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ABSTRACT Accurate detection and tracking of birds and drones are of great significance in various
low altitude airspace surveillance scenarios. Radar is currently the most proper long range surveillance
technology for this problem but also challenged by various difficulties on effective distinguishing between
birds and drones. This paper explores the inherent flight mechanic and behavior mode of birds and drones.
A target classification method is proposed by extracting target motion characteristics from radar tracks. The
random forest model is selected for target classification in the new feature space. The proposed method is
verified by real bird surveillance radar systems deployed in airport region. Classification results on birds,
quadcopter drones and dynamic precipitations indicate that the proposed method could provide good classi-
fication accuracy. The Gini importance descriptors in random forest model provide extra reference onmotion
characteristic evaluation and mining. High sample flexibility and efficiency make the classification system
capable of handling complicated low altitude target surveillance and classification problems. Limitations of
the existing method and potential optimization strategy are also discussed as future works.

INDEX TERMS Target detection, radar tracking, target classification, feature extraction, machine learning.

I. INTRODUCTION
Unmanned Aerial Vehicle (UAV) achieve booming devel-
opments in recent years. As a dominant branch in UAV
family, multi-rotors drones possess unique platform advan-
tages. They provide innovative solutions in various appli-
cation scenarios [1]. However, benefits like small size, low
costs and flexible deployments also result in non-negligible
and unpredictable safety threats in specific regions. Effective
monitoring of non-cooperative drones become necessary for
safety consideration [2], [3].

Low altitude surveillance radar is considered as the most
suitable technical solution for long range UAV monitor-
ing [4]. It possesses advantages like long range detection,
tracking and all weather operational functions. However,
unlike conventional noncooperative targets, drones are small
and made of non-metallic materials. These result in small
radar cross section (RCS) values. The low altitude flying
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capabilities alsomake them possess very low radar detectabil-
ity [5], [6]. Inmany representative surveillance environments,
there exists another type of low altitude noncooperative
targets: birds. Existing works demonstrate high radar echo
similarities for drones and birds [7]–[9]. The high simi-
larity brings great difficulties in distinguishing drones and
birds from radar viewpoint. Moreover, interference from
ground clutter, multipath effects and precipitations further
elevate the difficulty of drone target classification [10]–[12].
Therefore, in practical surveillance scenarios, effective
noncooperative drone target surveillance requires capa-
bilities of accurate distinguishing among drones, birds
and environmental interferences like static and dynamic
clutters.

Relative works found moving parts of aircrafts like pro-
peller could modulate radar echoes in amplitudes and phases.
The Micro Doppler Signature (MDS) could be extracted
from this modulated signal as an extra feature for radar
targets [13], [14]. Simulation results discover the clear
MDS from quadcopter drone echo as a representative target
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signature. Relative works [5], [15]–[18] utilize MDS to
extract target representative features like mean spectrum,
the first left singular vector of singular value decomposition
(SVD), the mean cadence velocity diagram (CVD). These
features are combined with common classifiers like SVM to
achieve effective drone target recognition. The wing flapping
from nonrigid bird targets also modulates radar echoes and
produces MDS. Birds particular flapping pattern results in
distinctive MDS which could be utilized for target classifi-
cation [19]–[21]. However, existing achievements based on
MDS are mostly based on theoretical simulation, indoor mea-
surement or outdoor measurement in close range (<200m).
In practical surveillance scenarios, the effective extraction
of MDS in long range is still controversy. Experiments also
indicate that gliding birds and plastic-rotor UAVs present
insignificant MDS and poor RCS modulation. For grouped
targets like swarm drones or bird flocks, their mutual cou-
plings within radar scanning volumes further complicates
radar echo signatures in amplitudes and phases modulations,
which is very difficult for effective MDS extraction. An extra
limitation of MDS is its long dwelling time requirements
over a specific target for sufficient coherent integration [22].
This is conflict with radar scanning mode for multiple target
detection and tracking. Therefore, MDS is a promising radar
target signature but its application significance in practical
surveillance scenarios needs more improvements. As cur-
rent MDS technology is still in question for long range
drone monitoring, the target classification problem needs
contribution from other target signatures. Besides RCS, the
polarimetric signature is also a representative radar target
characteristics for narrowband radar. In [23] nine polarimetric
features are extracted and a nearest-neighbor classifier is
adopted to achieve effective target classification. However,
this work is based on simulation results and its practical per-
formance needs further verification from field experiments.
Moreover, the cross polarization measurement also compli-
cates the hardware requirement of radar system. The trade
off between system complexity and surveillance performance
enhancement still need to be balanced.

Even birds and drones reflect high similarity in transit
radar echo signatures, they still present intrinsic differences in
flight mechanics and maneuvering patterns. Therefore, flight
motion characteristics might provide extra information for
target discrimination [24]. In radar system viewpoint, target
motions are discretely represented by tracks. Each plot of the
track contain spatial, temporal, signal intensity and doppler
information. Existing works based on simulation platform
have initially verify the possibility of distinguishing birds and
drones using statistical features of radar tracks [25]. Recent
works based on field experiment further verify the potential
of discriminating targets based on new feature space com-
posed of dynamic descriptors [26]. Therefore, track motion
characteristics is promising for drone recognition but current
methods are mostly based on simulation or ideally sampled
target tracks. Environmental robustness and adaptability to
high sample quality uncertainty still need to be explored in

classification method development to guarantee its applica-
tion significance.

In this paper, a drone target classification method using
motion characteristics extracted from tracks is introduced.
Flight mechanic and behaviour mode difference between
birds and drones are explored. Five dynamic descriptors are
proposed for target feature description. The random forest
model is applied in classification among drones, birds and
dynamic precipitation clutters. The method is verified by
field experiment datasets collected from a bird surveillance
radar system deployed in BeiHai airport by CAAC (China
Academy of Civil Aviation Science and Technology). The
overall rate of correct classification for three target types
is larger than 85%. The proposed method does not require
additional modification on radar hardware or signal proces-
sor, which makes the method possess great flexibility and
generality in various radar surveillance systems. RCS and
MDS signatures are not adopted in classification. This makes
the method independent of radar calibration, radar operating
mode and other environmental interference factors. The low
computational complexity guarantees the real-time classifica-
tion performance. The Gini importance descriptor in random
forest model provides extra reference information to evaluate
descriptor contributions in classification. This is constructive
for target motion characteristics understanding and descriptor
developing.

The paper is organized as follows: section II discusses
flight mechanism and behaviour modes differences between
birds and drones to support motion characteristics mining.
Five descriptors are introduced in section III to construct
a new feature space for target classification. The reason of
selecting random forest model as the classifier and the exper-
iment setups are described in section IV. Section V discusses
classification results from various aspects and existing prob-
lems of the proposed method.

II. FLIGHT MECHANIC AND BEHAVIOUR ANALYSIS
Even birds and drones present high similarity in flying speed
and radar echo signatures, their flying patterns are still dif-
ferent from the viewpoint of visual observation. This visual
difference is derived from their intrinsic difference in flight
mechanic and behaviour modes. In the radar system, a flying
target is depicted by a track containing spatial and temporal
information. The target motion characteristics is discretely
represented by a series of target detection plots. In this
section, a preliminary discussion on flight mechanic and
behaviour modes for birds and drones is provided to support
the following feature mining.

A. FLIGHT MECHANIC
Drones get lifting power from blade rotor controlling to
achieve different maneuverings like moving forward and
backward, ascending, descending, hovering, and so on. Aero-
dynamic is considered in shaping design but for copter drones
aerodynamic is not as dominant as in fixed wing drone
designing. In contrast, birds are nonrigid and get power by
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FIGURE 1. Graphic illustration of flight mechanics for birds and drones.

FIGURE 2. Representative flight trajectory projection of drones.

flapping wings. They achieve maneuverings by adjusting
shapes, attitudes and wing flapping patterns. Aerodynamic is
dominant in birdsmaneuvering and usuallymore complicated
than drones due to their nonrigid property. Figure 1 presents
an intuitive demonstration about flight mechanics. Theoret-
ically drones could achieve more complicated maneuvering
patterns due to its higher degree of freedom in rotor blades
controlling. Birds usually present smooth flight trajectory.
Their hovering in the air occasionally happen under specific
strong wind conditions. Therefore, even birds and drones
have similar flight speed, inherent flightmechanic differences
make them could hardly reproduce each other’s particular
maneuvering patterns. Figure 2 illustrate ground projections
of four representative flight trajectories of drones in a few
general operating scenarios. Spatial information is provided
by GPS equipment. Obviously trajectories B and D are regu-
lar maneuvering patterns for drones but challenging for birds.

B. BEHAVIOUR MODE
From the viewpoint of behavior mode, drones are artificial
targets and their flight is motivated by serving specific duties
like surveillance and delivery. Therefore, the behaviour mode
of drones is a combination of duty and pilot controlling pref-
erence. In contrast, birds are typical noncooperative targets
with self-intelligence. Their behaviors have close relevance
with their habits and species. For example, migrant and local
birds have distinctive behaviour mode differences. Birds of
the same specie could also present diverse maneuvering pat-
terns in food hunting, roosting, etc. Therefore, considering
the large species number and their diverse habits, birds pos-
sess much more abundant behaviour modes than drones. This
abundance is reflected from various motion characteristics
in plots spatial-temporal information and could hardly be
reproduced by drones neither.

In conclusion, drones present higher degree of freedom
in maneuvering, but birds possess much more complicated
behaviour modes. This makes it difficult for birds and drones
to totally reproduce each other’s flying pattern, and their
differences are reflected from motion characteristics con-
tained in radar tracks. The spatial and temporal information
contained within each detection plot provides a possibility of
motion characteristics mining.

III. MOTION CHARACTERISTIC MODELLING AND
EXTRACTION FROM RADAR TARGET TRACKS
In surveillance radar systems, a track is the most fundamental
element to describe a detected moving target. A track is initi-
ated when enough detections are accumulated (in our system
3 out of 4 consecutive scans initiates a track). During tracking
association, a track could include ‘‘misses’’ termed as coasted
targets which maintain a tentative track. The system software
allows for up to 3 consecutive misses. If a target is missed
during 4 consecutive scans the track is terminated. Each track
is assigned with a track ID and each plot of the track contains
time and position information. Target heading direction and
corresponding flying speed information could be deduced
from neighboring track plots. Even with deviation, deduced
speed and direction information from discrete track plots
could still be a good approximation for target motion descrip-
tion if high radar scanning rate could be guaranteed.

However, the direct application of speed and heading infor-
mation has following limitations: (1) There usually exists
great variations among track length (plot number). This
results in inconsistent feature vector dimension. (2) Speed
and heading direction describes the first order motion fea-
tures in spatial and temporal dimension independently. There-
fore, motion characteristics hidden in track’s spatial-temporal
information need to be further explored to construct a new
feature space with uniform dimension.

This paper introduces five descriptors extracted from speed
and heading information of tracks. A new feature vector
composed of five descriptors is defined and applied in the
learning machine to achieve the target classification. A track
composed of N plots could be mathematically described by a
vector Z= [Z1, Z2, . . . . , ZN]. The symbol Zi indicates the ith

plot. Corresponding speed and heading direction information
is presented in vector form as V = [v1, v2, . . . , vN] and H
= [h1, h2, . . . , hN]. Units for speed and heading are m/s
and degree respectively. The 0 degree is the north direction
and 90 degree indicates east direction. Five descriptors are
defined in following subsections.

A. AVERAGE SPEED
The average speed is defined as:

vmean =
1
N

N∑
i=1

vi (1)

The average speed describes the overall speed level of the
track. It is the most fundamental motion descriptor. Birds and
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drones usually have close average speed except for hover-
ing. The speed of precipitation clutter is dependent on wind
profile and precipitation intensity, which is usually slower
than birds. The average speed is suitable for discriminating
targets with distinctive speed difference like birds and ground
vehicles. However, this descriptor usually does not play a
dominant role in target classification. Generally It is adopted
as a fundamental descriptor for joint description with other
motion descriptors.

B. STANDARD DEVIATION OF SPEED
Most tracks usually present speed deviations among plots.
The degree of deviations indicates the spatial and temporal
uncertainty of target motion. The standard deviation of speed
for a track is defined as:

vstd =

√√√√ N∑
i=1

(vi − vmean)2

N
(2)

The larger standard deviation value indicates a higher
speed uncertainty. Bird tracks usually present small speed
variations and the probability of high speed uncertainty is
rare. The speed of precipitation clutter is consistent with
wind profile. In most cases the corresponding speed profile
is smooth. Drones could present a wider range of speed devi-
ation pattern due to its high maneuverability flexibility. They
demonstrate smooth speed patterns in cruising mode, but are
also capable of presenting large speed uncertainty in many
scenarios. Pilots operating preference also have impacts on
speed features. Therefore, the intrinsic motion differences
between birds and drones make speed uncertainty contain
more distinctive features.

C. STANDARD DEVIATION OF HEADING
Unlike the speed information, the average heading direction
of a track has little relevance with target motion. However, the
heading deviation pattern could be utilized to describe target’s
relative spatial uncertainty. The standard deviation of heading
is defined to quantify this uncertainty as:

hstd =

√√√√ N∑
i=1

1h (i)
N

(3)

Considering the definition of heading, the1h is defined as:

1h (i) =

{
(hi − hmean)2 |hi − hmean| ≤ δh
(|hi − hmean| − 360)2 |hi − hmean| > δh

(4)

In which the symbol hmean is the average heading direction.
Its computation considers the relationship between 0 degree
and 360 degree. δh is the threshold for heading deviation.
It is empirically defined as 90 degree. The heading deviation
of birds is more related with their behaviors. Local birds
usually present larger spatial uncertainty than migrants. Con-
sidering the maneuverability of birds, their overall heading
deviation is smaller than drones. Drones sometimes present
specific maneuverability which birds could hardly reproduce

and corresponding heading deviations are distinctive. Most
precipitation tracks present consistent heading variationswith
small standard deviation. Abrupt heading changes are rare
except for the condition of gust interference.

D. MANEUVERABILITY FACTOR
The standard deviation of heading degrees describes target’s
spatial uncertainty, but its correlation with time information
is weak. The speed features describe target’s scalar variation
in temporal domain but their relevance with target spatial
uncertainty is unclear. Therefore, previous three descrip-
tors represent target motion characteristics within respective
dimensions independently. Based on massive analysis, it was
noticed that targets present diverse heading variations with
speed. A target presents strong maneuverability if it can make
large heading deviation under high speed. This maneuver-
ability is a joint dimensional description of target motion.
A maneuverability factor is defined as:

σ = v′mean/h
′
std (5)

The unit of maneuverability factor is m/sec/deg,
it describes the target motion speed under unit heading
deviation. Considering the prominent numerical difference
between speed and heading deviation, v′mean and h

′
std are nor-

malized values based on predefined value ranges. According
to existing track samples, value ranges for average speed
and heading deviations are (2-20) m/s and (0-90) degrees.
According to equation (5), a target reflects strong maneuver-
ability if it could make large heading deviations under high
speed, and the corresponding σ value locates within a specific
small value range.

The bird maneuverability has close relevance with species
and behaviour modes. Migrating birds usually do not make
abrupt motions and present weaker maneuverability. Local
birds have more diverse behaviour modes. Birds could
present occasional strong maneuverability during hunting,
roosting, and so on. As drones could hover in the air, their
maneuverability factors have a larger variation range and
closely related with duties. The maneuverability for precip-
itation tracks are totally dependent on wind profiles. In most
cases the maneuverability of tracks from dynamic precipita-
tion clutters is weak. Numerical results indicate that the σ
value distributes within a specific range for both high and
low speed targets with different heading deviation features.
This is beneficial for separating targets with different maneu-
verability patterns in the feature space. However, it should
be noticed that this maneuverability description is based on a
specific target track, and it does not represent target’s essen-
tial maneuverability property.

E. OSCILLATION FACTOR
The oscillation factor further complete the maneuverability
factor by providing more comprehensive dynamic feature
description. It is motivated by a distinguishing confusion
problem for two tracks whose ground projections are pro-
jected in Figure 3(a) and Figure 3(b). Track-1 and Track-2

160138 VOLUME 9, 2021



J. Liu et al.: Classification of Bird and Drone Targets Based on Motion Characteristics and Random Forest Model

FIGURE 3. Track projection presentations with distinctive motion
patterns-(a) Track-1 (b) Track-2.

are all composed of nine plots marked from A to I. Track-1 is
representative formost bird trackswith smooth and consistent
dynamic features. Track-2 is rare for bird and precipitation
tracks due to its complicated oscillation pattern, but it is not
challenging for drones and this oscillation pattern presents
frequently under unpredictable environmental interferences.
However, this prominent difference is not comprehensively
reflected from descriptors defined in previous subsections.
The contradictory is caused by absolute value operator in
standard deviation. The absolute value describes a scalar
variation quantity without variation directions. The summa-
tion of absolute deviation confines the motion description in
local scale. Heading oscillations caused by alternative devia-
tion directions could not be effectively reflected. Therefore,
an oscillation factor is developed to complement the heading
deviation description.

The computation of oscillation factor starts from getting
heading deviation direction information. The deviation direc-
tion is determined from the symbol of heading angle differ-
ence between neighboring plots, which is defined as τh (k) =
hk+1 − hk . A threshold value δe is defined as 0.5 by con-
sidering radar measurement error. For a detection plot Zk, its
heading deviation symbol is defined as:

Xh (k) =


1 τh (k) > δe

0 |τh (k)| ≤ δe
−1 τh (k) < −δe

(6)

A heading deviation symbol vector could be constructed
from (6) and denoted in the form like O = [1,−1, 0, 1, . . .].
Two oscillation modes are defined from vector O:
Mode1: O(i-1) + O(i) = 0 and O(i-1) 6= O(i);
Mode2: O(i-1) + O(i + 1) = 0 and O(i-1) 6= O(i + 1),

O(i) = 0;
The traversing procedure is restarted from the initial detec-

tion plot, if there exists one of the two oscillation models,
the oscillation counter is added by one and the corresponding
heading deviation is recorded as τh (k). If there exists K
(K >0) oscillations in a track, the corresponding oscillation
factor is calculated as:

ζ =

K∑
k=1

w (k)× |τh (k)| (7)

In equation (7) the symbol w(k) is the weighing factor for
the k th oscillation and its definition is in Table 1. For a specific
track, more oscillations generally indicate a more intensive

TABLE 1. Weight factor definition.

oscillation pattern. The weighing factor is defined to indi-
cate the growing impact of oscillation times. Its application
on heading deviation angles interprets the overall degree of
track oscillation. The unit of oscillation factor is degree and
the larger value indicates more intensive track oscillation.
It should be noted that in Table 1, the oscillation number k
indicates the k th oscillation rather than the total number of
oscillations. For example, the oscillation number 3 indicates
the third oscillation in current track traversing, and the weigh-
ing factor 2 is multiplied with the corresponding heading
deviation angle at the third oscillation. The increasing weigh-
ing factor indicates a growing impact of the oscillation times.
However, current weighing factor definition is empirical and
subjective biased. In future works, weight factor could be
more reasonably defined through numerical regression or
statistical fitting.

IV. SUPERVISED LEARNING MODEL AND EXPERIMENT
SETUP
A. RANDOM FOREST CLASSIFICATION MODEL
According to descriptors defined in section III, a target track
could be represented by a new feature vector:

S = [vmean, vstd , hstd , σ, ζ ] (8)

This feature vector contains target motion characteristics
from various aspects. The uniform dimension makes it suit-
able to be applied in the learning machine model for target
classification. In this paper, labelled feature vectors from
radar observation data are selected to construct a training
database, and the supervised learning strategy is taken. The
unknown target track is converted in to the feature vector
(8) and applied on the trained classifier to determine the
target type. Therefore, it is necessary to select a proper
learning machine. There are lots of popular existing mod-
els available like Support Vector Machine (SVM) and Arti-
ficial Neural Networks (ANN). However, the selection of
learning machines should consider intrinsic properties of the
specific classification problem and feature vectors. The ran-
dom forest model is taken as the learning machine in this
paper.

Random forest model is a representative machine learning
technique [27]. It is an ensemble classification strategy based
on multiple decision trees. The basic principle of random
forest is building multiple decision tress by randomly select-
ing partial features from the feature space. Decision proce-
dures of trees are independent and the final decision is made
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FIGURE 4. Graphical description of random forest model.

throughweighed integration of all trees. This procedure could
be graphically demonstrated in Figure 4.

The principle and implementation of random forest model
is simple. The classification platform development is not
challenging for our problem. However, there is the necessity
to give comprehensive explanations about reasons of select-
ing random forest as the learning machine.

1. Unlike other machine learning techniques which oper-
ate in a complete feature space, feature selection and tree
construction strategies in random forest make it possess
good noise tolerance capability and lower chance of overfit-
ting [28]. In our problem, even though radar system could
detect and track birds accurately, environmental interference
and tracking algorithm’s uncertainty make training database
partially contain low quality non-bird tracks which are cat-
egorized as noise interference. Therefore, the random forest
model is suitable for our problem to handle training database
with sample quality uncertainties.

2. Five descriptors are integrated into a feature vector as
in equation (8). However, these descriptors are inherently
independent. There exists distinctive dimension and physical
meaning inconsistency. This might result in inconvenience
on other learning machines but not a problem for random
forest model. As the basic component, a decision tree could
naturally accustom to quantitative and qualitative features
without feature normalization. Therefore, the random forest
model performs well for inconsistent feature space. An extra
benefit is its flexibility on feature variation when additional
target features are introduced or rearranged.

3. The computational and memory consumption of random
forest model is lower than many popular machine learn-
ing techniques. Due to great diversity in bird species and
behaviour patterns at different season and locations, it is
necessary to frequently adjust training database in diverse
scenarios. Random forest model’s efficiency and flexibility
advantages are suitable for these requirements.

4. The Gini importance is an important reason of selecting
random forest model. As a quantitative descriptor of feature
importance, Gini importance provides useful references in
feature selection [29]. In our problem, even five descrip-
tors are proposed, their contributions in classification lack
quantitative evaluators for verification. As a complement, the
Gini importance could intuitively interpret relative impor-
tance quantitatively as feature selection reference.

FIGURE 5. Bird surveillance avian radar systems developed by CAAC.

B. EXPERIMENT SETUP
The radar data comes from the bird surveillance radar system
developed by CAAC as presented in Figure 5. The system
is composed of a climate-controlled cabin housing the com-
puter systems, data processors, wireless data transmitters,
and 2 towers mounting the dual-scanning array antennas
with both vertical and horizontal scanning. The radar works
at S band. The horizontal scanning antenna is mounted on
a tower with adjustable heights. Solid state amplifiers are
adopted for both vertical and horizontal scanning with peak
power of 0.4KW. the rotational speed is 25 revolutions per
minute (2.4s/scan). Bird detection and tracking algorithms
are developed with real time visualization function [30].

The radar is deployed in FuCheng airport in BeiHai city,
GuanXi Province in China. Deployment details are presented
in Figure 6. Region A and B are dense regions for local
birds activity and the major source of radar observation data.
Region C is selected as a test field of drone flights. Data
collection was conducted from early September to the end
of October in 2019. Bird observation data is collected from
7:00 to 19:00 in local time under good weather conditions
with cross validations from visual observations. Drone tracks
come from practical drone flights in area C. To maximally
reduce the potential risk, all drone flight experiments were
conducted at early morning or night hours when there was
no airplane landing or taking off. The model of drones is DJI
Phantom 3. Drone flight plans are designed to simulate vari-
ous working modes like video taking, cruising, multi-aspect
photo taking, hovering and so on. According to GPS infor-
mation, it was found that a radar track would stop association
if a drone hovers in the air over 15 seconds (6 radar scans).
In other cases when drones present different maneuvering
patterns the system could effectively capture drones and gen-
erate tracks. In our experiments a single drone is considered
as a medium sized bird by the radar system. Historical obser-
vation data indicates precipitations moving with wind might
generate large amount of false bird tracks [31]. Precipitation
tracks are collected in two selected days in September with
medium level precipitation. Observations indicate that when
precipitation moves in a uniform pattern, dense precipitation
volumes with sufficiently large echo intensity are considered
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FIGURE 6. Geography illustration of radar deployment in BeiHai Airport.

as birds flying in consistent speed and direction [32]. Dur-
ing data collection the wind speed is around 10m/s. Field
observation during precipitation data collection confirmed
negligible bird activities.

The track pre-processing on target tracks is required. Short
tracks (shorter than 4) are neglected. Long tracks (longer than
20) are rare and sometime possess low quality due to incorrect
plot association. They are filtered out either. Tracks with too
many oscillations are mainly caused by clutter interference
and tracking algorithm association error. Therefore, the upper
oscillation time is set to 7. Tracks with average height lower
than 50 meters are removed due to building sheltering and
clutter interference. Training and testing databases are con-
structed using a random selecting algorithm with no repeated
samples. Sample amounts for birds, drones and precipitation
tracks in training database are 927, 635 and 1385. The corre-
sponding numbers for testing database are 217, 184 and 239.
The non-repeating sampling strategy provides 0% repetition
rate.

V. RESULTS AND DISCUSSION
A. SEPARABILITY ANALYSIS
The training sample separability is firstly verified to explore
the potential of classification performance. As the feature
space is five dimensional, it is difficult to intuitively observe
the sample separability in the original feature space. There-
fore, the principal component analysis (PCA) technique is
taken to extract first two dominant principal components from
feature vectors. Figure 7 demonstrates the projection of first
two principal components for three types of target feature
vectors. Separability among three target types could be visu-
ally observed. The most distinctive separability is between
drone and precipitation tracks, which represents the intrinsic
motion feature difference between drones and winds. Bird
samples present broader distribution in Figure 7 indicating
their more abundant motion diversity.

There also exists overlapping samples between bird and
drone/precipitation tracks. These samples are extracted for
further exploration. Bird tracks overlapping with precipita-
tions present simple flying trajectories and they could be
categorized as small flocks. Bird tracks overlapping with

FIGURE 7. Principal components distribution for three types of targets.

FIGURE 8. Confusion matrix for five-fold self-validation experiment.

drones possess high maneuverability with slight oscillation.
Moreover, it could be observed that bird and drone samples
in Figure 7 present clustering patterns. The clutter centre for
each type could be found using k-means algorithm. Samples
surrounding drone clutter centre are mostly tracks presenting
maneuverability like track B and D in Figure 2. These tracks
are from drones performing video/photo collections. There-
fore, separability analysis presented in Figure 7 consolidates
confidence in effective target classification using the random
forest model.

B. SELF VALIDATION
It is necessary to verify the quality of the trained classifier
before its application for unknown sample classification. The
five-fold cross validation strategy is usually taken for this ver-
ification. Figure 8 presents a confusion matrix with contents
representing the rate of correct classification in cross vali-
dation. The green block indicates the correct classification
and red ones denote misclassification. The accuracy could
provide rate of correct classification over 85% indicating the
acceptable quality of the constructed random forest classifier.

In many areas dynamic precipitation clutter interferences
are minor. Therefore, the classifier’s capability of merely
distinguishing drones and birds is more attractive in more
general surveillance scenarios. To verify this performance,
the training database is reconstructed by excluding precipi-
tation tracks. A new random forest model is trained. The cor-
responding confusion matrix is presented in Figure 9. There
reflects slight variations on the rate of correct classification.
The overall quality of the classifier is still good enough to
provide satisfied classification accuracy.
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FIGURE 9. Confusion matrix for self-validation excluding precipitation.

FIGURE 10. Confusion matrix for classification of three target types.

C. ACCURACY AND EFFICIENCY DISCUSSION
In the proposed classification system, an unknown target
track is represented by five descriptors in a feature vector.
This vector is applied on the random forest model to get
the target type determination. The classification accuracy is
still quantified by the rate of classification in the confusion
matrix, as illustrated in Figure 10. The average rate of correct
classification for three target types is larger than 85%, and this
could basically satisfy application requirements. Themisclas-
sification rate between drones and precipitation tracks is close
to zero, which is consistent with their prominent difference
as presented in Figure 7. Misclassified bird and drone tracks
demonstrate smooth motion characteristics and their ground
projection trajectories are highly similar with track C as in
Figure 2. They reflect little distinctive features for effective
classification.

Further explorations on distinguishing capabilities between
birds and drones are provided by excluding precipitation
samples. The confusion matrix in Figure 11 reflects negligi-
ble variation on the rate of correct classification compared
with Figure 10. This also indicates that birds are major
sources of interferences in drone target recognition problem.
Moreover, according to Figure 6, all tracks are sampled at the
radar detection range larger than 1km. This proves that the
proposed method is capable of long range drone recognition
under radar surveillance mode.

Unlike drones, the motion characteristics of birds and
precipitations are closely related to dynamic environments.
Therefore, even under the same surveillance region, they may
present varying behaviour patterns under different seasons.
This requires the surveillance system to properly adjust the
training database for accurate motion pattern modelling. The

FIGURE 11. Confusion matrix for birds and drones classification.

FIGURE 12. Confusion matrix from self-validation by merging testing and
training database.

classification model needs to possess a good adjustability to
training database modifications. To verify this, the training
and testing databases are merged to construct a new database
for random forest modelling. The five-fold cross validation
experiment is also conducted for verification, as presented
in Figure 12. There is minor variation on classification per-
formance. This indicates the good robustness of the random
forest model. However, it should be noted that this robustness
verification is not very comprehensive due to limited samples.

The efficiency performance in classification is critical for
a non-cooperative drone monitoring system. The low com-
plexity of the random forest model and the feature vector
dimensionmake the classification system possess the capabil-
ity of efficient target classification. The random forest model
adopted in this paper is developed by Python language. The
computer is configured with Intel i5-7500 CPU with 16GB
RAM. Due to the limited amount of training sample, it only
costs 17.1 seconds in training procedure. For a single target
track the system takes 0.27 seconds to make the target class
evaluation. Therefore, the system could basically achieve the
real-time target recognition. Results on accuracy, robustness
and efficiency indicate the proposed classificationmodel pos-
sess good application significance.

D. DISCUSSION ON GINI IMPORTANCE
Extra discussions on Gini importance are necessary for its
significant contribution in feature selection. Figure 13 and
Figure 14 present Gini importance distribution in different
classification problems. Larger numerical values indicates
higher degree of feature importance. The maneuverability
factor with largest Gini importance indicates targets distinc-
tive maneuvering capability difference in both classification
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FIGURE 13. Gini importance in classifying birds-drones-precipitation.

FIGURE 14. Gini importance in classifying birds-drones.

problems. In contrast, the average speed presents its minor
contribution in classification, which is consistent with our
empirical analysis.

Gini importance evaluation excluding precipitation clutters
are conducted and presented in Figure 14. Compared with
Figure 13, the prominent difference is the standard deviation
of heading, which becomes least important. This indicates
the dominant role of heading deviation in discriminating pre-
cipitation and other two types of targets. On the other hand,
birds and drones could all make large heading deviations
during flight, but their deviation patterns could hardly be
reflected from standard deviation of heading. This results in
its importance degradation in random forest. In contrast, this
deficiency is complemented by the oscillation factor, whose
Gini importance is promoted in the distinguishing between
bird and drone targets.

Above discussions indicate that the Gini importance
description on motion characteristic present consistent con-
clusions with empirical evaluations. The quantitative prop-
erty of Gini importance is helpful for further understanding
of target motion features and providing references on new
feature’s mining.

E. PROBLEMS AND FUTURE WORKS
Results in this section verify the effectiveness of the proposed
feature extraction and classification method. However, exist-
ing works still have limitations with improvement potentials.

1. Target motion characteristics extracted from track infor-
mation are highly dependent on tracking accuracy. Analysis
on existing database indicates tracksmight present distortions
when large scale flocks crossing many resolution cells fly
in nonuniform patterns. This might cause association algo-
rithm error during tracking. Distorted tracks usually present
inconsistent motion patterns resulting in adverse impact on

classification accuracy. A potential solution to this problem
is transferring focuses from a single track to group tracks.
The extraction and utilization of multi-scale motion charac-
teristics related to group targets might improve tracking and
classification performance.

2. The proposed method in this paper only utilizes target
motion characteristics for feature description. Radar echo
signatures like RCS are not adopted. This facilitates the
method applicable to other radar systems which could not
provide RCS due to data security concern or access limi-
tation. However, for systems whose RCS data is available
the adoption of RCS information is beneficial. The relevance
mining between motion and radar echo characteristic has
the potential of further enriching target signature description.
This topic would also be a major concern in our future works.

3. Misclassified tracks analysis indicates that the existing
method have difficulty to distinguish tracks with smooth
and consistent motion patterns. These tracks present high
similarity in both radar echo and motion signatures. Other
information sources need to be introduced to distinguish these
highly similar tracks. One possible solution might be corre-
lating the track information with surveillance environments.
A joint probability distribution function could be modelled to
describe bird activities. This probability distribution function
could be utilized as an auxiliary decision making model to
determine if a presented target a bird or something else (prob-
ably a drone). This is related with cognitive radar theory and
might be another technique routine for low altitude airspace
surveillance.

VI. CONCLUSION
The UAV technologies booming brings potential threats in
many areas. This elevates the thinking of non-cooperative
drone surveillance. Radar is the most proper technique solu-
tion for long range drone surveillance. However, low altitude
airspace interference like birds and environmental clutters
make accurate drone target recognition difficult and challeng-
ing within large surveillance area. This paper explores the
motion characteristics of drones, birds and precipitation clut-
ters. Five descriptors are proposed as target motion descriptor.
The random forest model is selected as the learning machine
for supervised learning due to its peculiar advantages for our
problem. The proposed method is verified through a field
experiment with target track information collected from a
bird surveillance radar system deployed in the airport region.
Results indicate acceptable classification accuracy, sample
robustness as well as the high efficiency. Extra discussions
on Gini importance distribution reflect good consistency with
empirical analysis. The quantitative property of Gini impor-
tance also provides useful references in feature understanding
and mining. Problems about the proposed method are also
addressed. Multi-scale group target tracking, feature fusion
with radar echo signature and the association with cognitive
radar theory are three possible routes to further enhance
the recognition accuracy in noncooperative drone target
surveillance.
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