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ABSTRACT Localization is one of the major problems in mobile wireless sensor networks, since it provides
the location of an event occurrence. This paper evaluates the performance of range-based localization
algorithms: the multilateration algorithm, the weighted multilateration algorithm, the maximum likelihood
algorithm and the multilateration algorithm with a correcting factor. We also propose the weighted multi-
lateration algorithm with a correcting factor through which the localization error is decreased through the
addition of a factor that corrects the distance between the node of interest and the reference nodes. Our
proposal includes the analysis of noise in the environment due to the time of arrival and the analysis of node
of interest’s mobility in the calculation of the correlation matrix of the weighted multilateration algorithm
and the calculation of the correcting factor. The localization algorithms analyzed in this study are evaluated
in a single-hop scenario and a multi-hop scenario considering a well-defined distribution of the reference
nodes and a random distribution of these in both scenarios. The results we obtained varying the number of
reference nodes and noise proportion prove that the algorithm we propose yields a better performance than
the other analyzed algorithms do, according to the normalized root mean squared error.

INDEX TERMS MWSNs, ToA, reference nodes, NOI, reconfigurable network, ad-hoc networks, localiza-
tion, mobility patterns.

I. INTRODUCTION
Mobile Wireless Sensor Networks (MWSNs) are currently
playing a very important role in communication networks [1],
since they are utilized in a large number of applications such
as tracking [2], [3], the Internet of Things (IoT) [4], real-
time location [5], [6], natural resources research [7], power
consumption systems [8], monitoring of physical environ-
ments [6], [9]–[12], traffic monitoring [13], industry and
agriculture [7], healthcare [6], prevention of natural disas-
ters [12], etc. A MWSN consists of a node network spatially
distributed over a monitoring area, where the nodes can be
integrated into vehicles or robots with motion in a given
environment [14]. Nodes are small low-cost devices with low
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processing capacity and low power consumption. Some of
their tasks include the collection, processing and transmission
of information; they also carry out cooperation with other
nodes [1], [5].

Localization is one of the main problems in Wireless Sen-
sor Networks (WSNs), since it provides useful information
about the location of an event. The localization of infor-
mation is useful for a large number of applications such as
routing [3], [6], [15], health surveillance [1], [6], battlefield
surveillance [6], [9]–[11], underwater environments [16],
target tracking [1], [3], logistics, power consumption [8],
spatial querying [3], load balancing [17], rescue opera-
tions [6], [18], [19], etc. In reconfigurable networks, the
information collected by a node is transmitted through mul-
tiple nodes (through the use of multiple hops) until it
reaches the access points [20], [21]. In ad-hoc networks the
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nodes between the Node of Interest (NOI) and the Ref-
erence Nodes (RNs) help set the communication between
the NOI and its respective RNs to estimate the NOI’s
location [20], [21]. The RNs are nodes whose position is
known; this is accomplished by either equipping them with
a Global Positioning System (GPS), or distributing them in
strategic places with a known location. GPS is a technology
that can achieve the estimation of a node, but due to the high
cost, indoor inefficiency and high power consumption of the
system, it is not the best fit [22]. Besides the GPS issue,
cell phone and WiFi systems do not perform well in certain
scenarios such as highlands, underground and disaster zones
where satellite signals or signals from the mobile infrastruc-
ture cannot be received [23].

At present, there is a great variety of localization algo-
rithms that do not consider environments with mobile nodes.
In localization with static nodes, the NOI is located only once.
In contrast, in aMWSN theNOI is continuously localized due
to its own mobility [24]. The node’s mobility in a MWSN
implies greater energy consumption, a shorter lifetime of
the node and an increased communication cost [24]. Some
advantages of MWSNs over a WSN with static nodes are
greater coverage in the network, a greater number of nodes
neighboring the NOI, better network security and increased
network connectivity [24].

Most of the localization algorithms in the literature
use techniques based on Received Signal Strength (RSS)
to estimate the distance between two nodes, because the
implementation or deployment of hardware is relatively
straightforward. Also, the use of RSS represents low com-
putational complexity. However, the use of RSS in local-
ization exhibits low accuracy in the location of the NOI
due mainly to signal propagation issues. There are appli-
cations that demand greater localization accuracy such as
vehicular networks, [25], underwater environments, [16], 3D
WSN, [26], among many others. Thus, the contribution of
this work focuses on increasing the location accuracy through
distance estimation techniques using Time of Arrival (ToA),
and on integrating a correcting factor in order to decrease the
error of the estimated distance used to determine the location
of the NOI.

In MWSNs, there are three mobility scenarios [24], [27]:
(1) static RNs and moving sensor nodes, (2) static sensor
nodes and moving RNs and (3) moving RNs and moving
sensor nodes. This study uses the first mobility scenario,
where we assume that the RNs are static and their positions
are known. Additionally, it is assumed that the localization of
the sensor nodes will be done only once. The performance
of the range-based algorithms is evaluated under this sce-
nario, using techniques such as the Multilateration Algorithm
(MA), Weighted Multilateration Algorithm (WMA), Maxi-
mum Likelihood Algorithm (MLA) and the MA with a Cor-
recting Factor (CF), i.e., (MA CF). The proposed WMA CF
algorithm is also presented; it consists of theWMA algorithm
and the calculation of the correcting factor of the distance
separating the NOI from its respective RNs. The correcting

factor improves the accuracy of the NOI’s localization, which
is why our proposed WMA CF algorithm yields a better
performance than the other algorithms analyzed in different
proposed evaluation scenarios. We use ToA to determine
the distance separating the NOI from the RNs. Furthermore,
we consider that the estimated distance separating the NOI
from the RNs is affected by a random variable with beta
distribution due to the NOI’s mobility, which is obtained
through several simulations of the NOI motion varying its
speed and direction at different points of time. The local-
ization algorithms analyzed in this study are evaluated in a
single-hop and multi-hop scenario through different RN dis-
tributions, in other words, a fixed distribution where the RNs
are distributed by means of a solid geometry and a random
RN distribution. The algorithms analyzed in this study are
evaluated under the normalized Root Mean Squared Error
(RMSE) performance metric. The proposed algorithm, like
the rest of the localization algorithms analyzed in this work,
presents low performance in terms of normalized RMSE in
scenarios where there is a low density of nodes in the network,
low network coverage, a small number of reference nodes
(less than 3), and an irregular geometrical distribution of the
reference nodes. All the algorithms analyzed have been eval-
uated under the same conditions where 100% connectivity of
the nodes is guaranteed, with at least 3 RNs.

The contributions of this paper are: 1) Performance assess-
ment of the localization algorithms analyzed based on ToA
in terms of normalized RMSE in single-hop and multi-hop
scenarios. 2) Evaluation of the location algorithms analyzed
on a network with mobile nodes considering that the RNs
are static and the NOI is in motion. 3) Estimation of the
probability density function (pdf) of the estimated distance
between the mobile NOI and the respective RNs. 4) The pro-
posed range-based localization algorithm using ToA together
with correcting factor to decrease the error of the estimated
distance between the NOI and the respective RNs.

The rest of the article is organized as follows: Section II
presents the work related to the mobility and classification of
the localization algorithms in MWSNs; Section III describes
the localization problem in a network with mobile nodes;
Section IV presents the analysis of the localization algorithms
MA, WMA and MLA analyzed in this study; subsequently,
Section V presents the correcting factor analysis of the dis-
tance between two nodes in single-hop and multi-hop sce-
narios; Section VI presents the analysis of the results of the
analyzed localization algorithms, and finally we present the
conclusions drawn from this study.

II. RELATED WORK
Nowadays MWSNs are considered in large-scale applica-
tions, which consist of a great number of sensor nodes and
sinks wirelessly connected through an arbitrary topology [1].
Therefore, mobility plays an important role in MWSNs and
it can be applied in all the MWSN sensors depending on
the application [1], [3]. Mobility in a MWSN is divided into
three categories: random mobility, predictable mobility and
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controlled mobility [3]. In random mobility, mobile devices
move freely and randomly over an interest area with no
constraint. In the second category, the trajectory of the mobile
device is known and cannot be altered. In the third category,
related to controlled mobility, the mobile device moves to a
known destination following a mobility pattern for a common
aim, usually exploration and localization. Nowadays there are
many proposals that consider mobility models that predict the
motion of a sensor node [3]. In MWSNs, mobility models
predict the trajectory of a moving sensor node [1], [28].
Mobility models describe the speed changes, acceleration and
position of a sensor node with respect to time; and they are
often used to investigate new proposals of communication
and navigation techniques.

Mobility patterns are classified as trace models and syntac-
tic models [1], [29]. Trace models are deterministic mobility
patterns that can be observed in real life. In WSNs, trace
models cannot be modeled if the traces have not been formed.
Therefore, in MWSNs it is necessary to use syntactic mod-
els to describe the sensor node’s mobility pattern. Syntactic
models describe the sensor node’s realistic movement with-
out considering traces. Syntactic models are classified as
entity models and group mobility models [1], [29]. Accord-
ing to the specific features of the syntactic models, these
can be classified as random models, time-dependent mod-
els, space-dependent models and models with geographic
constraints. Some mobility patterns based on entity mobil-
ity are random way point, random walk, random Gauss-
Markov, city section, random direction, boundless simulation
area and the probabilistic version of random walk [1], [30].
The mobility patterns based on group mobility are expo-
nential correlated random, column mobility model, nomadic
community, pursue mobility model, Reference Point Group
Mobility (RPGM), drift group and group force [1], [30].

In MWSNs, localization algorithms are classified into
two broad groups: range-free and range-based [31], [32].
The range-based algorithms estimate the separation distance
between the RNs and the NOI by means of a distance-
estimation technique, such as ToA, RSS, Time Difference of
Arrival (TDoA) or Angle of Arrival (AoA) [21]. The range-
free algorithms use the connectivity information between
the nodes to estimate the separation distance between two
nodes [21], [33]. The range-based algorithms achieve a higher
accuracy in the localization of the NOI than the range-free
algorithms, but the range-free algorithms require extra hard-
ware in the NOI or the RNs for the estimation [21], [33].
In many studies RSS is used to estimate the distance between
the RNs and the NOI, because RSS can easily be imple-
mented in hardware, but the cost is a lower accuracy than
that obtained when ToA, TDoA and AoA techniques are
used [21], [34]. ToA requires perfect synchronization, TDoA
has a limited coverage and AoA involves computationally
expensive hardware and it also requires an antenna array [21].

Some range-free localization algorithms are the cen-
troid, and weighted centroid, [21]; Distance Vector-Hop
(DV-Hop), Improved DV-Hop (IDV-Hop), and Weighted

DV-Hop (WDV-Hop), [33]; Approximate Point in Trian-
gle (APIT) [35], [36]; circular intersection, rectangular
and hexagonal, [37], among others. In MWSNs, most of
the range-free localization algorithms use the Sequential
Monte Carlo (SMC) method to estimate the NOI’s posi-
tion [24], [38]. The Monte Carlo method uses the probability
density function (pdf) to estimate the NOI’s position. This
method estimates the NOI in three stages: initialization, pre-
diction and filtering [38]. In [12], [39], the authors propose
the Weighted Monte Carlo Localization algorithm (WMCL),
which is based on the SMC method [38]. This proposal
improves the accuracy of the NOI localization compared to
that of the DV-Hop [33] and SMC [38] methods. In [40]
the improved Probabilistic Multilateration Algorithm (PMA)
achieves better normalized RMSE than the localization algo-
rithms analyzed when the number of the RNs and the pro-
portion of noise vary for different configuration topologies
of the RNs in a single-hop and multi-hop network scenario.
The improved PMA [40] has better normalized RMSE per-
formance, since it computes the NOI’s localization based on
a correlation matrix that considers the noisy environment.
Besides, this method considers a constant parameter called
the damping factor, which improves the convergence in the
estimation of the NOI’s position, providing the solution that
minimizes the localization error. TheWMCLmethod reduces
the sampling area where the NOI is found by using the
bounded box method [38] and it improves the localization
efficiency of the SMC method by using the position infor-
mation of the RNs’ neighboring nodes. The hop distance
method uses the average distance per hop between twoRNs to
estimate the position of the NOI [38]. Three stages are carried
out in this method to estimate the NOI’s position: broadcast,
calculation of the distance matrix, and localization estima-
tion [38]. The disadvantage of the hop distance method is
that the RNs must be evenly distributed throughout the whole
network to reach high accuracy in the estimation of the NOI’s
position. In [38] the fingerprint technique is used to estimate
the NOI’s position; the fingerprint technique performs the
NOI localization in two stages: an offline stage and an online
stage.

Within the literature related to range-based algorithms
we can mention DV-Distance [41], multilateration [42],
Multidimensional-Scaling (MDS) [43], the hyperbolic posi-
tioning algorithm [21], the weighted hyperbolic positioning
algorithm [21], [33], the circular and weighted circular posi-
tioning algorithm [21], Weighted Least-Squares (WLS) mul-
tilateration [21], Least-Squares DV-Hop (LSDV-Hop) [44],
vertex projection [20], vertex projection with correcting fac-
tor and maximum likelihood [20]. In MWSNs Bergamo and
Mazzimi [45] propose a range-based algorithm that uses the
information of the positions of the RNs placed on two corners
of the same side of a rectangular space. The mobile NOI mea-
sures the RSS of the RNs and estimates their position through
triangulation. The localization accuracy of this algorithm is
affected by the fading away of the signals and mobility of
the NOI. Due to the RNs remaining static, the localization
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of the mobile NOI is limited, given that the RSS decreases
as the NOI distances itself from its respective RNs. Therefore,
the results of the estimated distance between the mobile NOI
and its respective RNs are vague [45]. In [24], the authors
propose the dead reckoning algorithm, which estimates the
NOI’s position in discrete time intervals called checkpoints.
The dead reckoning carries out the estimation of the NOI
localization in two stages: initialization and sequent. In the
initialization phase, the NOI is localized by means of trilat-
eration. In the next phase, only two RNs are used to localize
the NOI. In this phase, two possible NOI localizations are
obtained through Bézout’s theorem [46].

One of the problems with the DV-Hop algorithm is the
increase in cumulative error of the average distance per hop
when the number of hops in the network increases. In con-
trast, the APIT method involves a high computational cost
on the network [33], and the MDS algorithm also has a high
computational cost, because it is a centralized algorithm. The
classic multilateration algorithm and the hyperbolic algo-
rithm solve the localization problem by a Least Squares (LS)
estimator, but do not involve the noise factor in estimating the
position of the NOI. As a consequence, these algorithms can
present significant errors in the estimated position of the NOI
in two situations: the first for scenarios where the noise level
is high, and the second for scenarios with a small number
of RNs that are also distributed with an irregular geometry.
Additionally, in situations where the distances between the
NOI and RNs are not available, the multilateration algorithm
suffers from problems such as uncertainty, inconsistency, and
ambiguity [47]. WLS multilateration solves the localization
problem with a WLS estimator but involves a higher com-
putational cost than the classic multilateration algorithm and
weighted hyperbolic positioning algorithm, the latter being
an iterative algorithm that calculates the position of the NOI
with the minimum localization error [21]. The Monte Carlo
method requires many iterations and an excessive computa-
tional time during the sample generation stage [24].

In [24], the authors propose two classes of localization
algorithms for MWSNs: adaptive and predictive. The adap-
tive localization algorithms carry out the localization of the
NOI at constant time intervals based on the NOI’s movement,
where the estimation of the NOI’s current position is obtained
from previous estimations. This method allows the NOI to
increase its localization frequency when it moves rapidly
or to reduce its localization frequency when its movement
is sluggish. The predictive algorithms estimate the NOI’s
movement pattern and predict its future movement. The main
aim of this method is to consider the frequency of the NOI’s
localization instead of the localization algorithm.

The authors in [48] propose the localization scheme called
Vehicles joint UAVs Topology Discovery (VUTD) for IoT
applications. This scheme finds the physical topology of
a network with low cost and high accuracy. Experimen-
tal results show that the VUTD performs better than the
VTD algorithm in terms of the average localization error
and localization ratio. Compared to the UTD algorithm, the

VUTD localization scheme reduces the cost of localization
discovery by 77.7%. In [49], a classification of range-free
and range-based location techniques in underwater environ-
ments (UWSN) is presented together with the main weak-
nesses and strengths of the location algorithms analyzed.
In contrast, the authors in [50] propose the DEIDV-Hop algo-
rithm, which decreases the error of the average distance per
network hop. Experimental results show that this algorithm
has lower average localization error with more stability and
convergence speed than the DV-Hop, PSO, and GSODV-
Hop algorithms for different network topologies. In [51]
a particle filtering-based localization algorithm is proposed
that achieves high target tracking accuracy and a favorable
balance with respect to network accuracy and consumption
compared to other algorithms analyzed in the study. Refer-
ence [52] proposes an improvement of the DV-Hop algo-
rithm based on an online sequential position computation
and the optimized calculation of the average distance per
hop. Their results show that the online sequential DV-Hop
method performs better in terms of localization error than
DV-Hop, CC-DV-Hop, and the Parallel Efficient Projection
Algorithm (PEPA) for various random WSN topologies.
Reference [53] introduces the proposed weighting DV-Hop
localization algorithm using modified artificial bee colony
optimization, which has less node localization error than the
DV-Hop AW, HW, and EW algorithms. Previous propos-
als [48], [50], [52], [53] use RSS and node connectivity infor-
mation to estimate the distance between the NOI and RNs.

The localization algorithms evaluated in this article use
ToA, resulting in greater NOI localization accuracy in terms
of normalized RMSE than that of other localization pro-
posals based on network connectivity information and RSS.
However, estimating the ToA requires greater hardware
complexity.

Reference [33] of the manuscript presents a compari-
son of localization algorithms MA (Hyperbolic Positioning
Algorithm) and WMA (Weighted Hyperbolic Positioning
Algorithm), where WMA shows better performance based
on metrics of accuracy calculated by the MSE and precision
based on the localization error distribution than that shown
by MA. Additionally, reference [20] presents a performance
comparison in terms of normalized RMSE of the Vertex
Projection Algorithm (VPA), theMaximum Likelihood (ML)
and the proposed VPA with correcting factor where the pro-
posedmethod shows better performance than that of VPA and
ML algorithm for single and multi-hop scenarios.

III. MODEL DESCRIPTION
This section describes the localization scenario in MWSNs,
where it is assumed that the RNs are static with known
positions and the NOI is moving. In this scenario, localization
is described based on a reference coordinate system defined
by the RNs, and sensors whose positions are unknown and
will be determined by applying a localization algorithm.
The algorithms analyzed in this work are range-based and
use the ToA to increase localization accuracy. However,

161940 VOLUME 9, 2021



J. Mass-Sanchez et al.: Weighted Multilateration Algorithm With Correcting Factor for MWSNs

FIGURE 1. Mobility of NOI Z with respect to RN A0.

in mobile scenarios, it is very important to estimate the dis-
tance between the NOI and RNs, because from that estima-
tion, the localization algorithms are executed. Thus, the more
error there is in estimating the distance between the NOI and
the RNs, the greater the error of the NOI localization. Thus,
different new ideas need to produce a localization algorithm
to help in the reduction of the error of the estimated distance.
This work presents an algorithm that calculates a correcting
factor in estimating the distance between the NOI and RNs.

Figure 1(a) shows the mobility scenario in a WSN of
the NOI identified as node Z with coordinates (xτ , yτ ) in a
discrete instant of time τ = 0, 1, 2, . . . , t with respect to
an RN A0 with a known position (xA, yA). In this scenario,
the movement of NOI Z is based on the random way point
mobility pattern. In Figure 1(b) we can observe the transition
of NOI Z in an instant of time t-1 to time t where we can
obtain the mathematical model of the separation distance Dt
between RN A0 and mobile node Z in an instant of time t .
The elapsed distance rt−1 by NOI Z is obtained through the
relation rt−1 = vt−11T t−1, where vt−1 ∼ U (0,Vmax), i.e.,
uniformly distributed in the interval (0,Vmax) and 1T t−1 is
the elapsed time from instant t − 1 to instant t .

The separation distance Dt in the instant t between the RN
A0 and mobile node Z is given by

Dt =
√
[xA − xt ]2 + [yA − yt ]2. (1)

Replacing the movement equations xt = xt−1 +
rt−1 cos (θt−1) and yt = yt−1 + rt−1 sin (θt−1) of mobile

FIGURE 2. (a) Pdf of Dt and (b) Q-Q plot beta for Vmax = 3 m/s.

FIGURE 3. Q-Q plot beta for (a) Vmax = 5 m/s and (b) Vmax = 10 m/s.

node Z, where θt−1 ∼ U (0, 2π), the distance Dt is given by

Dt =

√√√√[
xA − xt−1 − vt−11T t−1 cos (θt−1)

]2
+
[
yA − yt−1 − vt−11T t−1 sin (θt−1)

]2 . (2)

Note that Dt depends on two random variables, velocity
vt−1 ∼ U (0,Vmax) and direction θt−1 ∼ U (0, 2π), that
are assumed to be independent. Since it is not possible to
obtain exactly the statistics of parameter Dt , we carried out
some simulations of the movement of NOI Z with respect to
RN A0 for different speeds of NOI Z. The results obtained
in Figures 2 and 3 show an approximation of the pdf of the
separation distance Dt .
Figure 2(a) shows the obtained pdf of the parameter Dt

normalized with respect to the maximum possible distance
between two nodes over an area of 100 m x 100 m, which
is 141.42 m, and the pdf of a beta distribution by means of
a red curve, where it can be concluded that both pdfs are
very similar. In other tests where the parameter Dt is not
normalized, we obtain a pdf of this parameter that is very
similar to the beta pdf. Figure 2(b) displays a Q-Q (quantile-
quantile) plot with the beta distribution, where the obtained
pdf closely resembles the beta distribution. Figure 3 displays
a similar behavior for maximum speeds of mobile node Z of
5m/s and 10m/s. Therefore, we conclude that the magnitude
of the speed of mobile node Z does not change the type of the
pdf of the separation distance Dt since the results obtained
show that the obtained pdf is of the beta type.

Hence, in a mobility environment we assume that the
individual distance between NOI Z and each one of the

VOLUME 9, 2021 161941



J. Mass-Sanchez et al.: Weighted Multilateration Algorithm With Correcting Factor for MWSNs

RNs, which are necessary to estimate the position of NOI
Z, presents a beta distribution with parameters α and β,
i.e., Dt ∼ Beta(α, β). Distance Dt is normalized with respect
to the maximum possible separation distance between NOI
Z and RN A0, which is 141.42 m considering an area of
100 m × 100 m. Parameters α and β define the shape of
the pdf with beta distribution. In the simulations performed,
in order to obtain the pdf with beta distribution as the speed
of the NOI is varied, one can observe that the pdf with beta
distribution is similar in all the scenarios, i.e., for maximum
speeds of mobile node Z of 3 m/s, 5 m/s and 10 m/s.
Using parameters α and β, we can estimate the distance
between the NOI and the RNs, which depends on the speed
and the direction of the NOI. By definition the pdf of a beta
distribution function is given by

fX (x) =
1

B (α, β)
xα−1(1− x)β−1, 0 < x < 1, (3)

where B (α, β) =
∫ 1
0 x

α−1(1− x)β−1dx. By getting the
parameters α and β, we can determine the mean and variance
of a random variable X through the following equations

E [X ] =
α

α + β
, (4)

Var [X ] =
αβ

(α + β)2 (α + β + 1)
. (5)

Assuming the random variable X with beta distribution is
defined over a range 0 < x < xm, then its pdf is defined by
the equation

fX (x) =
1

xmB (α, β)

(
x
xm

)α−1 (
1−

x
xm

)β−1
,

0 < x < xm. (6)

Therefore, the statistics of the random variable X with beta
distribution are calculated through

E [X ] =
αxm
α + β

, (7)

Var [X ] =
αβxm

(α + β)2 (α + β + 1)
. (8)

By means of equations (7)-(8) the statistical parameters of
the random variable X with beta distribution are weighted by
the scaling factor xm.
We can observe that in the instant of time τ = t , the pdf

of the separation distance Dt between RN A0 and NOI Z
presents a beta type of distribution with constant parameters
α and β. Therefore, it is not necessary to know the velocity
parameters vt−1, direction θt−1 and elapsed time vt−11T t−1
of NOI Z to estimate the separation distance Dt between
RN A0 and NOI Z, as observed in equation (2), since these
parameters were used to estimate the beta-type pdf with
constant parameters α and β. Therefore, the localization of
NOI Z at the instant of time τ = t is independent of other
instants of time, that is, τ = 0, 1, 2, . . . , t − 1. Without
loss of generality, the position of NOI Z at every instant
of time t is given by the coordinates (x, y). We consider a

network with RNs A0,B0 and C0 with known coordinates
(xA, yA), (xB, yB) and (xC , yC ) and NOI Z with coordinates
(x, y) as shown in Figure 4. Assuming that the Euclidean
distances d (A0,Z) , d (B0,Z) and d (C0,Z) between NOI
Z and the respective RNs are known, we can estimate the
position of NOI Z through trilateration. However, due to
the limitations of the network coverage, one node does not
provide enough power to achieve a direct link to all the nodes
in the network; that is to say, the connection between the
RNs and NOI Z is through an array of hops in the network.
For example, the connection of RN A0 to NOI Z is through
nA hops with (1 +nA) nodes, where the route is formed by
a node array RAZ = {A0, A1, A2, . . . ,AnA−1, Z}, and A1,
A2, . . . ,AnA−1 are the intermediate nodes of the route traced
from RN A0 to NOI Z. The distance d (A0,Z) is formed by
the concatenation of multiple long hops d

(
Aj−1,Aj

)
, where

Aj for j = 2, 3, . . . , nA−1 is the intermediate node of the
route formed from RN A0 to NOI Z. In a real scenario,
the distance d

(
Aj−1,Aj

)
for every j can be estimated using

ToA [17]. In this scenario, it is assumed that the estimated
distance d

(
Aj−1,Aj

)
for every j has a measurement error.

The measurement error of each one of the hops in the net-
work is considered an exponential random variable εAj with
parameter λAj for every j. Because every random variable εAj
for every j is independent and identically distributed, it is
assumed that λAj = λA for every j.
Taking as reference RN A0, the length of a hop with a

measurement error is calculated through D
(
Aj−1,Aj

)
=

d
(
Aj−1,Aj

)
+ εAj , for j = 1, 2, 3, . . . , nA − 1. Therefore,

the estimated distance δA from RN A0 to NOI Z is given by

δA =

nA−1∑
j=1

D
(
Aj−1,Aj

)
+ D

(
AnA−1,Z

)
, (9)

where D
(
AnA−1,Z

)
= d

(
AnA−1,Z

)
+ εAnA ; the term given

by εAnA ∼ exp
(
λAnA

)
is the random variable with expo-

nential pdf that simulates the error in the estimation of the
distance, and the estimated distanceD

(
AnA−1,Z

)
is obtained

as ameasurement of the real distance d
(
AnA−1,Z

)
from node

AnA−1 to NOI Z. Therefore, the estimated distance δA from
RN A0 to NOI Z is calculated through

δA =

nA−1∑
j=1

d
(
Aj−1,Aj

)
+ d

(
AnA−1,Z

)
+ εA (10)

where εA =
∑nA

j=1 εAj represents the accrued error of all
the hops of the route from RN A0 to NOI Z because of the
communication channel. The random variable εA presents an
n-Erlang-type or gamma-type pdf. Considering that NOI Z is
to be found in motion, then the distance δA from RN A0 to
NOI Z is affected by a beta-type random variable ϕA due to
the movement of NOI Z. Hence, the distance δA from RN A0
to NOI Z can be estimated using

δA =

nA−1∑
j=1

d
(
Aj−1,Aj

)
+ d

(
AnA−1,Z

)
+ εA + ϕA. (11)
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FIGURE 4. Localization scenario with 3 RNs.

The beta random variable ϕA is weighted by a factor λAZ
proportional to the real separation distance between NOI Z
and RN A0, that is, 0 < ϕA < 1/λAZ . In equation (11) it
is assumed that the random variables εA and ϕA are inde-
pendent. We can observe in equation (11) that the param-
eter δA represents the estimated distance between RN A0
and NOI Z obtained at the instant of time τ = t .
Since the localization of NOI Z is independent at differ-
ent points in time τ = 1, 2, 3, . . . , t , then equation (11)
can be used to estimate the position of NOI Z for all time
instants.

IV. LOCALIZATION ALGORITHMS ANALYZED
This section presents the analysis of the localization algo-
rithmsMA,MLA andWMA, considering the NOI’s mobility
in the one-hop and multi-hop scenarios.

A. MULTILATERATION ALGORITHM (MA)
Taking Figure 4 as our reference, we can estimate the
position of NOI Z by means of the trilateration of RNs
A0, B0 and C0. However, when there are four or more
RNs, the multilateration technique is used to estimate the
position (x, y) of NOI Z [42]. In a network with N
RNs, the estimated distance δi between mobile node Z
and RN i is calculated using the Pythagorean theorem,
as follows

δ2i = (xi − x̃)
2
+ (yi − ỹ)

2 , i = 1, 2, . . . ,N . (12)

where (xi, yi) are the coordinates of RN i and (x̃, ỹ) is the esti-
mated position of NOI Z. Equation (12) represents a nonlin-
ear problem. By performing the subtraction δ2i −δ

2
1 for i 6= 1,

(12) becomes a linear problem, which can be solved with a
LS estimator to get

2x̃xi + 2ỹyi − 2x̃x1 − 2ỹy1
= x2i + y

2
i − x

2
1 − y

2
1 − δ

2
i + δ

2
1 . (13)

By obtaining all the equations in (13) for i =

2, 3, . . . ,N , and expressing them in matrix form [42],

we obtain x2 − x1 y2 − y1
...

...

xN − x1 yN − y1

[ x̃ỹ
]

=
1
2

 x22 + y
2
2 − x

2
1 − y

2
1 − δ

2
2 + δ

2
1

...

x2N + y
2
N − x

2
1 − y

2
1 − δ

2
N + δ

2
1

 . (14)

Then, the linear problem can be formulated by

Hp̃ = b. (15)

where H =

 x2 − x1 y2 − y1
...

...

xN − x1 yN − y1

 , p̃ = [
x̃
ỹ

]
and b is a

random vector given by

b =
1
2

 x22 + y
2
2 − x

2
1 − y

2
1 − δ

2
2 + δ

2
1

...

x2N + y
2
N − x

2
1 − y

2
1 − δ

2
N + δ

2
1

 . (16)

Finally, the position p̃ of NOI Z is calculated through the
following expression

p̃ = (HTH)
−1

HTb. (17)

Equation (17) shows that the position p̃ of NOI Z is
obtained through the LS estimator.

B. MAXIMUM LIKELIHOOD ALGORITHM (MLA)
Taking Figure 4 as our reference and using the same nota-
tion as in equation (11), we can get the CDF (Cumulative
Distribution Function) of the estimated distance δA given by
FδA (z) = Pr(δA ≤ v) [20], by replacing (11) in FδA (v)
to obtain

FδA (v) = Pr (εA + ϕA ≤ v− d (A0,Z)) ,

= FεA+ϕA (v− d (A0,Z)) . (18)

The pdf of the estimated distance δA is given by

fδA (v) = fεA+ϕA (v− d (A0,Z)) . (19)

In equation (19) we can observe that the pdf of the esti-
mated distance δA is the pdf of the sum of the random vari-
ables εA and ϕA; in other words, the pdf of δA is the resulting
convolution of the pdfs of the random variables εA and ϕA,
n-Erlang type and beta type, respectively. The resulting pdf
of the convolution of the pdfs of the random variables εA and
ϕA is given by

fδA (v) =
∫
∞

−∞

fϕA (τ ) fεA (v− d (A0,Z)− τ) dτ. (20)

where the pdfs fϕA (τ ) and fεA (v− d (A0,Z)− τ) are
given by

fϕA (τ )

=
λAZ (τλAZ )

α−1 (1− τλAZ )β−1

B (α, β)
,

0 < τ < µAZ , (21)
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fεA (v− d (A0,Z)− τ)

=
λ
nA
A e
−λA(v−d(A0,Z)−τ)

(nA − 1)!
·

(v− d (A0,Z)− τ)nA−1 , v, λA ≥ 0, (22)

whereµAZ = 1/λAZ . Equation (20) is the pdf of the estimated
distance δA, as the convolution of the beta and n-Erlang-type
pdfs. It is assumed that the random variables εA and ϕA are
independent and therefore using (21) and (22), we get the pdf
of the estimated distance δA, obtained through the likelihood
function given by

fL (δA)
= fεA (v− d (A0,Z)) fϕA (v− d (A0,Z)) , (23)
fL (δA)

=
λ
nA
A e
−λA[δA−d(A0,Z)] [δA − d (A0,Z)]nA−1

(nA − 1)!
·

λαAZ (δA−d (A0,Z))α−1 (1−λAZ [δA − d (A0,Z)])β−1

B (α, β)
.

(24)

By applying the log-likelihood in equation (24), we obtain

ln fL (δA) = ln
(

λ
nA
A λ

α
AZ

B (α, β) (nA − 1)!

)
− λA [δA − d (A0,Z)]

+ (nA − 1) ln [δA − d (A0,Z)]+ (α − 1)
× ln [δA − d (A0,Z)]
+ (β − 1) ln [1− λAZ (δA − d (A0,Z))] . (25)

By maximizing the log-likelihood function of
equation (25) with respect to δA, we get
∂ln fL (δA)
∂δA

= −λA +
nA − 1

δA − d (A0,Z)
+

α − 1
δA − d (A0,Z)

−
λAZ (β − 1)

1− λAZ (δA − d (A0,Z))
= 0, (26)

β − 1
δA − d (A0,Z)− 1/λAZ

+
nA + α − 2

δA − d (A0,Z)
= λA.

(27)

From equation (27) we obtain a second-order equation,
whose solution is given by

δA = d (A0,Z)

+

kA ±
√
k2A − 4

(
λA
/
λAZ

)
(nA + α − 2)

2λA
, (28)

where kA = nA + α + β − 3 + λA/λAZ is a constant factor.
In equation (28) we obtain two solutions of the estimated
distance δA, where the minor solution is taken since it pro-
vides the maximum value of the likelihood function fL (δA).
Expressing the distance d (A0,Z) in terms of number of hops,
the distance δA is expressed by

δA =

nA−1∑
j=1

d
(
Aj−1,Aj

)
+ d

(
AnA−1,Z

)
+

kA
2λA

−

√
k2A − 4 (λA/λAZ ) (nA + α − 2)

2λA
. (29)

By solving the term d
(
AnA−1,Z

)
in equation (29),

we obtain

d
(
AnA−1,Z

)
= δA −

nA−1∑
j=1

d
(
Aj−1,Aj

)
−

kA
2λA

+

√
k2A − 4 (λA/λAZ ) (nA + α − 2)

2λA
. (30)

Taking Figure 4 as our reference, we can estimate the posi-
tion of NOIZ through the trilateration of nodesAnA−1,BnB−1
and CnC−1 closer to NOI Z, i.e., the nodes neighboring
NOI Z. The Euclidean distance between mobile node Z and
its respective neighboring nodes AnA−1,BnB−1 and CnC−1 is
calculated through the Pythagoras theorem, as follows

d
(
AnA−1,Z

)2
=

(
xAnA−1 − x̃

)2
+

(
yAnA−1 − ỹ

)2
= T 2

A , (31)

d
(
BnB−1,Z

)2
=

(
xBnB−1 − x̃

)2
+

(
yBnB−1 − ỹ

)2
+ = T 2

B , (32)

d
(
CnC−1,Z

)2
=

(
xCnC−1 − x̃

)2
+

(
yCnC−1 − ỹ

)2
+ = T 2

C . (33)

Equations (31)-(33) represent a nonlinear problem. By per-
forming the subtraction d

(
CnC−1,Z

)2
− d

(
AnA−1,Z

)2
and d

(
BnB−1,Z

)2
− d

(
AnA−1,Z

)2, the nonlinear problem
becomes a linear problem, which can be solved by the LS
estimator and finally we obtain

2x̃xBnB−1 − 2x̃xAnA−1 + 2ỹyBnB−1 − 2ỹyAnA−1
= x2BnB−1

+ y2BnB−1
− x2AnA−1

− y2AnA−1
− T 2

B + T
2
A , (34)

2x̃xCnC−1 − 2x̃xAnA−1 + 2ỹyCnC−1 − 2ỹyAnA−1
= x2CnC−1

+ y2CnC−1
− x2AnA−1

− y2AnA−1
− T 2

C + T
2
A . (35)

By expressing equations (34)-(35) in a matrix form [20] we
obtain[

xBnB−1 − xAnA−1 yBnB−1 − yAnA−1
xCnC−1 − xAnA−1 yCnC−1 − yAnA−1

] [
x̃
ỹ

]
=

1
2

[
x2BnB−1

+ y2BnB−1
− x2AnA−1

− y2AnA−1
− T 2

B + T
2
A

x2CnC−1
+ y2CnC−1

− x2AnA−1
− y2AnA−1

− T 2
C + T

2
A

]
.

(36)

Then the linear problem can be formulated by

H̃p̃ = b̃, (37)

where H̃ =
[
xBnB−1 − xAnA−1 yBnB−1 − yAnA−1
xCnC−1 − xAnA−1 yCnC−1 − yAnA−1

]
,

p̃ =
[
x̃
ỹ

]
and b̃ is a random vector given by

b̃=
1
2

[
x2BnB−1

+ y2BnB−1
− x2AnA−1

− y2AnA−1
− T 2

B + T
2
A

x2CnC−1
+ y2CnC−1

− x2AnA−1
− y2AnA−1

− T 2
C + T

2
A

]
.

(38)
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FIGURE 5. Flow diagram of the WMA CF algorithm.

Finally, the position p̃ of NOI Z is calculated through the
following expression

p̃ = (H̃T H̃)
−1

H̃T b̃. (39)

In a multi-hop scenario, the number of hops between NOI
Z and the RNs is not necessarily the same, and the noise
that affects the distance along each one of the routes between
the NOI and the RNs is independent and not identically
distributed because the exponential random variables present
different parameters for each of the routes between the NOI
and the RNs.

C. WEIGHTED MULTILATERATION ALGORITHM (WMA)
There are diverse range-based localization techniques to cal-
culate the position of the NOI, for example, hyperbolic posi-
tioning algorithm (multilateration) [21], weighted hyperbolic
(weighted multilateration) [21], circular [21], weighted cir-
cular [21], MDS [43], etc. The hyperbolic positioning algo-
rithm and weighted hyperbolic positioning algorithm solve
the localization problem through multilateration [21], [42]
obtaining a linear equation that can be easily solved by a LS
estimator. The circular positioning algorithm and weighted
circular algorithm calculate the NOI’s position through the
gradient descent method [54] iteratively until we find the
position of the NOI that minimizes the MSE. The MDS
algorithm calculates the NOI’s position through the spectral
decomposition of the matrix of distance between the RNs;
however, this method implies a high computational cost,
because it is a centralized algorithm, which is why a single
node must perform the entire computing of the network [43].
Therefore, we select the weighted multilateration algorithm
since this variant of the classic multilateration algorithm only
adds a covariance matrix in the classic multilateration algo-
rithm, which is why the complexity order of this algorithm
is the same as in the classic multilateration algorithm. The
covariance matrix contains the information about the esti-
mated distance between the NOI and the RNs; therefore this
matrix contains the weights of how accurate the estimated
distances are between the NOI and the RNs of their real

value, which implies a higher accuracy for the localization
of the NOI.

By taking Figure 4 as a reference, the distance δA from
RN A0 to NOI Z can be estimated through equation (11).
However, in a network with N RNs, the estimated distance δi
between the mobile node and RN i can be obtained through
δi = di + εi + ϕi. In order to calculate the mobile node’s
position, we can use the WMA localization algorithm as
follows

p̃ =
(
HTS−1H

)−1
HTS−1b (40)

where S is the covariance matrix of the b vector given in
equation (16).

S =


Var

(
δ21

)
+ Var(δ22) Var

(
δ21

)
· · ·

Var
(
δ21

)
Var

(
δ21

)
+ Var(δ23) · · ·

...
...

. . .

Var
(
δ21

)
Var

(
δ21

)
· · ·

Var
(
δ21

)
Var

(
δ21

)
...

Var
(
δ21

)
+ Var(δ2N )

 (41)

As seen in equation (41), the matrix elements of covariance
S depend on the estimated distance between RN i and the
NOI. By definition, the variance of a random variable ψ is
calculated through Var (ψ) = E

(
ψ2
)
− [E (ψ)]2, where

E denotes the average or expected value. By applying this
definition for the random variable δ2i , we obtain

Var
(
δ2i

)
= E

(
δ4i

)
−

[
E
(
δ2i

)]2
, (42)

where

δ2i = (di + ϕi + εi)
2
= d2i + 2diϕi

+2diεi + 2ϕiεi + ϕ2i + ε
2
i ,

δ4i = (di + ϕi + εi)
4
= d4i + 4d3i ϕi + 6d2i ϕ

2
i + 4diϕ3i

+ϕ4i + 4d3i εi + 12d2i ϕiεi + 12diϕ2i εi + 4ϕ3i εi

+6d2i ε
2
i + 12diϕiε2i + 6ϕ2i ε

2
i + 4diε3i + 4ϕiε3i + ε

4
i ,

E
(
δ4i

)
= d4i + 4d3i E (ϕi)+ 6d2i E

(
ϕ2i

)
+ 4diE

(
ϕ3i

)
+E

(
ϕ4i

)
+ 4d3i E (εi)+ 12d2i E (ϕi)E (εi)

+12diE
(
ϕ2i

)
E (εi)+4E

(
ϕ3i

)
E (εi)+6E

(
ϕ2i

)
E
(
ε2i

)
+12diE (ϕi)E

(
ε2i

)
+ 6d2i E

(
ε2i

)
+ 4diE

(
ε3i

)
+4E (ϕi)E

(
ε3i

)
+ E

(
ε4i

)
,[

E
(
δ2i

)]2
=

[
d2i + E

(
ϕ2i

)
+ E

(
ε2i

)
+ 2diE (εi)

+ 2diE (ϕi)+ 2E (εi)E (ϕi)]2
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=

[
d2i + E

(
ϕ2i

)
+ E

(
ε2i

)]2
+ 4

[
d2i + E

(
ϕ2i

)
+ E

(
ε2i

)]
·

[diE (εi)+ diE (ϕi)+ E (ϕi)E (εi)]

+4 [diE (εi)+ diE (ϕi)+ E (ϕi)E (εi)]2,[
E
(
δ2i

)]2
= d4i + 2d2i E

(
ϕ2i

)
+ 2d2i E

(
ε2i

)
+2E

(
ϕ2i

)
E
(
ε2i

)
+ E2

(
ϕ2i

)
+ E2

(
ε2i

)
+ 4d3i E (εi)

+4d3i E (ϕi)+ 4d2i E (ϕi)E (εi)+ 4diE (ϕi)E
(
ϕ2i

)
+4diE

(
ϕ2i

)
E (εi)+ 4E (ϕi)E

(
ϕ2i

)
E (εi)

+ 4diE (ϕi)E
(
ε2i

)
+4diE (εi)E

(
ε2i

)
+4E (ϕi)E (εi)E

(
ε2i

)
+4d2i E

2 (εi)

+8d2i E (ϕi)E (εi)+ 4d2i E
2 (ϕi)+ 8diE2 (ϕi)E (εi)

+8diE (ϕi)E2 (εi)+ 4E2 (ϕi)E2 (εi) .

Finally, the term Var
(
δ2i

)
of equation (42) is reduced to the

following expression

Var
(
δ2i

)
= 4d2i Var (ϕi)+ 4diE

(
ϕ3i

)
+ Var

(
ϕ2i

)
+8diE (εi)Var (ϕi)+ 4E

(
ϕ3i

)
E (εi)+ 4Var (ϕiεi)

+8diE (ϕi)Var (εi)+ 4d2i Var (εi)+ 4diE
(
ε3i

)
+Var

(
ε2i

)
+4E (ϕi)E

(
ε3i

)
− 4diE (ϕi)E

(
ϕ2i

)
−4E (ϕi)E

(
ϕ2i

)
E (εi)

−4diE (εi)E
(
ε2i

)
− 4E (ϕi)E (εi)E

(
ε2i

)
. (43)

Equation (43) shows that the term Var
(
δ2i

)
depends on the

real distance between RN i and the NOI; however, in a real
implementation of this parameter, it must be approximated to
the estimated distance δi between RN i and the NOI.

V. SINGLE-HOP AND MULTI-HOP CORRECTING FACTOR
This section describes the proposed algorithm, the contri-
bution of which is to increase the accuracy of the NOI
localization using a correcting factor in the estimated dis-
tance between the NOI and the RNs. The correcting factor
is a parameter that compensates for the exponential noise
factor due to the ToA inaccuracies. The estimated distance
between the NOI and the RNs represents an overestimation
of the true distance between the NOI and the RNs, due to
the exponentially distributed noise in the ToA estimation.
Therefore, the correcting factor minimizes the MSE between
the true NOI – RNs distance, and the estimated distance
between them. Hence, by using the correcting factor in the

localization algorithms, we minimize the estimated distance
error between the NOI and RNs and obtain an estimated value
that is closer to the true distance between the NOI and the
respective RNs. The use of this correcting factor is the reason
we have a smaller error in the algorithms MA CF and WMA
CF compared to other algorithms when estimating the NOI’s
position.

By taking Figure 4 as a reference, the estimated distance
δA between RN A0 and NOI Z is calculated through the
expression δA = dA + εA + ϕA, where εA is a n-Erlang-
type of random variable and ϕA is the beta-type random
variable, which is weighted by a λAZ factor proportional to the
Euclidean distance between NOI Z and RNA0 [20]. Figure 5
shows the diagram of the proposed WMA CF algorithm for
the one-hop andmulti-hop scenarios, taking RNA0 as a refer-
ence. In the first step, one gets the estimated distance between
the NOI and the RNs, that is, δA. In the following step, the
calculation of the correcting factor α is performed, which is
obtained for the single-hop scenario through equation (48)
and in the multi-hop scenario using equation (53). The third
step calculates the separation distance between the NOI and
the RNs with the correcting factor through equation (45).
Subsequently, the WMA localization algorithm is applied to
find the NOI’s position.

A. SINGLE-HOP CORRECTING FACTOR
Considering that NOI Z and RN A0 are found to be one hop
away (nA = 1), one can see that the random variable εA
presents an exponential-type distribution with parameter λA.
The sum εA+ϕA can be modeled as a real distance factor dA,
i.e., εA+ϕA = γAdA, where γA is an unknown random factor
and E(εA + ϕA) = dAE(γA) with γ = E(γA). The E(εA + ϕA)
value can be obtained through

E (εA + ϕA) =
1
λA
+

α

λAZ (α + β)
. (44)

Since γA is an unknown factor, the real distance estimation
dA can be calculated through

dA =
δA

1+ a
, (45)

where a is the parameter that minimizes the MSE given by

MSE = E
{
[dA − δA]2

}
= δ2AE

{[
1

1+ γA
−

1
1+ a

]2}
. (46)

Minimizing the given MSE in equation (46) with respect
to the parameter a, we obtain

d
da
δ2AE

{[
1

1+ γA
−

1
1+ a

]2}

= 2δ2AE
{[

1
1+ γA

−
1

1+ a

]
1

(1+ a)2

}
= 0. (47)

From equation (47), we obtain the parameter a given by

a = E
{
(1+ γA)−1

}−1
− 1. (48)
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In all scenarios, the random variables εA, εB and εC are
exponentially distributed with λA, λB and λC parameters.
Therefore, the parameter γA is proportional to the sum εA+βA
with a parameter γ−1. The factor E

{
(1+ γA)−1

}
is obtained

through

E
{
(1+ γA)−1

}
=

∫
∞

0

1
1+ x

fεA+ϕA (x)dx, (49)

where fεA+ϕA (x) is the resulting pdf of the convolution of the
pdfs of the random variables εA and ϕA for nA = 1, since it
is assumed that RN A0 and NOI Z are found to be one hop
away. The pdf fεA+ϕA (x) is given by

fϕA (z) =
λAZ (zλAZ )α−1 (1− zλAZ )β−1

B (α, β)
,

0 < z < 1/λAZ , (50)

fεA (z) = λAe
−λAz, z, λA ≥ 0, (51)

fεA+ϕA (z) =
λAλAZ e−λAz

B (α, β)
·

1/λA∫
0

(τλAZ )
α−1 (1− τλAZ )β−1 eλAτdτ.

(52)

B. MULTI-HOP CORRECTING FACTOR
Assuming δ as the estimated distance between an RN and
the NOI modeled through δ = d + ε + ϕ, where ε is a
n-Erlang type of random variable, the sum ε + ϕ is modeled
as a factor of the real distance d , that is, ε + ϕ = dγ , where
γ is an unknown random factor, E(ε + ϕ) = dE(γ ). Since γ
is an unknown factor, then the real-time estimation d can be
calculated through d = δ/(1+ a), where a is the parameter
that minimizes the MSE = E

{
[d − δ]2

}
. By minimizing the

given MSE in the equation with respect to the parameter a,
we obtain this parameter as

a = E
{
(1+ γ )−1

}−1
− 1. (53)

In all scenarios, the random variable ε presents an n-Erlang
type of distribution with parameters λ and r , where r is either
the number of random variables of the n-Erlang distribu-
tion or the number of hops between the RN and the NOI,
as observed in equation (10). The factor E

{
(1+ γ )−1

}
can

be obtained through

E
{
(1+ γ )−1

}
=

∫
∞

0

1
1+ x

fε+ϕ (x)dx, (54)

where fε+ϕ (x) is the resulting pdf of the convolution of the
pdfs of the random variables ε and ϕ.

fϕ (v) =
λAZ (vλAZ )α−1 (1− vλAZ )β−1

B (α, β)
,

0 < v < 1/λAZ , (55)

fε (z) =
λre−λv

(r − 1)!
vr−1, v, λ ≥ 0, (56)

fε+ϕ (v) =
λrλAZ e−λv

B (α, β) (r − 1)!
·

1∫
0

/λ(vλAZ )α−1 (1−vλAZ )β−1 (v−τ)r−1 eλτdτ.

(57)

Equations (55)-(56) represent the pdfs of the random vari-
ables of the n-Erlang and beta types, respectively. Through
equation (57), we obtain the resulting pdf of the pdfs’ convo-
lution of the n-Erlang and beta types of random variables.

VI. RESULTS
This section presents the performance results obtained with
the MA, MA CF, WMA, WMA CF and MLA algorithms.
The NOI’s mobility parameters are (α, β) = (2.1, 3.2),
which were obtained through the average of 100 simulations.
The aforementioned localization techniques are evaluated in
MATLAB in an area of 100m x 100m where the sensor nodes
are randomly distributed, and the RNs are distributed form-
ing a triangle with defined positions. The RNs are collinear
to a radius circumference Rmax that defines the maximum
separation distance between the RNs. The coverage radio
R0 of the NOI in an ad-hoc network depends on the node
transmitting power and the receiver sensitivity. We assume
that a node cannot be connected to all the nodes in the
network, i.e., there is no established link; therefore, the results
are shown in terms of normalized coverage radio R0/Rmax .
The results obtained are shown in terms of the normalized
RMSE, namely,

(
RMSE

/
Rmax

)
. A total of K = 104 execu-

tions were performed to estimate the position of the NOI
in every simulation scenario. The RMSE of the NOI’s true
position (x, y) and its estimated position at the k-th iteration
of the algorithm (x̃k , ỹk), for k = 1, 2, . . . ,K , is defined by
the following expression

RMSE =

√√√√ 1
K

K∑
k=1

(x − x̃k)
2
+ (y− ỹk)

2 (58)

The localization algorithm’s performance is obtained from
two evaluation scenarios, a single-hop scenario and a multi-
hop scenario, where we consider the number and distribu-
tion of the RNs. In every simulation scenario we consider
a network where we vary the number of RNs from 3 to
7 nodes and the NOI is randomly chosen within the sensing
area. Network coverage defined through the communications
radius, R0, is an essential parameter that ensures that all nodes
in the network are connected through paths with multiple
network hops. Coverage control ensures that RNs are always
available in the sensing area to estimate the NOI’s location.
Figure 6 shows a node’s percentage of connectivity when
its communication radius R0 is varied. It can be observed
that with a radius R0 of approximately 30 m, 100% network
connectivity is achieved, considering a network density of
200 nodes. An R0 coverage radius is used for the performance
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FIGURE 6. Communication radio vs. % connectivity.

FIGURE 7. Normalized RMSE of the NOI trajectory of the localization
techniques.

FIGURE 8. Normalized RMSE of the trajectory of the NOI of the algorithm
WMA CF varying the number of RNs from 3 to 5 nodes.

assessment of localization algorithms in terms of normalized
RMSE, which guarantees 100% network connectivity.

A. MOBILITY ANALYSIS
Figures 7, 8 and 9 show the normalized RMSE of the local-
ization algorithms MA, MA CF, WMA, WMA CF and MLA

FIGURE 9. Normalized RMSE of the trajectory of the NOI of the algorithm
WMA CF for different distributions of the RNs.

FIGURE 10. Distribution of the RNs with well-defined geometry and extra
nodes randomly distributed.

of each of the 100 positions of the NOI trajectory in a sensing
area of 100m x 100m. Each value of the normalized RMSE
was obtained through 5000 iterations, where we observe there
is very little variation of the normalized RMSE for each of
the 100 positions of the NOI trajectory. The 100 positions of
the NOI trajectory represent the NOI’s positions at different
instants of time τ given in seconds. Figures 7, 8 and 9 show
that there is very little variation of the normalized RMSE in
the NOI’s different positions. Additionally, the NOI’s posi-
tions obtained at different instants of time τ given in seconds
are independent of each other. Figures 7, 8, and 9 show the
horizontal axis of the plots as the numbered sequence of
positions taken by the NOI in its trajectory. The vertical axis
represents the normalized RMSE, which is obtained by the
ratio (RMSE/Rmax), where the RMSE is given in meters and
the maximum distance between two reference nodes Rmax is
also given in meters. Therefore, the normalized RMSE is an
adimensional factor.
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FIGURE 11. Distribution of the fixed RNs with well-defined geometries.

TABLE 1. Simulation parameters of mobility scenarios.

Table 1 shows the simulation parameters used throughout
the numerical results experiments conducted for the local-
ization algorithms when calculating the normalized RMSE
presented in Figures 7, 8 and 9. In Figure 13, it can be
observed that the performance of the algorithms is described
in terms of the normalized RMSE, which is a numerical and
adimensional value.

Figure 7 shows the normalized RMSE considering a net-
work with 5 random RNs, where 3 RNs are distributed with a
well-defined triangular geometry. The results obtained show
that the algorithms MA and WMA using a correcting factor
improve the normalized RMSE compared to those that do not
use a correcting factor. Finally, we learn that the algorithm
WMA CF shows the best performance with respect to the
rest of the algorithms. One can see that the WMA CF algo-
rithm presents a normalized RMSE of 0.08, while the WMA
algorithm has a normalized RMSE value of 0.12, because the
proposed algorithm WMA CF applies the correcting factor
of the estimated distance between the NOI and the respective
RNs, and thus it decreases error.

Figure 8 shows that for a network of 3 defined RNs with
random positions that always remain fixed, we get a very
vague localization of the NOI. However, by increasing the
number of RNs, the normalized RMSE of the algorithm
WMA CF decreases.

FIGURE 12. Distribution of the RNs with irregular polygon geometries.

FIGURE 13. Normalized RMSE vs proportion of noise considering
(a) 3 RNs and (b) 4 RNs for the first case in a single-hop network.

Figure 9 presents the normalized RMSE of the algorithm
WMA CF for a network with 5 RNs. The results show that
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FIGURE 14. Normalized RMSE vs proportion of noise considering
(a) 5 RNs and (b) 7 RNs for the first case in a single-hop network.

with a rectangular geometry (4 RNs distributed in a rectangle-
like shape) we obtain a more accurate localization than with
a triangular geometry (3 RNs distributed in a well-defined
triangular shape). However, a network with 5 RNs arranged
in random positions does not guarantee a good localization of
the NOI, since there are situations where the 5 RNs are very
close to each other, which in turn does not provide sufficient
coverage of the NOI’s area.

B. SINGLE-HOP SCENARIO
Table 2 presents the test cases in order to evaluate the local-
ization algorithms’ normalized RMSE performance.

Figures 10, 11 and 12 show examples of the RNs’ dis-
tribution for each one of the cases described in Table 2,
respectively. The RNs are represented by red triangles, the
green square represents the NOI and the red circles are the
nodes in the network with an unknown position.

These test cases were designed to obtain different behav-
iors of the normalized RMSE for different geometric dis-
tributions of the RNs such as the triangular, the square and
the heptagonal, while also augmenting the number of RNs in
the network, starting from a triangular geometry, and finally

TABLE 2. Test case descriptions.

FIGURE 15. Normalized RMSE vs proportion of noise starting from 3 and
up to 7 RNs for (a) MA and (b) MLA for the first case in a single-hop
network.

varying the number of RNs with totally random geometric
distributions. The advantage of performing the test cases is
to determine the ideal geometry and the necessary number
of RNs in the network to obtain the best normalized RMSE
performance of the localization algorithms.

Table 3 shows the simulation parameters that determine the
localization algorithm’s normalized RMSE performance for
the test cases that appear on Table 2 in the single-hop and
multi-hop scenarios.
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FIGURE 16. Normalized RMSE vs proportion of noise starting from 3 and
up to 7 RNs for (a) WMA and (b) WMA CF for the first case in a single-hop
network.

TABLE 3. Simulation parameters.

1) CASE 1
Figure 13 presents the normalized RMSE of the aforemen-
tioned localization algorithms with variations in the propor-
tion of noise, which is a constant parameter in all the results
obtained. The proportion of noise is a factor with which the
parameters λA and λAZ of the random n-Erlang and beta-type
variables are calculated respectively. The proportion of noise
represents the percentage level of the noise that affects the

FIGURE 17. Normalized RMSE vs proportion of noise considering
(a) 3 RNs and (b) 5 RNs for the second case in a single-hop network.

true distance between the NOI and the RN. Thus, this is an
adimensional parameter. Figure 13(a) shows that the WMA
and WMA CF algorithms maintain the same performance
as the MA and MA CF algorithms, respectively, considering
3 RNs, whilst the MLA algorithm displays a slightly lower
normalized RMSE than the MA algorithm, because of the
compensation factor calculated in equation (28). This similar-
ity of the MA and WMA algorithms is because the 3 RNs are
always distributed over a triangular area with a fixed position
in order to obtain the NOI’s position. By raising the number
of RNs to 4 nodes, we decrease the normalized RMSE of
the WMA and WMA algorithms as shown in Figure 13(b).
Moreover, Figure 13(b) shows that WMA CF presents much
less normalized RMSE than MA CF, while the normalized
RMSE of MA CF is very similar to that of the WMA local-
ization algorithm. A similar behavior is shown in Figure 14.
On the other hand, MA and WMA localization algorithms
with a correcting factor present a better normalized RMSE
performance, since the correcting factor is a parameter that
minimizes the MSE between the real and estimated distance
separating the RNs and the NOI.
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FIGURE 18. Normalized RMSE vs proportion of noise starting from 3 and
up to 7 RNs for (a) WMA and (b) WMA CF for the second case in a
single-hop network.

Figure 14 shows that the WMA and WMA CF algorithms
improve their normalized RMSE performance as the number
of RNs increases to 5 and 7 nodes. However, a rise in the
number of RNs does not improve the normalized RMSE
performance of the MA, MA CF and MLA algorithms.

The results we obtained in Figure 15 show that the MA and
MLA algorithms retain their normalized RMSE performance
as the number of RNs rises from 3 to 7 RNs. Therefore, this
result indicates that 3 RNs are enough to obtain an estima-
tion of the NOI position when the MA or MLA localiza-
tion algorithms are used. According to Figure 16, the WMA
and WMA CF algorithms improve their normalized RMSE
performance as the number of RNs rises. This normalized
RMSE improvement is because by having a greater number
of RNs, we decrease the localization error between the NOI
and the RNs, which implies a reduction in the variance of the
estimated distances between the NOI and the RNs.

2) CASE 2
This case considers (a) 3 RNs arranged in a well-defined
triangular geometry and (b) 5 RNs distributed in a pentagonal

FIGURE 19. Normalized RMSE vs proportion of noise considering
(a) 5 RNs and (b) 7 RNs for the third case in a single-hop network.

geometry. According to the results shown in Figure 17(b),
there is a slight reduction of the normalized RMSE of the
localization techniques presented with respect to the results
shown in Figure 14(a) where we consider 5 RNs, since we
obtain a greater coverage area of the NOI with a solid pen-
tagonal geometry than with a solid triangular geometry.

Figure 18 shows that the normalized RMSE performance
improves for the algorithmsWMA andWMACF as the num-
ber of RNs rises. This improvement is seen starting at 4 RNs.
The WMA CF algorithm presents less normalized RMSE
than the WMA algorithm due to the correcting factor, which
decreases the separation distance error between the NOI and
the RNs.

3) CASE 3
Figure 19(a) reports the normalized RMSE of the localization
techniques considering 5 randomly arranged RNs. A com-
parison of these results to the results shown in Figure 17(b)
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FIGURE 20. Normalized RMSE vs proportion of noise starting from 3 and
up to 7 RNs for (a) WMA and (b) WMA CF for the third case in a
single-hop network.

for 5 RNs arranged with a solid pentagonal geome-
try shows that more normalized RMSE is obtained with
the RNs randomly arranged. The analyzed localization
techniques present a decrease of the normalized RMSE
as the number of RNs rises to 7 nodes according to
Figure 19(b).

The normalized RMSE of the localization techniques
presents very high error values for 4 RNs arranged randomly;
thus, after 5 RNs we obtain a more robust normalized RMSE
as shown in Figure 20. When considering a network with
3 randomly arranged RNs, there is no guarantee of a good
NOI localization, because the area covered by 3 RNs in some
cases may be very small, which can make the localization of
the NOI extremely vague.

C. MULTI-HOP SCENARIO
1) CASE 1
The MLA algorithm presents a normalized RMSE perfor-
mance with many variations considering 3 RNs, because this
algorithm considers the 3 nodes that are closest to the NOI to

FIGURE 21. Normalized RMSE vs proportion of noise considering
(a) 3 RNs and (b) 5 RNs for the first case in a multi-hop network.

be the routes that best approximate the real distance between
the NOI and the RNs (Figure 21(a)); therefore, by selecting
these nodes we obtain an irregular geometry to estimate the
NOI’s position. On the other hand, when there are 5 RNs, the
algorithm presents a better normalized RMSE performance
(Figure 21(b)).

The WMA CF algorithm improves its normalized RMSE
performance as the number of RNs rises, as shown in
Figure 22. Figure 22(b) shows a similar behavior for the
MLA algorithm. The MLA algorithm shows an uneven
increase of normalized RMSE as the proportion noise varies
for 3 RNs, as shown in Figure 22(b).

2) CASE 2
Figure 23 shows the normalized RMSE of the aforementioned
localization algorithms as the proportion noise varies, using
3 fixed RNs arranged in a well-defined triangular geom-
etry and 5 fixed RNs arranged in a pentagonal geometry.
By augmenting to 5 RNs with a well-defined pentagonal
geometry, we can see an improvement in the normalized
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FIGURE 22. Normalized RMSE vs proportion of noise starting from 3 and
up to 7 RNs for (a) WMA CF and (b) MLA for the first case in a multi-hop
network.

RMSE performance with respect to the ones shown
in Figure 23(a).

TheWMACF algorithm presents an important normalized
RMSE performance improvement as the number of RNs rises
and with solid geometries of regular polygons (Figure 24(a)).
The results shown in Figure 24(b) show that the MLA algo-
rithm improves its normalized RMSE performance as the
number of RNs rises, presenting a better performance starting
at 4 RNs.

Figure 24 shows that the WMA CF algorithm
(Figure 24(a)) has a smaller normalized RMSE value than
the MLA algorithm does (Figure 24(b)) when the proportion
of noise and the number of RNs are varied. For example, for a
network with 3 RNs, theWMACF algorithm has a maximum
normalized RMSE value of 0.6, while the MLA algorithm
reaches normalized RMSE values above one. This is because
the MLA algorithm does not consider a fixed distribution of
RNs, but rather the nodes closest to the NOI to estimate its
position, which implies that the coverage area of those nodes

FIGURE 23. Normalized RMSE vs proportion of noise considering
(a) 3 RNs and (b) 5 RNs for the second case in a multi-hop network.

is very small and the normalized RMSE values obtained could
be inconsistent.

3) CASE 3
Figure 25(a) shows the normalized RMSE of the localization
techniques considering 5 randomly arranged RNs. A com-
parison of these results to those shown in Figure 23(b) for 5
RNs arranged with a solid pentagonal geometry shows that
we obtain less normalized RMSE with the solid geometry
than with the randomly arranged RNs. Figure 25(b), shows
that there is a decrease of the normalized RMSE with the
localization techniques presented as the number of RNs rises
to 7 nodes.

Figure 25 clearly shows that for a network with 5 RNs
and another with 7 RNs, the WMA CF algorithm performs
better in terms of normalized RMSE than the other algorithms
analyzed, reaching maximum normalized RMSE values of
approximately 0.5 for 5 RNs and 0.3 for 7 RNs. This is
because the proposedWMACF algorithm uses the correcting
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FIGURE 24. Normalized RMSE vs proportion of noise starting at 3 and up
to 7 RNs for (a) WMA CF and (b) MLA for the second case in a multi-hop
network.

factor to calculate the separation distance between the NOI
and the respective RNs, and it also uses the WMA algorithm,
which has a lower normalized RMSE than the MA algorithm.

Figure 26 shows that the normalized RMSE of the local-
ization techniques presents error values that are very high
for 3 randomly arranged RNs, which means that by starting
at 4 RNs we obtain a normalized RMSE value that is more
robust. With a network with 3 randomly arranged RNs, there
is no guarantee of a good NOI localization, because the area
covered by 3 RNs can be very small in some cases; therefore,
there is much inaccuracy in the NOI localization. The MLA
algorithm does not present a good normalized RMSE perfor-
mance when RNs are distributed randomly. We can observe
that the correcting factor decreases the localization error
of the MA and WMA localization algorithms; in addition,
Figure 26 shows that the normalized RMSE performance of
the WMA CF algorithm presents more robustness when this
parameter is added, which is observable starting at 4 RNs in
the network (Figure 26(a)).

FIGURE 25. Normalized RMSE vs proportion of noise considering
(a) 5 RNs and (b) 7 RNs for the third case in a multi-hop network.

In the three test cases previously described, the WMA CF
algorithm presents a better normalized RMSE performance
than the other analyzed algorithms. In case 2, where the RNs
are distributed with well-defined geometries, the analyzed
localization algorithms present less normalized RMSE than
in cases 1 and 3. In case 3, where the RNs are randomly
arranged in the sensing area, the localization algorithms
present the worst normalized RMSE performance, since this
case implies that the RNs are not necessarily distributed in
such amanner that theNOI is within the coverage area formed
by the geometry of the RNs. Case 1 shows that as the number
of RNs rises, assuming a well-defined triangular geometry
of the RN ensemble, the MA algorithm maintains the same
normalized RMSEwhilst the normalized RMSE of theWMA
algorithm decreases as the number of RNs increases regard-
less of the geometry of the RNs; additionally, the correcting
factor introduced in the MA and WMA algorithms decreases
their normalized RMSE. Finally, for 5 or more RNs in the net-
work, the WMA CF localization algorithm presents greater
robustness than the other analyzed algorithms.
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FIGURE 26. Normalized RMSE vs proportion of noise starting from 3 and
up to 7 RNs for (a) WMA CF and (b) MLA for the third case in a multi-hop
network.

VII. CONCLUSION
This paper determines the normalized RMSE performance
of range-based localization algorithms as the proportion of
noise and the number of RNs vary. By analyzing the results
obtained we learn that the MA and MLA algorithms in a
single-hop scenario present a similar performance consider-
ing at least 3 RNs with a well-defined triangular geometry.
However, in a multi-hop scenario, the MLA algorithm does
not present a robust normalized RMSE performance because
it considers the nodes closest to the NOI to obtain its position,
and the geometry shaped by the nodes closest to the NOI is
totally random, with very low coverage in the sensing area.
This study shows that the algorithm we propose, WMA CF,
yields a better performance than the other analyzed algo-
rithms considering both a single-hop and a multi-hop sce-
nario. The algorithm we propose considers the analysis of the
environment of noise due to the ToA and the NOI’s mobility
in the calculus of the WMA algorithm’s correlation matrix
and it also adds the correcting factor, which decreases NOI
localization error. The correcting factor corrects the estimated

distance between the NOI and the respective RNs, which
improves the accuracy of the NOI localization. According
to the results we obtained, our proposed WMA CF algo-
rithm presents a greater robustness than the other analyzed
algorithms considering at least 5 RNs, either with a random
distribution or with a well-defined geometry. It is considered
as future work the performance evaluation of the localization
algorithms in 3D scenarios, in addition to the consideration
of different scenarios with mobility such as in vehicular
networks. Also, these localization algorithms can be used
in diverse applications within the IoT because such applica-
tions need to collect and fusion data from low-cost sensors
deployed in networks. Most of these applications use data
collected that have an important dependency on ubiquitous
information.
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