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ABSTRACT The millimeter-wave (mm-wave) frequency band is projected to play a critical role in next-
generation wireless networks owing to its large available bandwidth. Despite the theoretical potential for
high data throughput, the mm-wave frequency faces numerous challenges—including severe path loss and
high penetration loss. Therefore, a reliable understanding of channel propagation characteristics is required
for the development of accurate and simple indoor communication systems. In this study, we conducted
measurement campaigns with unique transmitter- receiver combinations using horn and tracking antennas,
at 3.7 and 28 GHz in an indoor corridor environment on the 10th floor of an IT building and the 3rd floor of
the main building of Chosun University, Gwangju, South Korea, and the details are presented herein. In both
line-of-sight and non-line-of-sight scenarios, the large-scale path losses, and small-scale channel statistics,
such as root mean square delay spread, and number of clusters, were obtained using the measurement
results in a waveguide structure indoor corridor environment. We have proposed alternate methodologies
beyond classical channel modeling to improve path loss models using artificial neural network (ANN)
techniques—to alleviate channel complexity and avoid the time-consuming measurement process. The
presented regression successfully assists the prediction of the path loss model in a new operating environment
using measurement data from a specific scenario. The validated results suggest that the ANN large-scale path
loss model used in this study outperforms the close-in reference distance and floating-intercept (alpha-beta)
models. Additionally, our result shows that the number of time clusters follows an Erlang distribution.

INDEX TERMS Path loss models, delay spread, time cluster, mm-wave propagation, artificial intelligence,
indoor corridor.

I. INTRODUCTION
Wireless data stream is rapidly increasing worldwide—
and by 2022, mobile data traffic is projected to reach
77.5 exabytes/month [1]. Most data traffic growth stems from
evolving indoor wireless uses, such as wireless cognition,
centimeter-level position location, and ultra-high-definition
streaming. These wireless data traffic demand huge band-
widths that are enabled bymillimeter-wave (mm-wave) bands
in 5G and beyond [2], [3].

In outdoor to indoor communications, the signals prop-
agate through walls, which causes considerable penetration
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losses (of up to 60 dB) in mm-wave bands [4]. Therefore,
it is advantageous to install separated indoor mm-wave com-
munication networks from co-channel outdoor cellular links.

Millimeter-wave bands have been extensively studied
[5]–[7] at 60 GHz—and applied in the IEEE 802.11ad/ay
standards for wireless local area networks (WLANs) [8].
Few studies have also reported indoor channel modeling and
measurements at other evolving mm-wave frequencies [9].
Precise channel models are important for the design and roll-
out of 5G and other larger mm-wave bands.

Several path loss (PL)models are available in the literature,
which are primarily categorized into three classes: determin-
istic, empirical, and semi-empirical PLmodels. Deterministic
models are derived from the principles of physics, such as
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Maxwell equations [10], uniform theory of diffraction [11],
and ray tracing [12], and are computationally expensive and
complex to implement. Empirical and semi-empirical mod-
els, such as the standard propagation model (SPM) [13],
Okumura-Hata [14], WINNER II [15], ITU-R P.1812 [16],
Stanford University Interim [17], Longley–Rice [18], and
ITU-R P.1546 [19], that are predicted from a statistical analy-
sis are computationally efficient and easy to implement. How-
ever, they may be less precise in some frequency bands and
propagation environments. Furthermore, these models were
created on a constrained timeline and did not reflect all of the
important features of mm-wave channels. Further research
and model refinements are required. Recently, artificial neu-
ral networks (ANNs) have been proposed to represent path
loss more flexibly and accurately in different and complex
propagation environments, such as indoor [20], rural [21],
urban [22], and suburban [23].

The indoor environment differs from the outdoor
environment in various ways. Indoor channel models must
consider multipaths produced by scattering, refraction,
reflection, shadowing, and penetration phenomena. This is as
a consequence of the construction materials used, variations
in floor plans, scale of smart devices used in the vicinity,
people working and their movements, etc. [24]. Path loss pre-
diction can be regarded as a regression problem, in which the
parameters of the transmitter, receiver, frequency, buildings,
etc., characterize the inputs, while the path loss represents the
target output to be predicted. In the case of some parameters
such as diffraction loss (DL), clutter loss is not well defined,
and an ANN (black box) model based on learning is a useful
tool for solving this type of regression problem and can be
efficiently applied to indoor PL models [13].

The existing indoor path loss measurements were mostly
based on very close transmitter to receiver ranges of less
than 10 m steps [25], [26]. Additionally, most of the previous
channel measurements used omnidirectional and directional
antennas. However, owing to the sensitivity of mm-waves
to dynamic blockage environments, a tracking antenna with
steerable beam forming is required for proper system design
and implementation [27].

Therefore, to obtain a general model in the mm-wave
frequency regions, extensive characterization and modeling
is necessary. The goal of this research is to examine channel
characterization and path loss modeling in frequency ranges
lower and higher than 6 GHz. We focused on characterizing
the 3.7 and 28 GHz channel, because 3.5 GHz was assigned
for 5G roll out in South Korea—and 28GHzwas assigned for
5G use in the United States by the Federal Communications
Commission (FCC). We used 3.7 GHz to avoid interference
with the deployed 3.5 frequency.

Thus, this study has the following contributions:
• This article presents large-scale and small-scale

propagation channel characteristics based on mod-
els and measurement campaigns with directional
horn and tracking antennas at 3.7 and 28 GHz for
two corridors scenarios.

• We proposed a new artificial neural network-based
path-loss prediction model in indoor long corridors
scenarios. The proposed model was compared with
two well-known path loss models—the floating
intercept (FI) and the close-in free space reference
distance (CI). With respect to measurements, the
signal fluctuation’s standard deviation of the pro-
posed ANN model around the average path loss
was less compared to the existing path loss models,
making it more accurate in predicting path loss.

• Small-scale channel statistics such as the number
of time clusters and root mean square (RMS) delay
spread were calculated from measured power delay
profiles in both non-line-of-sight (NLOS) and line-
of-sight (LOS) situations. The resulting channel
statistics reveal that the number of time clusters
follows an Erlang distribution.

The remainder of this article is organized as follows.
Section II presents the indoor corridor measurement setup
and procedures. Section III presents the path-loss models
used in this study. Section IV presents the results and discus-
sion of the work, and finally, Section V concludes the study.

II. MEASUREMENT EQUIPMENT, ENVIRONMENT, AND
PROCEDURE DESCRIPTIONS
This section presents detailed parameters of the horn and
tracking antennas, measurement campaigns, and measure-
ment scenarios considered.

A. MEASUREMENT CAMPAIGN
We used three types of antennas for these measurements:
a double-ridged waveguide directional horn antenna for a
3.7 GHz center frequency, a standard gain directional horn
antenna, and tracking antennas for a 28 GHz operating fre-
quency. We used a Keysight M5183B signal generator at
the transmitter (Tx) side and Keysight PXI 9393A vector
signal analyzer at the receiver (Rx) side in this measurement
campaign, as depicted in Fig. 1

Measurements were performed three times. The first was
at 3.7 GHz, using a horn antenna with a frequency range of
2 to 18 GHz at both the Tx and Rx sides. The second mea-
surement was at a 28 GHz carrier frequency using a standard
gain horn antenna with frequency ranging from 26 to 40 GHz
at both the Tx and Rx sides. The third campaign used tracking
consisting of 16-antennas at the Rx side and a standard horn
antenna at the Tx side. The tracking antenna is used to collect
a large amount of data per second to ensure the validity of the
measured fast Fourier transform (FFT) spectral data. To col-
lect the fastest FFT spectral data, Keysight Technologies used
the PXIe high-performance vector signal analyzer (model
name M9393A), applied a PC embedded in PXIe for faster
data processing, and loaded the equipment operating program
into the embedded PC. For 16 antenna (1ch) configurations,
we collected and stored more than 600 full-bearing FFT
(512 point) spectral data per second (at 2 MHz Span or
higher) on the PC. The stored data are recorded along with
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TABLE 1. Horn and Tracking antennas specifications and parameters
descriptions.

each antenna-specific data collected during the move—-as
well as orientation and location information so that the map
can display the direction of the transmission point according
to the maximum reception level. In addition, the measured
data can be used to oust the best signal for each antenna for a
specific time, allowing the moving average, vehicle binning
conversion, and display of the coverage markings on the map
at intervals. Fig. 2 illustrates the connection between the Tx
and Rx through tracking and standard horn antennas. From
Fig. 2 the signal generator (SG) connected to horn antenna
which transmits the signal to tracking antenna systems (TAS)
through wireless. TAS, which is the receiver, forward the
signal to signal analyzer (SA) via hub and finally displayed
on the monitor. Table 1 lists the equipment specifications and
parameter configurations.

B. EXPERIMENTAL SCENARIO AND PROCEDURES
The measurement scenarios were formulated based on the
requirement to construct large-scale and small-scale channel
models that consider path loss and multipath propagation
properties in wave guide-like structures for future networks.
As a result, we selected an internal corridors with metal
doors, dry concrete walls and ceilings, and tiled floor. In the
corridors, a propagating signal flows from Tx to Rx via
the LOS (direct) and NLOS (reflected, dispersed, and/or
diffracted) routes. A propagating signal in a closed plan

environmentmust pass via an obstruction to reach the receiver
resulting in shadowing [9]. Therefore, this study is focused
on the propagation characteristics, specifically an interior
corridors with modal attenuation, using measurements and
models. First, LOS propagation parameters were calculated
for scenarios in which there was no obstacle between Tx and
Rx, and they were pointed in the same direction with bore
sight alignment. The NLOS propagation parameters were
then determined when the Tx and Rx antennas were out of
alignment on boresight. Finally, the strongest signal strength
measured from tracking antennas for each exclusive antenna
pointing angle in every Tx and Rx combination was used to
calculate the best path loss [9].

In this study, we conducted measurement campaigns on
the 10th floor of the IT and convergence engineering building,
as shown in Fig. 3, and on the 3rd floor of the main building—
Chosun University, South Korea. The main building is 375 m
long which is the most extended building in Guinness book
of records. We took measured data up to 260 m at 10 m and
20m intervals of the following 18 measurement points. 14,
20,30,40,50,60,70,80,90,100,120,140,160,180,200,220,240,
and 260 m. The IT building is 100 m long and we took mea-
surements up to 90 m such as 14, 20,30,40,50,60,70,80,90
in 10-meter increments per measuring location for 9 LOS
measurement points. To measure the NLOS, we have placed
the mobile TAS receiver and the horn antenna inside 4 rooms
of IT building namely: 1021, 10225, 10228_1, and 10228.
The minimum distance from the transmitter to receiver was
59.48, 84. 94,88.25, and 94.54m for the rooms 10221, 10225,
10228_1, and 10228, respectively.

The measurement environments were typical wave guide-
like structured indoor corridors with floors, walls, metal
office doors, a stairwell, and an elevator (see Fig. 3). The
width, length, and height of the indoor corridor of the IT
building were 2.54, 100, and 2.7 m, whereas those of the
main building were 2.9, 375, and 3.43 m, respectively. The
Tx and Rx antennas were installed at 1.75m and 1.5 m
above the floor by fixing the Tx antenna at one end of
the corridor, and locating the Rx antenna at various places
for both NLOS and LOS measurements. The measurements
were conducted at the same Tx and Rx sites for both the
3.7 and 28 GHz frequencies to make direct comparisons
between the two frequency bands. Horizontal polarization
was used at both the Tx and Rx antennas in the measurement
tests. We placed Tx in a single location and Rx in 9 dif-
ferent locations for LOS and 4 for NLOS for conducting
the IT building measurements. For the main building mea-
surements, Rx was located at 18 different places in the LOS
measurements.

The received power measurement data were post-
processed at every location along the corridor’s axial length
in 10m steps fromTx to Rx. To ensure high-quality data gath-
ering, the measurement device was rigorously calibrated, and
the measurements were repeated and averaged. The average
received power from the dataset at each measurement point
was calculated. Finally, by converting the power received,
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FIGURE 1. Horn and tracking antennas used in the measurements.

FIGURE 2. Tracking antenna set up for measurements.

the path loss was computed at each site. LOS and NLOS
environments were used in the tests.

III. CHANNEL MODELS
This section presents the temporal channel characteristics and
path loss of the 3.7 and 28 GHz bands in the two experimental
sites. They were analyzed in terms of channel parameters,
such as path loss, the number of clusters, and multipath
component (MPC) delay spread, based on the received signal
power measurements using the horn and tracking antennas.

A. LARGE SCALE PATH LOSS MODELS
In radio channel models for evaluating the link budget and
coverage in a cellular network, path loss is a critical com-
ponent. The path loss for each site was calculated using the

measured data, as follows:

PL = P(Tx)− P(Rx)+ G(Tx)+ G(Rx)− L(c) (1)

where PTx is the transmitted signal power, and PRx is the
received signal power calculated by integrating the energy of
the paths. GTx and GRx are the gains of the antennas used
during the transmitting and receiving processes, respectively.
Additionally, Lc is transmitter and receiver cable losses.
By integrating the powers of all the synthesized pathways,
we can successfully determine the directional path loss [28].
To properly design wireless communication systems, path
loss models are required to calculate the attenuation of prop-
agating signals with distance. It is desirable to gain as wide
a measurement range as feasible for new wireless networks
to ensure model correctness across long distances. The FI
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FIGURE 3. IT building indoor corridor.

(alpha-beta) model and CI free space reference distance
model are two common empirical path loss models to fit
measured PLs [29].

1) CI PATH LOSS MODEL
The CI free-space reference is a common and superior large-
scale path loss model over various frequency bands and envi-
ronments [30]. In this work, we use the CI path loss model
with a 1 m distance reference, as expressed in (2).

PLCI (d) = 32.4+ 20 log10(f )+ 10n log10(d)+ X
CI
σ (2)

where Xσ represents the shadow fading in dB, modeled with
Gaussian random variable at zero mean and σ represents
the standard deviation, n denotes path loss exponent (PLE),
at carrier frequency f in GHz and, at distance d in meter.

2) FI PATH LOSS MODEL
Researchers who worked on the development of the 3GPP
and WINNER II channel models [31] employed the FI
model. The FI model uses a least-squares regression
method to determine the best fit line to the experimen-
tal data, extracting two parameters, slope and an intercept,

to derive the equation [29], [32]:

PLFI (d) = α + 10β(d)+ XFIσ (3)

where β is the line slope (different from the PLE), α is the
float-intercept in dB (different from the FSPL reference), and
XFIσ is a zero mean Gaussian random variable with shadow
fading that signal changes over time in relation to the typical
large-scale path loss. Previous studies have shown that the FI
andCI path lossmodels provide almost similar standard devi-
ations for shadow fading in outdoor mm-wave channels [29],
[32]–[34]. TheCI andFI parameters such as n, α, β and σ are
derived using minimum mean square error (MMSE) which
fits the data from measurements with small errors.

3) PROPOSED ANN PATH LOSS PREDICTION MODEL
Path loss prediction modeling can be assumed as a regression
problem for mapping the relationship between the values
of path loss and input link parameters, such as path length,
operating frequency, attenuation, reflection [35], [36]. In the
literature, there are two primary regression techniques. The
first is multivariate linear regression, which determines a
mathematical formula that explicitly defines path loss as a lin-
ear function of input parameters. The second method relates
the input and output by a black box without any explicit math-
ematical formulation [37]. This is an interesting method that
mimics the system behavior without any descriptive value and
is suitable in the case of a poorly defined or poorly identified
phenomenon.

In this study, we propose a second technique for path loss
prediction. This is because parameters, such as diffraction
loss (DL) and its dependence on the geometric form of the
knife edge, along with clutter loss and its dependence on
frequency, are not well defined. Therefore, the learning-based
black box model can be efficiently used to predict the wave
propagation path loss, and is a convenient tool for solving
this type of regression problem. Fig. 4 shows a simple neural
network that is mathematically expressed as follows:

Y = wTX + e (4)

where Y denotes the dependent response, and X= (x1,x2 . . . ,
xn) is the input to the network which includes channel state
information (CSI) features such as, received power, link dis-
tance, time delay, RMS delay spread, and frequency. The
input X is multiplied by transposed (T) weights vectorsW =
(w1,w2 . . . , wn) plus a neuron bias e to produce Y . The output
path loss is predicted bymapping Y to the activation function.
We consider the following sigmoid function to predict path
loss.

PLANN =
1

1+ e−Y
(5)

where Y and PLANN represent the transformation and activa-
tion (path loss) functions of the layer, respectively.

The error between the measured PLM and the predicted
PLANN path losses is determined using the loss function
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FIGURE 4. Simple artificial neural network.

L(PLANN ,PLM ). The squared error can be utilized as a loss
function in regression analysis problems, as seen below [38]:

L(PLANN ,PLM )) =
1
2N

[
n∑
i=1

(PLANNi − PLMi )2
]

(6)

The slope and variance of the path loss model can be
determined using linear regression, where distance is the only
channel feature used to estimate the model. Then, the slope
and variance can be predicted [39].

β = (XTX )−1XTPL (7)

where, XT is transposed input parameters. We may deduce
the standard deviation σ from the given estimate to obtain
the shadow fading parameter.

σ =

√√√√ 1
N

[
n∑
i=1

(PL − µ)T (PL − µ)

]
(8)

After obtaining these parameters, we were able to compare
an ANN path loss model to CI and FI path loss models.

B. TEMPORAL STATISTICAL CHANNEL MODELS
In this section, the RMS delay spread and the number of
time clusters were determined from the measured data at an
operating frequency of 28 GHz.

1) RMS DELAY SPREADS
The RMS delay spread is used to characterize the time disper-
sion properties of wideband channels because it is a suitable
indicator of coherence bandwidth nature and time disper-
sion and of the multipath channels, as well as a measure of
how serious inter-symbol interference could be—-according
to the signal bandwidth [40]. A recent study reported that
determining the specific beam-pointing directions that pro-
vide both minimum multipath delay spread and minimum
path loss could be advantageous in building power-efficient
mm-wavemobile communication systems with simple equal-
ization [41]. The channel RMS delay spread and other time
dispersion parameters generally determine the physical layer
design; further, analyzing these qualities can offer useful
information for the design of indoor mm-wave networks.

In this section, RMS delay spreads and temporal statistics are
considered for conventional LOS and NLOS settings.

The RMS delay spread is derived from the second moment
of the power delay profile as follows [40]:

τm =

∑
i P(τi)τi∑
i P(τi)

(9)

τc =

∑
i P(τi)τ

2
i∑

i P(τi)
(10)

τrms =

√
τc − τ 2m (11)

where P(τi) is the received signal power (in mW) with respect
to the time delay τi, τm is the mean excess delay, and τc is the
second central moment of a PDP.

2) NUMBER OF TIME CLUSTERS
A cluster is described as a group of multipath compo-
nents (MPCs) closely spaced in the joint temporal-spatial
domain, with each cluster originating from a reflector or
scatterer in the environment—-according to current standard
documents, such as the 3GPP TR 38.901 channel model
[7], [42]. A temporal cluster (TC) comprisesMPCs that arrive
simultaneously from different time slots [43].

In the time domain, the partition is accomplished by defin-
ing a minimum inter-cluster time void interval (MTI). If the
excess time delays of two consecutively recorded MPCs dif-
fer by more than MTI, they belong to two different TCs.
These two MPCs are the last of the former TC’s MPCs
and the first of the latter TC’s MPCs. In an outdoor urban
microcell (UMi) case, for instance, 25 ns was applied as
MTI [43]. Meanwhile, 6 ns was taken as MTI for an indoor
conditions [28].

IV. RESULTS AND DISCUSSION
Radio wave propagation channel modeling parameters are
vital tools for planning more efficient next generation wire-
less communication systems. They can predict signal attenu-
ation while propagating over a link distance. In the corridor
scenario, the geometry and conductivity of the construction
materials guide the wave propagation from the Tx to the
Rx. The indoor corridor propagation environments cause
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multipath due to diffraction, reflections, shadowing effects,
and penetration loss, all of which have substantial effects
on the received signal power [44]. Owing to the wave
guide impacts and multipath reflection, the received signal
is regarded as the sum of the reflected and direct waves
from the Tx. Several existing path loss channel models are
based on free space, scattering, and reflection in a ray trac-
ing method over short distances of a few meters [45], [46].
In this study, we derive channel statistics based on extensive
radio wave measurements for indoor corridor environments
at 3.7 and 28 GHz frequency bands, and we propose an ANN
model for path loss prediction. To study the received power
loss over a link distance at each operating frequency, the FI
and CI free-space reference distance path loss models and the
proposed ANN model were used. The performances of these
models were compared with the measured path loss for each
horn and tracking antennas.

A. PATH LOSS MEASUREMENTS AND MODELS
1) PATH LOSS MEASUREMENTS AND MODELING FROM
HORN ANTENNAS
A horn antenna comprises a bell-shaped metal waveguide,
such as a horn, to guide radio wave propagation in a beam.
Horn antennas are primarily used as antennas at microwave
frequencies and a UHF of above 300 MHz. They provide a
high gain, ranging from 10 to 20 dB, and up to 25 dB in some
cases, with a directional radiation pattern.

In this study, we implemented a double-ridged waveguide
horn antenna and a standard gain horn antennawith frequency
bands of 2-18 GHz and 26-40 GHz, respectively. The mea-
surement campaigns were conducted at 3.7 and 28 GHz to
study wave propagation in indoor corridors and to launch
more accurate path loss models. Wave propagation analysis
was performed for the LOS and NLOS paths.

First, we analyzed the measurement data of 9 and
18 Rx LOS sites for the IT and main building corridors,
respectively—-with 32 azimuth orientations per Rx place for
a fixed Tx location at each of the operating frequency. Table 2
presents the regression parameters of the three models for
different scenarios.

For the CI free space reference path loss model, the
IT building horn antenna measurements provide PLEs of
1.53 and 2.976 for the LOS and NLOS paths, respectively,
at the 3.7 GHz frequency band. At 28 GHz, the PLEs are
1.78 and 3.896 for the LOS and NLOS paths, respectively.
For the LOS paths, the PLEs are less than 2 (the theoretical
free space value) for both the 3.7 and 28 GHz frequency
bands. This indicates that radio wave propagation in indoor
corridor environments provide constructive interference from
ceiling and floor bounce reflections. For NLOS, the PLEs
are 2.96 and 3.896 for the 3.7 and 28 GHz frequency bands,
respectively, which are considerably higher than those of LOS
PLEs. The higher PLE values at 28 GHz indicate greater
reflection and penetration losses from the wall, ceiling, and
floor. The shadowing standard deviation values at 3.7GHz are

8.65 and 3.071 for LOS and NLOS, respectively. At 28 GHz
the shadowing deviations values are 4.754 and 15.93 for
LOS and NLOS, respectively. This indicates that the 28 GHz
NLOS CI model provides a substantially larger shadow
fading standard deviation, which is approximately 16 dB,
demonstrating much higher received signal strength fluctu-
ations around the mean received power over all T-R separa-
tions. These results show that a greater path loss for 28 GHz
than that for the 3.7 GHz signal, and the NLOS shows more
path loss than the LOS. This is because the higher frequency
signals have shorter wavelengths. Thus, their energy is lost
due to collisions in the medium in which it travels.

Table 2 also lists the FI model parameters. It is observed
that α values differ from the free space path loss at 1 m
in LOS at 3.7 GHz (79.5 dB compared to the 43.76 dB
theoretical FSPL at 1 m) and at 28 GHz (70.2 dB compared
to the 61.4 dB theoretical FSPL at 1 m). This highlights the
FI model’s lack of insight when it comes to reconciling the
physical impacts of polarization and environmental degra-
dation with distance. Furthermore, in NLOS environments,
the slope values (β) is less than the free space (β = 2) for
both 3.7 and 28 GHz. This does not adequately predict the
intuitive reality that NLOS links suffer from significant loss
with distance than free space signals. A paucity of measure-
ments or data samples often leads to inaccuratemeasurements
[29], [32]. The parameters of the very sensitive FI model can
also be dramatically changed by post-processing procedures
that use different thresholding strategies [29].

In addition, Table 2 presents the slope and standard devi-
ation values of the ANN model for the IT and main building
in both the LOS and NLOS conditions. In comparison to the
CI reference and FI models, the signal fluctuation’s standard
deviation of the proposed ANN model around the average
path loss was less, making it more accurate in predicting
path losses. The ANN model improved the standard devia-
tions for 3.7 GHz NLOS by 724% and 10.64% compared
to CI and FI models, respectively. At 28 LOS IT building,
it improved by 4.68% and 9.76% compared to CI and FI
models, respectively. Further, the β values of the ANN are
closer to the free space theoretical value than the β values
of the FI model. Figs. 5,6,7,8 illustrate the scatter plots of
the LOS path loss from models and measurement campaigns
for the IT and main building indoor corridor scenarios. The
Figures show the path loss results comparisons among the
measured CI and FI, and proposed ANN models for the IT
and main building environments.

Fig. 9 shows the NLOS path loss plot at 3.7 GHz for
the IT building, which shows that the NLOS has more of
a path loss than LOS at the same frequency and building,
as shown in Fig. 5. It is observed that when the proposed
ANN model is compared with, and evaluated against the
existing models—-such as CI and FI—-it demonstrates good
performance and agrees well with the measured path losses
for both the LOS and NLOS conditions. As seen from the
figures, the path loss rises at the beginning owing to less
wave guiding effects of the reflected and diffracted waves
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FIGURE 5. 3.7 GHz LOS large scale path loss for IT building corridor with
horn antenna.

FIGURE 6. 3.7 GHz LOS large scale path loss for main building corridor
with horn antenna.

by the corridor. However, as the link separations increase,
the guided wave maintains the signal strength across the
corridor—-resulting in a lower increase in path loss. Initially,
for both the 3.7 GHz and 28 GHz bands, multipaths had no
significant effect on path loss because high-order modes were
considerably suppressed over short link lengths as shown in
Figs. 5,6,7,8.

Comparing the two buildings (IT and main), the main
building shows better performance than the IT building
at both the 3.7 and 28 GHz frequencies. For instance,
at 3.7 GHz, the maximum path loss for the IT building is
approximately 80 dB; whereas that for the main building
is approximately 100 dB. This is due to the corridor build-
ing dimensions, stronger constructive interferences, and that
better wave-guiding effects were experienced in the corridor
with higher dimensions. In general, the signal attenuatesmore
at a high band of 28 GHz than at a low band of 3.7 GHz, and
NLOS shows more path loss than LOS, as expected.

FIGURE 7. 28 GHz LOS large scale path loss for IT building corridor with
horn antenna.

FIGURE 8. 28 GHz LOS large scale path loss for main building corridor
with horn antenna.

2) PATH LOSS MEASUREMENTS AND MODELING USING
TRACKING ANTENNAS
When wireless channel measurement is performed with a
mm-wave omnidirectional antenna, it is difficult to obtain
sufficient gain—-therefore, a horn antenna with a specific
beam width must be applied. TA Engineering, Inc. has
adopted two types of horn antennas with beam widths of
18◦ to 22.5◦ or 45◦. In most mm-wave field measurement
systems, the directional steerable horn antenna is attached
to a rotator, but this does not provide sufficient valid data to
ensure accurate measurements. TA Engineering has arranged
the horn antenna in a circular shape with 8× 1, 8× 2, 16× 1,
and 16 × 2 antennas—-and a high-speed MW switch (20 ns)
was used to automatically select antennas and collect the fast
Fourier transformation (FFT)-based spectrum data from the
incoming signal. Therefore, in this study, we adopt tracking
antennas with 8 × 2 arrangements for the 28 GHz center
frequency.
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TABLE 2. Horn antennas regression parameters of the three path loss models over corridors at 3.7 and 28 GHz.

FIGURE 9. 3.7 GHz NLOS large scale path loss for IT building corridor with
horn antenna.

Multiple copies of the transmitted signal arrive at the Rx
by diverse pathways in a typical RF environment, resulting
in multipath components (MPCs). When compared to omni-
directional antenna, the Rx of directional tracking antenna
catches less MPCs due to its directionality. This minimizes
the delay spread, which is defined as the time difference
between the earliest and latest important MPCs arriving. The
narrower the beam, on the other hand, themore probable there
will be beam misalignment between the Rx and the Tx. As a
result, the number of captured MPCs at the Rx decreases,
affecting the delay spread.

Table 3 provides the CI, FI and ANN path loss models
for 16 receiver tracking antennas, where A stand for antenna
at 28 GHz measurement campaigns. Antenna 1 (A1) and best
antenna position give PLEs of 1.76 and 1.698, respectively.
This shows that the first and best antenna positions provide
constructive interference from the ceiling and floor bounce
reflections. For the rest of the antenna positions, the PLES
were greater than 2. This is due to the difficulty of correctly
aligning very thin beam tracking antennas to the boresight at
the T-R separation distances observed, indicating the sensi-
tivity of beam pointing in future mm-wave wireless systems.

FIGURE 10. 28 GHz best large scale path loss for IT building corridor with
tracking antenna.

Again, in comparison to the CI reference and float intercept
models, the signal fluctuation’s standard deviation of the
proposed ANN model around the average path loss was less
by 4.28 % than that of the CI reference and FI models.

Fig. 10 shows the path loss using the tracking antenna,
which clearly shows that the path loss from this Figure is less
than that of Figs. 7 and 8 for the same operating frequency
but different receiving antennas. This demonstrates that the
tracking antenna exhibits less path loss compared to the path
loss from the horn antenna owing to the effective beam point-
ing in the tracking antennas.

B. RMS DELAY SPREADS AND TC CLUSTER RESULTS
Fig. 11 illustrates the cumulative distribution functions (CDF)
for the RMS delay spreads of the PDPs measured at 28 GHz
for the IT building indoor corridor. It shows that, in both
the LOS and NLOS scenarios, 90% of the measured RMS
delay spreads are less than 30 ns. Because impediments in
NLOS places prevented or significantly attenuated the direct
channel, in allowing arrival of multipath at the receiver over
a longer propagation time span, NLOS places were shown to
have larger RMS delay spreads than LOS sites.
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TABLE 3. Tracking antennas regression parameters of the three path loss models over corridors at 28 GHz.

FIGURE 11. Cumulative distribution functions (CDF) against RMS delay
spreads.

The number of time clusters, or TCs, is determined by
splitting the measured PDPs according to MTI. The erlang
distribution is shown to be well fitted by the probability
density distribution of the number of TCs (X) at 28 GHz
for the LOS scenario with a 6 ns MTI in Fig.12. The Erlang
distribution’s probability density function is given as:

f (X ,K , λ) =
λkXK−1e−Xλ

(K − 1)!
(12)

FIGURE 12. Probability distribution against number of time cluster.

where the parameter λ is called the rate parameter, and the
parameter k is called the shape parameter.

V. CONCLUSION
This study is aimed at developing accurate channel models
by investigating the channel propagation characteristics at
3.7 and 28 GHz bands for indoor corridors. Radio propaga-
tion measurements and analysis were performed to explore
the characteristics of the indoor channels. Horn and tracking
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antennas were used to perform the LOS and NLOS received
signal power measurements. A supervised artificial neural
networkwas proposed to predict path loss in indoor scenarios.
Based on the experimental measurements, the CI, FI, and
ANN path loss models were analyzed and compared. In com-
parison to the CI reference and FI models, the signal fluctua-
tion’s standard deviation of the proposed ANNmodel around
the average path loss was less, making it more accurate in
predicting path loss. For tracking antennas, antenna 1 and
the best antenna position produced PLEs of 1.76 and 1.698,
respectively. This shows that the first and best antenna posi-
tions provide constructive interference from the ceiling and
floor bounce reflections. For the remaining antenna positions,
the PLEs were greater than 2. This is due to the difficulty
of accurately aligning very thin beam tracking antennas to
their boresights at the Tx-Rx separation distances observed,
indicating the sensitivity of beam pointing in futuremm-wave
wireless systems. In all measurement settings, path loss result
comparisons among the measured CI, FI, and proposed ANN
models resulted in the proposed model outperforming the CI
and FI path loss models. We conducted a detailed analysis of
the channel characteristics—-including path loss, RMS delay
spread, and time cluster. In general, the signal attenuatesmore
at a high band of 28 GHz than at a low band of 3.7 GHz,
and NLOS shows more path loss than LOS, as expected. The
tracking antenna exhibits less path loss than the horn antenna.
The study of micro- and mm-wave propagation characteris-
tics will aid in the comprehension of radio channels and the
development of mm-wave communication systems.
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