more significant in the LSTM approach, obtaining a weighted
F1-Score of 0.91.

These results could greatly benefit from more data col-
lection, specially indoor, but, as previously mentioned in
Section III-D, that was not possible. With more data, both for
the training and testing datasets, a better representation of the
models reliability can be achieved.

Regarding the comparison of the obtained results with
similar studies in the literature, the first validation strategy
used to train and test the algorithms is the most comparable
to the validation strategies of existingworks. TheRF achieved
similar results (F1-Score of 0.95) to the presented works
(see Table 1), while the LSTM underperformed (F1-Score
of 0.75). These results were achieved without the limitations
previously presented in section I with the exception of the
solution proposed in [23] which is the most similar to the one
presented in this paper.

Additionally, the proposed solution also goes beyond the
work presented in [23] by being tested and validated under
stricter conditions, such as being tested with a completely
new location. The RF performance was slightly lower with

a 5% decrease on the average results with the leave one city
out approach and the LSTM with a 0.8 F1-Score. The two
additional validation strategies are also a novelty given that
the testing dataset was obtained in real time by an MNO.
The RF results were lower (0.75 and 0.79) while the LSTM
obtained good results, especially in the IV strategy (F1-Score
of 0.91). These two last strategies are a closer representation
to the deployment performance.

C. VISUALIZATION
Due to the large geographic area of both measurement cam-
paigns, it is not possible to visualize the model’s perfor-
mance using the entire dataset. Therefore, for visualization
purposes, a dedicated acquisition in an area of approximately
0.496 km2 was performed. This acquisition includes indoor
data in seven different buildings (cafes, pharmacy, private
apartments, offices and university buildings) and outdoor
data acquired while the user was stationary, walking, running
and driving a car. For indoor environment, acquisitions close
to windows were also considered and for outdoor environ-
ment, both open areas and scenarios near tall buildings were
covered.

A representation of both models’ predictions overlaid with
the map is shown in Figure 8. The indoor and outdoor pre-
dictions are represented with orange and blue circles, respec-
tively. Regarding the ground truth, buildings were colored
blue and the outdoor environment orange. For the geolocal-
ization of data points, GPS coordinates and cell data were
recorded simultaneously using the in-house Android appli-
cation previously mentioned in section III-A. Due to mea-
surement errors caused by the limitations of GPS positioning,
the recorded coordinates had to be corrected to correctly
describe the user’s positions in the map. Different techniques
for map matching using GPS can be employed to improve
the visualization process, such as the work of H. Cheng et
al [29]. However, for this visualization process, the recorded
coordinates inside buildings and a few outdoor coordinates
with low positioning precision weremanually corrected using
checkpoints manually annotated during data acquisition. This
visualization limitation will be addressed in future research to
improve the visualization capabilities of the proposed work.

Regarding the analysis of Figure 8 two areas are high-
lighted to show the misclassifications of both models. The
areas identified by number 1 and 2, represent an office build-
ing and a university campus with three different buildings,
respectively. In the office building it is possible to see that RF
classifies five indoor labels as outdoor. These misclassifica-
tions correspond to the transition between environments (E)
and to the office’s open space, which have several win-
dows surrounding (W). In the case of LSTM model, only
one misclassification in the transition between environments
occurred (E), where an outdoor label was classified as indoor.
In the area 2, both models misclassified the location C, which
is a connection made of glass between the two buildings.
Moreover, there is some confusion in the transition between
environments (E) for both models. The RF also misclassified
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FIGURE 8. Representation of geo-positioned Random Forest and LSTM predictions. Indoor and outdoor predictions are colored in blue and orange,
respectively. Buildings and outdoor environment in the map are also colored in blue and orange, respectively. Area 1 represents an office building and
area 2 an university campus. E: Entrance, W: Window, C: Connection between buildings, B: Outdoor near building.

location W (close to a big window) and location E (building
entrance), and the LSTM misclassified locations B (near tall
buildings). Besides that, there are only a few outdoor labels
wrongly classified as indoor. It is also worth mentioning that
there is no misclassification in the map’s lower left corner.
This area represents an urban environment characterized by
an irregular terrain morphology and tight roads surrounded
by tall buildings.

VI. CONCLUSION
In this paper, a solution for solving the classification prob-
lem of whether a user’s smartphone is being used indoor
or outdoor is proposed, relying solely on cellular network
data. In order to tackle the existent difficulty in gathering
labeled data, a mixed approach was developed where a low
cost mobile app can be used to gather data around a city,
which was proved to be a subset of the available data on
the network side. From this data collection, a dataset was
created with measurements from six different cities, differing
in both size and density. A second dataset was also created
using network traces to represent the network data and test
the scalability of smartphone data. An important difference
between the first dataset and the ones analyzed from the

literature, is the diversity of data that ranged from urban to
rural environments, which can be a better representation of a
real world scenario.

In the sequence, two different algorithms were trained, a
RF and a LSTM. The first algorithm, representing a tradi-
tional machine learning approach, obtained very good results,
using the mobile terminal as a data source, having a weighted
F1-Score, 0.92-0.96 for urban environments, but showing a
slight difficulty in adapting to a more rural location, dropping
the weighted F1-Score to 76%. When testing with network
traces, the F1-Score decreased to a maximum of 0.79, due to
the high number of samples in a semi-outdoor environment.
This could potentially be mitigated by doing a small data
collectionwith smartphones to further improve the robustness
of the algorithm.

Regarding the DL approach, the training set size seems
to have a huge impact on the performance of the algo-
rithm. Comparing with the RF, the results from different
cities ranged from 0.77 to 0.92 in urban cities, and 0.63 to
0.66 in rural cities. However, when the network traces were
used as testing set, with a training size of approximately
32.3 hours, the algorithm’s performance increased to a value
of 0.91.
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The obtained results evidence the impact on models’ per-
formance when using different validation strategies. In this
work, it is shown that a common validation strategy can
overestimate the models’ performance, and the importance of
using a test set from a new and unseen location from different
environment types.

For future work, additional data collections would be
engaged, not only to increase the robustness of the algorithms
but also to give a better view of the feasibility of deploying
such a system.Additionally, the improvement of visualization
capabilities using mapmatching techniques will be addressed
in future research.
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