
Received November 7, 2021, accepted November 19, 2021, date of publication November 23, 2021,
date of current version December 3, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3130278

Buffer Management With Append-Only Data
Isolation for Improving SSD Performance
JOONYONG JEONG 1, GYEONGYONG LEE 1, JUNGKEOL LEE 1,
JUNGWOOK CHOI 1, (Member, IEEE), AND YONG HO SONG1,2
1Department of Electronics and Computer Engineering, Hanyang University, Seoul 04763, South Korea
2Samsung Electronics Company Ltd., Hwaseong 18448, South Korea

Corresponding author: Yong Ho Song (yhsong@hanyang.ac.kr)

This research was supported by the MOTIE (Ministry of Trade, Industry & Energy (10080613) and KSRC (Korea Semiconductor Research
Consortium) support program for the development of the future semiconductor device.

ABSTRACT The number of applications that can access a storage device simultaneously has increased as a
result of the increase in storage capacity and the emergence of hyperscale environments. In multi-application
environments, the request for append-only data to storage from applications such as log-structured merge-
tree-based key-value (LSMKV) stores can negatively affect the storage-internal buffer hit ratio of other
applications. This is because frequently re-accessed data can be evicted from the buffer via the intensive
requests of append-only data that are rarely re-accessed. This degradation in the buffer hit ratio increases
the storage access latency of applications. Herein, we propose a buffer management method to increase the
buffer hit ratio of non-append-only data (or applications) in multi-application environments. The proposed
method (1) defines large-sequential writes (that are not overwritten) and all reads on them as append-only
input/output (I/O), (2) detects I/O, matching the access pattern of append-only data of LSMKVs, (3) allocates
the append-only read/write requests into separate small buffer spaces, and (4) evicts the append-only data
from the buffer when free buffer space is required. Because the proposed method stores append-only data
of an LSMKV in buffer spaces with a limited size, it can increase the buffer hit ratio of applications that
frequently re-access its data. Experimental results show that the proposed method can increase the buffer
hit ratio of hot-data-intensive applications and the total buffer hit ratio by 31.72% and 20.06%, on average,
respectively, in comparison to the existing buffer management techniques.

INDEX TERMS Buffer management, log-structured merge tree, multi-application, NAND flash storage.

I. INTRODUCTION
With the emergence of hyperscale environments such as
Internet of Things (IoT) and cloud computing, the num-
ber of users that can access a storage device has increased
[1]–[3]. Furthermore, as the processing performance of com-
puting devices and the capacity of data storage devices
have also increased, the number of applications that can be
simultaneously operated by a user continues to grow. As a
result, multiple applications can access one storage device
simultaneously [1].

In these multi-application environments, the storage access
pattern varies with the application; the application accesses
the same data repeatedly or writes data that are rarely
re-accessed to the storage. Data that are frequently accessed

The associate editor coordinating the review of this manuscript and

approving it for publication was Gianmaria Silvello .

or can be potentially accessed in the near future are referred
to as hot data while data displaying the opposite tendency
are known as cold data. Heavy storage input/output (I/O)
for cold data can increase the storage access latency of con-
currently operating hot-data-intensive applications. This is
because intensive I/O for data with low re-access frequency
can evict hot data from the storage-internal buffer.

The I/O of cold data can frequently lead to hot data eviction
in systems that use a limited data buffer space, such as solid-
state drives (SSDs), which contain embedded RAM buffers.
Because the buffer evicts data according to the page replace-
ment policy in the event of inadequate free space, a small data
buffer requires more frequent buffer evictions in comparison
to a larger buffer. Thus, to load intensively requested cold
data, a small buffer more frequently evicts buffer entries in
comparison to a larger buffer. Consequently, hot data can be
evicted from the buffer.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 157681

https://orcid.org/0000-0002-5411-8368
https://orcid.org/0000-0002-8186-573X
https://orcid.org/0000-0002-1153-9736
https://orcid.org/0000-0002-3075-8694
https://orcid.org/0000-0003-4970-4554


J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

Log-structured merge-tree-based key-value (LSMKV)
stores [4]–[7], that widely used NoSQL applications, are a
type of cold-data-intensive applications, which request stor-
age I/O for append-only cold data. LSMKVs store key-
value pairs in storage devices in an immutable format. These
key-value pair files (KV files) are managed in an append-
only manner, wherein new KV files are added while the
existing ones remain immutable. When KV files are written
and merged, it leads to intensive read/write of append-only
data [8], [9]. Because LSMKV systems use append-only
management method for KV files, append-only data are
requested to storage devices via various-sized read requests
for scattered logical address space or large-sequential write
requests which are not updated. Therefore, LSMKV applica-
tions have a low buffer hit ratio. Moreover, it can reduce the
buffer hit ratio of other hot-data-intensive applications if their
hot data are evicted due to intensive append-only data I/O.

To increase the buffer hit ratio, many existing buffer man-
agement methods predict the re-accessibility of the data of
the buffer and preserve the hot data with high re-access
probability in the buffer [10]–[17]. Data that are frequently
or recently hit on the buffer [10], [12]–[17] or data requested
in small sizes [11] are selected as hot data.

However, in the existing hot/cold data separation-based
buffer management methods, hot data are evicted from the
buffer when the I/O of append-only data from LSMKVs is
intensively requested by large-sequential write and various-
sized read operations. Conventionally, when the I/O of
append-only data from LSMKVs is intensively requested
for storage, hot data are evicted from the buffer before
being re-accessed; otherwise, several instances of append-
only cold data that are requested in small-random reads
can be misinterpreted as hot data. This is because access-
frequency/recency-based methods do not know the tempera-
ture of newly requested data and size-based methods interpret
small-random read operations for append-only data as hot
requests.

Herein, a buffer space separation and management method
is proposed for a multi-application environment, including
LSMKVs, to alleviate the degradation of the storage-internal-
buffer hit ratio of hot-data-intensive applications resulting
from the append-only data I/O of LSMKVs. The proposed
method reduces the amount of hot data evicted by the append-
only data I/O of the LSMKV application by (1) identifying
I/O requests that match the I/O of append-only data from
LSMKVs and (2) separating the buffer area where append-
only and other data are stored.

The proposed method identifies the append-only data I/O
of LSMKVs without additional information from the host;
thus, hot data eviction due to LSMKV I/O can be reduced
even if hot-data-intensive applications and their data access
patterns are different. Our method compares the access pat-
tern of incoming I/O and append-only data I/O of the LSMKV
to detect whether the incoming data I/O is requested for
append-only data. The append-only data of the LSMKV

are written by large-sequential write requests that are not
updated; these data are read in various sizes and patterns.
Large-sequential writes can be identified by monitoring the
request size of the incoming I/O command. However, not
all large-sequential writes are append-only data, and read
requests for append-only data cannot be distinguished by the
request size. Additionally, when the data requested by large-
sequential writes are updated, the data of the correspond-
ing logical address should not be classified as append-only
data.

Tracing the access history of a logical address is a method
used to determine whether the data of the requested logical
address are append-only. Overwrite does not occur in the
logical address where append-only data are stored because
update requests at the host side are executed by overwriting
data in a storage device. To record the access history of
logical addresses, the proposed method uses an additional
mapping table, a large write & append-only data check table
(LAT), which maps the logical address, request size, and
overwrite check bit. Because the LAT is stored in the buffer,
a large LAT can reduce the buffer hit ratio and available space
in the buffer. The proposed LAT decreases the size of the
address information stored in the LAT by mapping addresses
to coarse-grained granularity.

To limit the amount of non-append-only data evicted
from the buffer due to append-only data I/O, the proposed
method loads append-only and non-append-only data into
separate buffer spaces. The proposed buffer is divided into
three regions, namely a buffer space for append-only write
data (BAW), buffer space for append-only read data (BAR),
and the remaining area for data excluding append-only data
(small or re-accessed data buffer space, SORB). Because
the append-only data of the LSMKV are not updated after
being written into the storage, the probability of the LSMKV
being hit in the buffer is lower than that of other applica-
tions. Therefore, while a limited size is allocated to BAW
and BAR, almost the entire buffer size can be allocated to
SORB.

In addition, a buffer eviction algorithm is presented in this
study to select the area of the buffer entry for eviction from the
proposed buffer areas in the event of insufficient free space in
the buffer. In the proposed method, the append-only data are
allocated only to BAWor BAR. Because BAWand BAR have
a limited maximum size, eviction must be performed even if
there is free space in the entire buffer if either one reaches the
maximum size. In addition, because append-only data are less
likely to be re-accessed, BAW and BAR should be prioritized
over SORB when there is no free space in the entire buffer.

The remainder of this paper is organized as follows.
Section 2 presents the background information regarding
the proposed method. In Section 3, previously proposed
buffer management schemes (page replacement algorithms)
are discussed. Section 4 describes the proposed method and
section 5 presents the experimental setup and results. Finally,
the conclusions are presented in Section 6.

157682 VOLUME 9, 2021



J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

II. BACKGROUND INFORMATION
A. LOG-STRUCTURED MERGE-TREE-BASED KEY-VALUE
STORES
LSMKVs are a traditional NoSQL database [4]–[7], [18].
LSMKVs store KV pair data in an append-only manner.
In an LSMKV, all key-value writes are buffered in the mem-
ory (specifically, the main memory of the host side), and
the data in memory are flushed into the storage via large-
sequential writes [19].

FIGURE 1. KV pair write sequence of LSMKV store.

In an LSMKV, the inserted KV data are stored in the form
of an immutable file containing multiple KV pairs. These
immutable KV files stored in the storage are not updated; the
incoming KV pairs are appended into the storage as a new
KV file. In several LSMKVs, an immutable KV file stored in
storage is referred to as an SSTable.

SSTables are managed in a hierarchical structure; the more
recently entered SSTables are stored at higher levels in the
hierarchy. Each layer has a limited size and when the size of
one layer exceeds the limit, an interlayer datamerge operation
(called compaction) is performed. Compaction merges the
SSTables of the layer that exceed the limit with those of the
lower layer and moves them to the lower layer. At the end of
the compaction process, the input SSTables are deleted and
the compacted output SSTables are written into the storage.
Fig. 1 demonstrates the write process of the KV pair of an
LSMKV. When the lookup of the value of a given key is
requested, the LSMKV searches for the given key by identi-
fying the key range of the SSTable, starting from the highest
layer [20], [21]. Fig. 2 illustrates the cascading read requests
induced by such lookup request in the LSMKV.

Figure 3 depicts the requested storage I/O size of
RocksDB [5], a widely used LSMKV. Table 1 summarizes
the workload used in the experiment for Fig. 3. As shown
in Fig. 3, the storage access pattern of the LSMKV is pri-
marily large-sequential write and large-sequential or various-
sized read, induced by the write and read of the SSTable,
respectively. Large-sequential reads and writes frequently
occur in the reads of SSTables to be compacted and the
writes of SSTables resulting from compaction, respectively.
Furthermore, large-sequential and small-random reads occur
frequently during SSTable traversal for a given key search.

FIGURE 2. Cascading read during the lookup sequence of LSMKV store.

Because the stored SSTables are input via the append-only
method, the possibility of re-access is less, thus leading to a
considerably less buffer hit ratio for the LSMKV.

FIGURE 3. Request size distribution of RocksDB.

B. SOLID STATE DRIVE
SSDs with built-in RAM are widely used as secondary stor-
age devices [11]. A modern SSD comprises a host interface,
DRAM, embedded processor, NAND flash controller, and
NAND flash chips [22]–[24]. The read/write unit of the
NAND flash is a flash page. However, modern SSDs can
access multiple NAND flash chips in parallel by configuring
NAND chips to be multi-channel and multi-way [25], [26].
Fig. 4 presents an SSD with a two-channel and two-way
configuration. Because each channel of an SSD is config-
ured independently, flash chips at different channels can be
accessed in parallel. In contrast, NAND flash chips, con-
figured with different ways within a channel, transfer data
through the same channel. Therefore, different ways of SSD
are accessed in parallel by pipelining the data transfer of the
channel and write operation of the NAND cell.

A NAND flash device must erase data before writing the
data as required by the recording method of the medium. The
erase operation deletes all pages of the victim NAND flash
block to switch the NAND block to a writable state. Because
the erase unit of the NAND flash is larger than the write unit,
a flash block can contain both invalid and valid pages. The
valid pages of a victim NAND flash block must be preserved;
therefore, valid pages are copied to a recordable block when
a victim NAND flash block is erased.

VOLUME 9, 2021 157683



J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

FIGURE 4. Overall structure of SSD with a two-channel two-way
configuration.

Previously, data deletion from the host was not requested
as a command to the storage device. However, if the deleted
data remain valid in the storage device, it may lead to frequent
garbage collection in SSDs. Therefore, some modern SSDs
support the trim function [27]–[31]. Trim is a command that
passes the logical address, which is no longer used by the
host, to the storage and invalidates the logical address area in
the storage. We assumed that the SSD in this study supports
the trim function.

The RAM inside the SSD is used as a data buffer and
stores information such as the metadata of the flash transla-
tion layer to manage NAND flash storage [24]. If the data
of the requested I/O command exist in the data buffer, the
storage returns the requested data by accessing only the
DRAM (not NAND flash). Because the access latency of
NAND flash chips is slower than that of DRAM, buffer
hits can improve the response time of I/O commands for
storage.

III. RELATED WORK
A. BUFFER MANAGEMENT SCHEME FOR SOLID STATE
DRIVE
In systems that use SSDs as storage devices, the storage
access latency can be decreased by reducing the number of
NANDflash accesses required to process data I/O commands.
The number of accesses to the NAND flash can be reduced
through several buffer management methods for NAND flash
storage. These methods (1) increase the hit ratio of the RAM
buffer [10]–[17], (2) reduce the number of dirty data write
operations from the buffer to the NAND [12]–[17], [32], [33],
and (3) reduce the number of valid pagemigrations performed
in the NAND block erase operation [32], [34]–[36]. The I/O
and eviction granularity of traditional buffer management for
SSDs are performed in units of a page or block, which are the
same as those of NAND flash.

Page-based techniques are more suitable than block-based
techniques for increasing the buffer hit ratio or reducing
the number of dirty data writes from the buffer to the
NAND flash. This is because, in hot/cold prediction or
clean/dirty separation of buffer entries, the accuracy of pre-
diction/separation increases as the buffer management gran-
ularity decreases [37]. Thus, for a larger buffer management
granularity, the hot/cold or clean/dirty data are more likely to
be mixed within one buffer entry.

Various existing buffer management methods have been
proposed based on least recently used (LRU) algorithm,
which is a traditional page replacement method. The LRU
evicts the longest inaccessible data to increase the hit ratio
based on temporal locality. Chang proposed a two-level
LRU [10] based on the concept of hot-cold separation to sepa-
rately manage frequently accessed logical address areas. The
two-level LRU inserts the incoming entries into the candidate
LRU. A re-accessed entry in the candidate LRU is promoted
to the hot LRU list. If there is no free area in the hot LRU list,
the LRU end entry of the hot LRU is demoted to candidate
LRU. Thus, the two-level LRU can reduce the number of hot
data events owing to the input of cold data.

The virtual-block-based buffer management scheme
(VBBMS) [11] is a buffer management technology that uses a
size-based hot-cold separation concept. VBBMS divides the
buffer into two regions, namely, the sequential request service
region (SRSR) and random request service region (RRSR),
wherein large-sequential requests and small -random requests
are assigned, respectively. Re-accessed buffer entries in
SRSR are migrated to RRSR. In addition, the VBBMS intro-
duces a virtual block as a new buffer management granularity.
The virtual block consists of multiple pages thus it is larger
than one page and smaller than one block. SRSR and RRSR
can have different virtual block sizes.

Clean-first LRU (CFLRU) [33] manages the buffer as an
LRU list consisting of clean-first and working regions. The
clean-first region indicates the window size w entries from
the LRU end. The primary idea of CFLRU is that when buffer
eviction is required, clean pages are preferentially selected as
victim entries in the clean-first region. A clean page of the
buffer is not written to the NAND flash when it is evicted
from the buffer. Therefore, by evicting clean pages before
dirty pages, the number of NAND flash accesses required for
buffer eviction operations can be reduced.

Cui et al. proposed a probabilistic triplicate LRU (PTLRU)
to alleviate hot clean page eviction and cold dirty page reten-
tion in CFLRU [15]. PTLRU manages the buffer with three
LRU lists, that is, cold clean LRU list (LC), cold dirty LRU
list (LD), and mixed LRU list (LH), the size of which is not
fixed. In PTLRU, if a reference to the data requested to the
buffer is hit in the buffer, the referenced entry is moved to the
MRU position in the LH list. If the I/O request is missed in
the buffer, the PTLRU loads data into the buffer space; if free
space exists in the buffer, the data are inserted into the LC
list. However, if there is no free space in the buffer, PTLRU
preferentially evicts the LRU end entry of the LC list. If an
entry in the LC list (cold clean page) does not exist in the
buffer, the LD list entry (cold dirty page) is evicted based on
the predefined probability.

However, existing buffer management methods are not
suitable for preventing hot data eviction from the buffer when
multiple applications, including the LSMKV, access the stor-
age simultaneously. First, access frequency-based hot/cold
separation techniques are not suitable for reducing hot data
eviction resulting from the I/O of the LSMKV. In situations

157684 VOLUME 9, 2021



J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

where append-only data I/O is requested intensively, hot data
are evicted before being re-accessed from the buffer (Fig. 5).
For example, in a two-level LRU, the entries of candidate
LRU that have not yet been re-accessed may be evicted
because of the intensive I/O of cold data, even though the
entries are highly likely to be re-accessed. Second, clean-first-
based buffer management methods can effectively reduce the
number of flash write operations generated by dirty data evic-
tion. Nevertheless, because many existing clean-first-based
methods do not include hot/cold separation considering the
storage access patterns of append-only data I/O, the proposed
clean-first methods have similar limitations similar to those
of existing hot/cold separation methods. Finally, the size-
based hot/cold separation technique encounters difficulties in
mitigating hot data evictionwhen small reads for append-only
data are intensively requested for storage (Fig. 6). For exam-
ple, in a multi-application environment with the LSMKV, the
VBBMS may allocate many cold small-random reads to the
RRSR (region where hot data are stored) and allocate several
hot and cold large-sequential I/Os to the same buffer space,
particularly SRSR.

FIGURE 5. Storage access performance degradation scenario of the
access-frequency-based buffer management method when multiple
applications access one NAND flash storage.

IV. MAIN IDEA
In this study, we propose a buffer management method to
alleviate the eviction of non-append-only data caused by
the I/O of append-only data from the LSMKV application.
Because the append-only data of the LSMKVare not updated,
append-only data write requests are not hit on the buffer.
Read requests for append-only data are also rarely hit on the
buffer because many reads are requested as large-sequential
patterns for consecutive logical addresses or small-random
patterns for a scattered address space. When data with a
low hit probability on the buffer are requested intensively,
data with a high probability of being re-accessed in the
buffer may be evicted from the buffer. If the evicted data are
re-accessed, the buffer hit ratio of the application requesting

FIGURE 6. Storage access performance degradation scenario of the
size-based buffer management method when multiple applications
access one NAND flash storage.

re-access can decrease, and the storage access latency of the
application may deteriorate. Therefore, the proposed method
allocates I/O requests that match the storage access pattern
of the append-only data I/O of the LSMKV to a separate
buffer space. To separate the buffer space for append-only
data from non-append-only data, the proposed method (1)
identifies the I/O matching the append-only data I/O pattern
of the LSMKV from the incoming I/O requests, (2) divides
the buffer space into three spaces (SORB, BAW, and BAR),
and (3) allocates append-only writes and reads to BAW and
BAR, respectively. Moreover, an LAT is proposed to select
the I/O for append-only data from incoming I/O requests.
The I/O of append-only data for the LSMKV is requested
for storage through large-sequential writes (without re-access
for stored data) and large-sequential or small-random reads.
To verifywhether the incomingwrite is a request for re-access
to the stored data, the LAT maps the logical address, requests
size, and writes the re-access history. In addition, because the
proposed method allocates I/O requests for append-only data
to BAW and BAR, if free space is insufficient in BAW and
BAR, the buffer entry must be evicted even if there is free
space in the entire buffer. Section 4.A describes the structure
of the proposed buffer and LAT; Section 4.B describes the
read/write/eviction method of the proposed buffer. Fig. 7
illustrates the overall structure of the proposed buffer man-
agement method and a brief buffer access sequence.

A. BUFFER SPACE SEPARATION TECHNIQUE
Based on the proposed method, a buffer is classified into a
data buffer space and LAT storage space. The data buffer
space is further divided into SORB, BAW, and BAR. BAR
and BAW represent the read and write buffer for append-
only data, respectively. To utilize the internal parallelism of
NAND flash storage, the maximum size of BAR and BAW is
the smallest I/O size that can achieve the maximum internal
parallelism in NAND flash storage. For example, for the SSD

VOLUME 9, 2021 157685



J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

FIGURE 7. Brief architecture and buffer access sequence of the proposed
buffer management method. The I/O buffer in the RAM of the proposed
method stores data and LAT.

depicted in Fig. 4, the maximum size of each of BAR and
BAW is Sizepage×Countchannel×Countway = 4pages. SORB
stores all data except append-only data, i.e., data requested
by a small write or update request (re-write for the logical
address allocated to valid data). The size of the SORB is
SizeTotalBuffer − SizeBAW − SizeBAR; the entire buffer space
of the buffer can be used as SORB when I/O for append-
only data is rarely requested. The LRU constitutes the page
replacement policy of SORB, BAW, and BAR, but other
existing page replacement policies can be applied. Therefore,
the proposed method can be considered as an extension of the
existing buffer management method.

In this study, write re-access (update) does not occur in
append-only data after the data are written to the buffer or
storage. Because the append-only data of the LSMKV are
written by large-sequential requests, the proposed method
interprets large-sequential write data that have not been
updated as append-only data.

To distinguish between I/O commands for append-only
data from the I/O data requests to the storage, we propose an

LAT that records the requested I/O size of logical addresses
and update history. If the size of a write request is larger
than the predefined threshold, the proposed method considers
the requested I/O as a large-sequential write. To indicate
that the write command requested in the address space is
a large-sequential write, the LAT uses a large requested bit
(LRB). If the requested write is a large-sequential write,
the LRB of the LAT for the requested logical address is
set at 1. Furthermore, we can determine whether the logical
address has been updated by recording the write re-access to
the requested logical address. The proposed method uses a
write re-accessed bit (WRB) to determine whether the logical
address of the requested I/O command has been updated.
If the LRB mapped to the requested logical address is 1, then
a large-sequential write has been performed on the logical
address. Therefore, a write request to a logical address with
an LRB of 1 represents a write re-access request. The pro-
posed method sets the WRB of the write- re-accessed logical
address to 1. If the WRBmapped to the logical address of the
requested read command is 1, the requested command is a
read request for the updated data, i.e., non-append-only data;
otherwise, it is a read request for append-only data. The initial
value of the proposed LRB and WRB is 0. The larger the size
of the LAT, the smaller the buffer space used for data buffer.
To secure a larger data buffer space while using LAT, the
proposed method reduces the size of LAT through chunk unit
addressing. The chunk size of the proposed method is 1 MB
by default, which can be adjusted. The size of the LAT was
calculated as (1). Each table entry is accessed by logical
chunk address (LCA).

SizeLAT = (
SizeSSD
Sizechunk

)× (WRB+ LRB) (1)

B. BUFFER SPACE MANAGEMENT TECHNIQUE
The buffer space to record data is selected from SORB, BAR,
and BAW by checking the logical address of the incoming
data I/O request and the LAT item corresponding to the
address. A detailed description of buffer read, write, and
eviction operations is given below.

For a requested write command, the proposed method
monitors the data request size and logical address. The logical
address of the requested data is converted into a LCA (line 1
of Algorithm 1). When the requested write is hit in the buffer,
WRB is set at 1, mapped to the requested LCA, and data are
loaded into the SORB area. If a buffer hit does not occur, the
buffer checks the LAT items mapped to the corresponding
LCA; LRB, and WRB (line 6 of Algorithm 1).

If the data size of the write request is less than the
predefined threshold and LRB is 0, the proposed method
writes data into the SORB area ((1) depicted in Fig. 8,
lines 12–15 of Algorithm 1). Unlike the BAWand BAR areas,
the SORB area can be allocated up to the entire buffer size.
When data I/O to the SORB area is intensively requested,
the proposed method increases the size of the SORB area by
evicting the data from the BAW and BAR areas (lines 4–14

157686 VOLUME 9, 2021



J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

FIGURE 8. (a) Buffer write sequence and (b) buffer read sequence of the proposed method.

of Algorithm 5). The proposed buffer eviction sequence is
presented in Algorithms 3, 4, and 5, and Fig. 9, 10, 11.

If the data size of the write request exceeds the predefined
threshold and LRB and WRB are both 0 (lines 7 and 8 of
Algorithm 1), then the LRB is updated to 1 (line 9 of Algo-
rithm 1) and the data are written to the BAW area ((3) and (6)
in Fig. 8, line 11 of Algorithm 1). In the proposed method,
because all small writes are recorded in the SORB area, the
buffer need not refer to the LAT for selecting a space to write
data. However, to check whether the requested small write
is an update command for append-only data, the LAT check
process is required (line 6 of Algorithm 1).
If a buffer hit occurs or the LRB mapped to the address

of the requested write is 1, the requested write is a re-access
to the data written into the storage((4), (5) in Fig. 8, and
lines 2–4, 12–15, and 21–24 of Algorithm 1). If the LRB
corresponding to the requested logical address is 1, WRB
is updated to 1 and the data are written into the SORB area
((5) of Fig. 8, lines 12–15 and 21–24 of Algorithm 1). If the
requested I/O is hit in the buffer, the data are migrated to the
SORB area ((4) in Fig. 8, and line 2–4 of Algorithm 1).
For a requested read command, the proposed method mon-

itors the logical address. If the LRB corresponding to the
requested logical address is 1 and WRB is 0 (line 6 of
Algorithm 2), the data are loaded into the BAR area ((9) in
Fig. 8, lines 7–9 of Algorithm 2). If LRB is 0 or the WRB

area is 1, the data are loaded into the SORB area ((7), (8) of
Fig. 8, and lines 10–13 of Algorithm 2).

Before loading the data requested by a read or write
command into the memory, the buffer checks its free space
(lines 10, 14, 19, and 23 of Algorithm 1; lines 7 and 11 of
Algorithm 2; and Algorithm 3, 4, and 5). When there is
insufficient space in the buffer to load the requested I/O, the
developed buffer selects an area to evict data from the three
buffer spaces, i.e., SORB, BAR, and BAW. Fig. 9, 10, 11
and Algorithm 3, 4, 5 show the buffer eviction method of the
proposed method.

Even if there is free space in the entire buffer, if read or
write of append-only data is requested when there is no free
space in the BAR or BAW area, the proposed method evicts
the data of BAR or BAW without loading the data into the
available space of the buffer (lines 13–16 of Algorithm 3 and
lines 19–21 of Algorithm 4). This is because the goal of the
proposed method is to increase the buffer hit ratio for non-
append-only data by reducing the amount of non-append-
only data evicted from the buffer due to I/O of append-only
data. Therefore, the append-only data are allocated only to
the BAR and BAWareas with a limited maximum size, unlike
non-append-only data.

In the proposed method, a large write request, which is not
an update for the stored data, is allocated to BAW (lines 7–11
of Algorithm 1). However, if there is inadequate free space

VOLUME 9, 2021 157687



J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

FIGURE 9. Buffer eviction sequence of the proposed method for loading data in BAW. (a) Buffer eviction sequence when the data buffer is
not full. (b) Buffer eviction sequence when the data buffer is full.

FIGURE 10. Buffer eviction sequence of the proposed method for loading data in BAR. (a) Buffer eviction sequence when the data buffer is
not full. (b) Buffer eviction sequence when the data buffer is full.

in the BAW area, the proposed method evicts the data in this
area even if there is free space in the entire buffer, and writes
the incoming data to the BAW area ((1) and (2) shown in
Fig. 9, and lines 13–16 of Algorithm 3). Themaximum size of
the BAW and BAR areas is limited to the maximum internal
parallelism I/O size of SSD. In contrast, the maximum size
of the SORB area corresponds to the total data buffer size.
Therefore, when a large amount of data are loaded into the

SORB area, the free space of the buffer may be insufficient;
accordingly, the BAW area may not be extended maximally.
In this case, when a large-sequential write is requested from
the BAW, the flash write required in the data eviction process
of the BAW area may not be performed by utilizing the
internal parallelism of the SSD. If data write to BAW is
requested when it cannot be expanded to its maximum size
because of insufficient free space in the buffer, the buffer of

157688 VOLUME 9, 2021



J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

Algorithm 1 Buffer Write Sequence of the Proposed Method
Input: logical block address LBA,
total data size of host request reqSize,
memory-IO data data,
memory-IO size Sizedata
Output: none
1: LCA = (LBA/ChunkSize);
2: if BufferHit then
3: set WRB to 1 for given LCA to LAT ;
4: write data to SORB;
5: else
6: get WRB and LRB for given LCA from LAT ;
7: if reqSize > threshold then
8: if (WRB == 0)&(LRB == 0) then
9: set LRB to 1 for given LCA to LAT ;

10: BufferEvict(Sizedata,BAW );
11: write data to BAW ;
12: else
13: setWRB and LRB to 1 for given LCA to LAT ;
14: BufferEvict(Sizedata, SORB);
15: write data to SORB;
16: end if
17: else
18: if LRB == 0 then
19: BufferEvict(Sizedata, SORB);
20: write to SORB;
21: else
22: set WRB to 1 for given LCA to LAT
23: BufferEvict(Sizedata, SORB)
24: write to SORB
25: end if
26: end if
27: end if

the proposed method first flushes the BAR area, and evicts
the data of SORB area ((3) and (4) in Fig. 9 and lines 3–11
of Algorithm 3). In Fig. 9, 10 and Algorithms 3 and 4,
CSpacex represents the amount of buffer space that buffer x
can claim currently. The size of the claimable buffer space of
x is derived from the difference between the maximum size
of the buffer space x and the size of the buffer space currently
allocated to x. DeadlineBAW in line 16 of Algorithm 3 is used
in the eviction of the SORB area.

If the LRB for the requested read is 1 and WRB is 0, the
proposed method determines that the requested read is for
append-only data and allocates incoming read to the BAR
area (lines 6–9 of Algorithm 2). If the available space in the
BAR area is insufficient, the proposed method evicts the data
in the BAR area, reads the data from the flash, and loads it in
the BAR area ((2) in Fig. 10, lines 7–9 of Algorithm 2, and
lines 19–21 of Algorithm 4). As mentioned in the eviction
process of the BAW area, the buffer space of the SORB area
can be equal to the entire buffer size. Therefore, when a large
amount of data are loaded into the SORB area, the BAR

Algorithm 2 Buffer Read Sequence of Proposed Method
Input: logical block address LBA,
memory-IO size Sizedata
Output: memory-IO data data
1: LCA = (LBA/ChunkSize);
2: if BufferHit then
3: return data;
4: else
5: get WRB and LRB for given LCA from LAT ;
6: if (LRB == 1)&(WRB == 0) then
7: BufferEvict(Sizedata,BAR);
8: read data from NAND to BAR;
9: return data;
10: else
11: BufferEvict(Sizedata, SORB);
12: read data from NAND to SORB;
13: return data;
14: end if
15: end if

Algorithm 3 Buffer Eviction Sequence of the Proposed
Method for Loading Data in BAW
Input: memory-IO data size Sizedata,
destination buffer space of I/O request Dest
Output: none
1: //CSpaceBAW == Claimable buffer space of BAW
2: //CSpaceBAW = MaxSizeBAW − SizeBAW
3: if Dest == BAW then
4: if FreeSpaceBuffer < CSpaceBAW then
5: while FreeSpaceBuffer < Sizedata do
6: if SizeBAR > 0 then
7: flush BAR;
8: else
9: evict victim from SORB;
10: end if
11: end while
12: else
13: while FreeSpaceBAW < Sizedata do
14: evict victim from BAW ;
15: end while
16: DeadlineBAW = 0;
17: end if
18: end if

area may not be extended maximally. In this case, if a large-
sequential read is requested from BAR, the internal paral-
lelism of the SSD may not be highly utilized when NAND
flash read due to buffer miss is processed. When BAR cannot
be expanded up to its maximum size owing to insufficient
free space in the buffer, the proposedmethod first evicts BAW
and then evicts SORB ((3), (4) in Fig. 10, and lines 3–17 of
Algorithm 4).

It is assumed that the update frequency of the data stored in
the SORB area and the append-only data stored in the BAW

VOLUME 9, 2021 157689



J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

area differ from each other; data stored in the BAW area are
less frequently updated than those in the SORB area. If data
with different update frequencies are stored in the same flash
page, (1) valid page copies may be frequently occurred during
the garbage collection process of NAND flash, which may
increase the write amplification factor and (2) the storage-
internal-buffer may be polluted. To avoid writing append-
only and non-append-only data to the same flash page, the
BAW area is evicted in units of flash pages, which is the min-
imum I/O unit of NAND flash storage (line 6 of Algorithm 4
and line 6 of Algorithm 5). If the size of data in the BAW area
is larger than that in a NAND flash page, the data in the BAW
area are evicted ((3) in Fig. 10 lines 6–8 of Algorithm 4).
If the size of data in the BAW area is less than that in a

flash page, the data in the SORB area are evicted ((4) in
Fig. 10, line 15-16 of Algorithm 4). When the size of data in
the BAW area is less than the size of a flash page, the data in
the BAW area cannot be evicted and may reside in the buffer
((4) in Fig. 10). Append-only data residing in the buffer are
less likely to be hit, which reduces the size of the available
buffer space, thereby reducing the buffer hit rate. If the data
in the BAW area cannot be evicted from the buffer because
its size is less than a flash page size, the size of data input to
the buffer is monitored to determine when BAW data will be
evicted (line 10 of Algorithm 4). If BAW data are not flushed
until data are input for the entire data buffer size, the data in
the BAW area are evicted (lines 11–13 of Algorithm 4).
If I/O is requested to the SORB area when there is no free

space in the buffer, the buffer area from SORB, BAR, or BAW
is first selected for eviction (Algorithm 5). If data exist in the
BAR area, the buffer evicts themwith the highest priority ((1)
in Fig. 11, lines 3-5 of Algorithm 5). This is because evicting
the data in the BAR area will not likely increase the latency
of I/O requests waiting to be processed. Because the BAR
area is used as a read buffer, the BAR data are clean, except
when a read hit for dirty data occurs. Therefore, data write to
flash is not required during eviction. When there are no data
in the BAR area, the eviction priority between the BAW and
SORB areas is determined in a similar manner as the eviction
sequence for loading data in BAR ((3), (4) of Fig 10 and (2),
(3) of Fig. 11; lines 4–17 of Algorithm 4 and lines 6–17 of
Algorithm 5).

V. EXPERIMENTS
To evaluate the proposed method, the target application-
specific buffer hit ratio (HitRatioTA), total buffer hit
ratio (HitRatioTotal), target application-specific storage
access latency (latencyTA) and total storage access latency
(latencyTotal) weremeasured.HitRatioTA and latencyTA repre-
sent the buffer hit ratio and storage access latency of the target
application in an environment where multiple applications
access the buffer, respectively. The storage access workload
other than the LSMKV is the target application in this study
(Table 1). This is because the objective of this study is to alle-
viate the decrease in the buffer hit ratio of other applications

Algorithm 4 Buffer Eviction Sequence of the Proposed
Method for Loading Data in BAR
Input: memory-IO data size Sizedata,
destination buffer space of I/O request Dest
Output: none
1: //CSpaceBAR == Claimable buffer space of BAR
2: //CSpaceBAR = MaxSizeBAR − SizeBAR
3: if Dest == BAR then
4: if FreeSpaceBuffer < CSpaceBAR then
5: while FreeSpaceBuffer < Sizedata do
6: if SizeBAW ≥ SizeNANDPage then
7: DeadlineBAW = 0;
8: evict victim from BAW ;
9: else if SizeBAW > 0 then
10: DeadlineBAW+ = Sizedata;
11: if DeadlineBAW ≥ SizeBuffer then
12: DeadlineBAW = 0;
13: flush BAW ;
14: end if
15: end if
16: evict victim from SORB;
17: end while
18: else
19: while FreeSpaceBAR < Sizedata do
20: evict victim from BAR;
21: end while
22: end if
23: end if

Algorithm 5 Buffer Eviction Sequence of the Proposed
Method for Loading Data in SORB
Input: memory-IO data size Sizedata,
destination buffer space of I/O request Dest
Output: none
1: //UsableSpacex = MaxSizex − Sizex
2: if Dest == SORB then
3: while FreeSpaceBuffer < Sizedata do
4: if SizeBAR > 0 then
5: flush BAR;
6: else if SizeBAW ≥ SizeNANDPage then
7: DeadlineBAW = 0;
8: evict victim from BAW ;
9: else
10: if SizeBAW > 0 then
11: DeadlineBAW+ = Sizedata;
12: if DeadlineBAW ≥ SizeBuffer then
13: DeadlineBAW = 0;
14: flush BAW ;
15: end if
16: end if
17: evict victim from SORB;
18: end if
19: end while
20: end if

157690 VOLUME 9, 2021



J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

FIGURE 11. Buffer eviction sequence of the proposed method for loading
data in SORB.

that simultaneously access the storage owing to the I/O of
append-only data for the LSMKV application.

A. EXPERIMENTAL SETUP
1) WORKLOADS
An experiment was performed using an in-house trace-
driven simulator, which is an extension of FlashSim [38], to
(1) implement various buffer management algorithms, (2) use
storage I/O access traces of various applications, and (3) mea-
sure the buffer hit ratio and storage access latency for each
application. Table 1 lists the details of the workloads used in
the experiment.

RocksDB [5], a widely used LSMKV, was selected as
the LSMKV application. The storage access workload of
RocksDB was recorded by running YCSB [39], which is a
widely used benchmark tool for cloud systems and databases.
The Zipfian distribution random order (zipf), which is often
used for the performance evaluation of various KV stores,
was selected as the input key pattern of YCSB [40]–[44].
‘‘Load’’ in YCSB stores a predefined number of KV pairs
in the database. In addition, ‘‘Run’’ reads half of the prede-
fined number of KV pairs and updates the remaining. Note
that updating a KV pair is different from updating the data
stored in the storage. Updating a KV pair involves inserting
a different value for the same key. Meanwhile, updating
the data stored in the storage involves rewriting data to the
same logical address. In Table 1, Rocks_load represents the
storage access workload when 200,000,000 key-value pairs
are newly loaded into RocksDB andRocks_run represents the
storage access trace of read and update for each 50,000,000
KV pairs. As mentioned in the performance benchmark of
RocksDB [5], the load of RocksDB is approximately 10 times
faster than read and update (overwrite); moreover, the stor-
age access collection of Rocks_load is completed in less
time than that of Rocks_run. In Rocks_load, intensive

storage I/O (specifically, large-sequential writes) occurred in
a shorter time in comparison to Rocks_run. In Rocks_run,
more small-random or large-sequential reads were recorded
than Rocks_load.

The storage access workloads of the target applicationwere
collected from the Microsoft Research (MSR) Cambridge
workload [45]. The workloads (W1 to W14) used to evaluate
the performance of the proposed method were constructed
by synthesizing the storage access trace of the LSMKV
application and that of the target application (Fig. 12). For
Rocks_load, storage I/O trace collection was completed in a
shorter time than Rocks_run. Therefore, for W1 to W7, only
a fraction of the storage I/O of the target application was used
for synthesis. In contrast, for W8 toW14, all storage accesses
of the target application were used for synthesis.

FIGURE 12. Conceptual diagram of the configuration of experimental
workloads.

2) ALGORITHMS
The characteristics of the algorithms used in the experiment
are as follows. The two-level LRU and PTLRU manage
data with high-access and low-access frequencies as separate
LRUs. While the two-level LRU manages the buffer with
fixed-length LRU lists, the maximum length of LRU lists
constituting the PTLRU is not determined. Therefore, the
PTLRU may store more hot data than the two-level LRU.
However, if the LRU list of the PTLRU that stores hot data
becomes large, the maximum size of the list that stores input
data reduces. Hence, the input data with the possibility of
re-access may be evicted from the buffer, in comparison to the
two-level LRU. VBBMS and the proposed method allocate
the requested large- and small-sized data to different LRU
lists. In comparison to VBBMS, the proposed method allo-
cates 1) large-sequential writes without update or overwrite
and 2) read requests for append-only data to small LRU lists.

3) PARAMETER SETTING
A buffer size of 8–128 MB was used in the experiment,
corresponding to the buffer size used in previous experiments.
Internal DRAM of SSD stores not only I/O data but also
the address mapping table cache, and the address mapping
table, in accordance with the address mapping scheme and
map table caching policy of SSD [46]. Therefore, I/O data
buffer size can be varied by the size of address mapping
table and map cache; large address mapping table and map
cache decrease the size of I/O data buffer. I/O data buffer
size of 8-32 MB was used to observe the experimental results

VOLUME 9, 2021 157691



J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

TABLE 1. Description of workloads used in this study.

for the small I/O data buffer, and 64-128MB was used,
vise versa. The assumed size of the SSD in the experiment
was 300 GB and the page size was 4 KB. The LAT chunk
size of the proposed method was 1 MB. The experiment for

the proposed method was performed after ensuring that the
size of the available data buffer was equal to the total buffer
size with the LAT size removed (available_buffer_size =
total_buffer_size − LAT_size). According to equation (1),
the size of the LAT used in the experiment, expressed in
byte scale, was derived from equation (2). The result of the
equation (2) is 75 KB. The SSD and chunk sizes affect the
LAT size. As the SSD size increases, the size of the address
space to be mapped by the LAT increases, thereby increasing
the LAT size. If the chunk size is large, the LAT size is
small because the entire address space of the SSD can be
expressed with fewer indices. In the experiment, the proposed
method classified sequential writes of 16KBormore as large-
sequential writes.

ByteSizeLAT = (300GB/1MB)× ((1bit + 1bit)/8) (2)

The parameter values of the existing algorithms used in
the experiments were configured to the originally proposed
values. For example, in a two-level LRU, the length of a hot
list is 1/3rd of the total buffer size. The data size threshold that
distinguishes sequential and random requests in a VBBMS
is 4 KB. The virtual block sizes of SRSR and RRSR of
VBBMS are 6 and 8 pages, respectively.

B. EXPERIMENTAL RESULTS
Figure 13 demonstrates the target application-specific buffer
hit ratio (HitRatioTA) of the existing buffer management
(page replacement) policy and the proposed method. The
x-axis represents the buffer size and buffer management pol-
icy and the y-axis represents HitRatioTA. The graphs from
(a) to (n) show the experimental results for workloads W1
to W14 listed in Table 1, respectively.

The storage access patterns of RocksDB_load and
RocksDB_run are as follows. Both RocksDB_load and
RocksDB_run have low buffer hit ratios. The buffer hit
ratio of RocksDB_load was approximately 0.01–0.04%
and that of RocksDB_run was approximately 0.2–0.8%.
In RocksDB_load, I/O commandswere requestedmore inten-
sively than RocksDB_run; moreover, in RocksDB_run, I/O
commands of a size smaller than RocksDB_load were fre-
quently requested.

Figure 13 shows that the proposed method can increase
HitRatioTA in comparison to the existing methods. Based on
VBBMS, the most recent among the three algorithms that
were compared, HitRatioTA of the proposed method ranges
from a minimum of 0.56 times ((e) 16 MB in Fig. 13) to a
maximum of 3.48 times ((l) 64 MB in Fig. 13).

As depicted in Fig. 13, the proposed method and VBBMS
exhibit a high HitRatioTA for workloads (a)–(g) and (j),
excluding (e). For workloads (h)–(n), the proposed method,
PTLRU, and two-level LRU exhibit a high HitRatioTA. The
proposed method and VBBMS, which are size-based data
separation techniques, classify large-sequential requests as
cold requests. PTLRU and two-level LRU classify frequently
hit data in the buffer as hot data. In workloads (a) to (g),
RocksDB_load requests intensive cold sequential writes.

157692 VOLUME 9, 2021



J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

FIGURE 13. Buffer hit ratio of target application; (a) to (n) represent the experimental results from workloads W1 to W14, respectively.

FIGURE 14. Total buffer hit ratio; (a) to (n) represent the experimental results from workloads W1 to W14, respectively.

Because size-based data separation stores the large-sequential
cold data of RocksDB separately from other data, the pro-
posed method and VBBMS effectively preserved the hot data
of the target application in the buffer. In RocksDB_run, cold
small-random and large-sequential reads were performed
intensively and data I/O was requested less intensively than
RocksDB_load. Therefore, for PTLRU and two-level LRU,
the frequency of evicting hot data before being re-accessed
was lower in workloads (h) to (n) in comparison to that in
workloads (a) to (g). Moreover, in workloads (a) to (g), only
a part of the workload of target application was used for the
experiment, and in workloads (h) to (n), most of the workload
of target application was used for the experiment. Therefore,
even for the same target application,HitRatioTA in workloads
(a) to (g) and (h) to (n) can differ.

In most cases, HitRatioTA of the proposed method was
higher than that of the VBBMS. Because VBBMS allocates
all small-random I/O to the hot region (RRSR), append-
only data requested by small-random I/O can evict hot
data in the hot region. In contrast, the proposed method
divides small-random read into read for append-only data
and read for non-append-only data. The I/O for append-
only and non-append-only data is then allocated to different
buffer spaces. The proposed method uses two small, fixed-
length LRU lists to store append-only data. Therefore, even
if the I/O of append-only data is intensively requested, the
buffer of the proposed method only evicts a small amount
of non-append-only data. The non-append-only data are

considered more likely to be hit in the buffer than append-
only data in our method.

In particular, as shown in (c) and (j) of Fig. 13, HitRatioTA
of the proposed method was high. In the prxy_0 workload,
data updates are frequently requested over a wide range
of addresses. Furthermore, hot data candidates, which can
be re-accessed in the near future, are intensively evicted
before being re-accessed due to the append-only data I/O of
LSMKV. Therefore, the proposed method, which allocates
large-sequential append-only data to a small buffer space, can
significantly increase HitRatioTA.
However, for a buffer size of 8-32MB of case (e) displayed

in Fig. 13, HitRatioTA of the proposed method is lower than
that of PTLRU and VBBMS. For usr_0, which is the target
application of (e), buffer which size is 32 MB or less was
insufficient to load most of hot data of the target application.
Moreover data re-access is frequently requested via large-
sequential writes and the average size of write re-access in
usr_0 is approximately 25 KB. Size-based data separation
predicts a large-sequential I/O as a cold request. Therefore,
when the average request size of the data re-access com-
mand is large, HitRatioTA of the size-based technique is
lower than that of the access-frequency-based technique. The
proposed method allocates large-sequential hot writes to the
SORB area where non-append-only data are stored; however,
VBBMS allocates all large-sequential writes to the SRSR
area where cold data are stored. Accordingly, for the buffer
size of 16 MB of case (e) shown in Fig. 13, WriteHitRatioTA

VOLUME 9, 2021 157693



J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

FIGURE 15. Storage access latency of target application in a 32 MB and 128 MB buffer. The lower label on the x-axis indicates the
experimental workload and buffer size, while the upper label indicates the target application of the experimental workload.

FIGURE 16. Total storage access latency in a 32 MB and 128 MB buffer. The lower label on the x-axis indicates the experimental workload
and buffer size, while the upper label indicates the target application of the experimental workload.

(BufferHitRatioTA for write request) of the proposed method
was higher than that of VBBMS. In our additional experi-
ments,WriteHitRatioTA of the proposed method was approx-
imately 65.7%, whereas that of VBBMS was approximately
54%. Nevertheless, HitRatioTA of the proposed method was
lower than that of VBBMS as shown in (e) 16 MB of
Fig. 13, because (1) ReadHitRatioTA (BufferHitRatioTA for
read request) of VBBMS is higher than that of the proposed
method and (2) usr_0 is a read-intensive workload. Because
VBBMS allocated a large-sequential request to the SRSR
area, the hot data in the RRSR area were not evicted due
to large-sequential I/O. Consequently, ReadHitRatioTA of the
proposed method (approximately 1.1%) was lower than that
of VBBMS (approximately 6.7%; approximately 0.3% and
6% in the SRSR and RRSR regions, respectively).

For the buffer size of 64-128 MB of case (e) and (l) in
Fig. 13, experimental results show that the proposed method
is more effective in securing the buffer size required for high
HitRatioTA; HitRatioTA of the proposed method was high
because ReadHitRatioTA greatly increased (approximately

75%) as the available data buffer size increased. In the case
of the 128 MB buffer, HitRatioTA of the proposed method,
as well as those of two-level LRU and VBBMS were high,
butHitRatioTA of the proposed method was the highest. In the
proposed method, as the size of the data I/O buffer increases,
the size of SORB increases whereas the buffer size for the
append-only I/O is fixed. In the case of the two-level LRU
and VBBMS, buffer space for hot data and cold data are both
increased because the buffer spaces are determined by the
ratio of the total buffer size. PTLRU configures LC, LD and
LH as a linked list. The cold data of the LH list (the least
recently used data of the LH list) are evicted according to the
predefined probability. If the size of the LH list is large and
the cold data of the LH list are not evicted, the size of the LC
list becomes small and cold data with a high probability of
re-access can be evicted before re-access.

As shown in case (l) of Fig. 13,HitRatioTA of the proposed
method was greater than that of VBBMS and similar to
that of PTLRU (8-16 MB) and two-level LRU (128 MB).
HitRatioTA of the proposed method was higher in case (l) than

157694 VOLUME 9, 2021



J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

FIGURE 17. Buffer hit ratio of the target application of the proposed method for various chunk sizes, in case 32-128 MB buffer.
(a) to (n) presents the experimental results for W1 to W14, respectively.

in case (e) even though these experiments were performed
on the same target application. The proposed method stores
small-random writes of RocksDB_load and large-sequential
hot writes of usr_0 in the SORB area. In RocksDB_run,
small-randomwrite access, which is stored in the SORB area,
is less frequent than in RocksDB_load. Therefore, in case (l),
for the hot data of usr_0 stored in the SORB area, there were
fewer evictions in comparison to case (e). When compar-
ing (l) and (e), although HitRatioTA of PTLRU was similar,
HitRatioTA ofVBBMSdecreased. BecauseVBBMS allocates
all small-random I/O requests that are not hit in the buffer
to the RRSR area, the data of usr_0 stored in the RRSR
are frequently evicted. In case (e) 128 MB and (l) 128 MB,
HitRatioTA of two-level LRUwas high because the size of hot
LRU was sufficiently large to retain the hot data of the target
application, and the hot data candidates were not evicted prior
to re-access because of the large candidate LRU.

The proposed method stores LAT in the buffer, resulting
in a small available buffer size. However, since proposed
method adopts coarse-grained mapping for LAT, LAT does
not require a large memory space; LAT requires 75 KB
for 1MB chunk. Therefore, the proposedmethod can increase
HitRatioTA in a small buffer. For example, when the buffer
size was 8 MB in Fig. 13, the proposed method increased
HitRatioTA by 74% than that of existing algorithms on
average.

Figure 14 illustrates the total buffer hit ratio (HitRatioTotal)
of the existing buffer management policy and the proposed
method. Because the buffer hit ratio of RocksDB is low and
the I/O scale of RocksDB is large in comparison to those
of the target application, HitRatioTotal in the experiment was
lower than HitRatioTA. In Fig. 14, HitRatioTotal was approxi-
mately 0.008–3.04%.

The proposed method increased HitRatioTA without sig-
nificantly reducing the HitRatio of RocksDB. Therefore,
in many cases of the experiment, the proposed method
improved the HitRatioTotal . However, the proposed method
can reduce the buffer hit ratio for large-sequential writes.
Furthermore, in the proposed method, data which are inter-
mittently re-accessed are evicted from the SORB. Because

the proposed method only allocates a small buffer space for
large-sequential write requests and does not provide the sepa-
rated buffer space for hot data. In Fig. 14 (a)-(g) 64-128 MB,
except (c), two-level LRU shows higher HitRatioTotal than
the compared method, including the proposed method. As an
example, in Fig. 14 (e) 128 MB, although HitRatioTA of
the proposed method was 1.14 times that of two-level LRU,
HitRatioTotal of the proposed method was 0.89 times. Two-
level LRU retained the small-sized hot data of LSMKV in
hot data list while the several hot data candidates of target
application were evicted from candidate data list. Whereas,
in case of the proposed method, the small-sized hot data of
LSMKVwere evicted from SORB region because of data I/O
of target application. Therefore, the proposed method shows
higher HitRatioTA and lower HitRatioTotal than that of two-
level LRU. The major differences between the two-level LRU
and proposed method are (1) two-level LRU has separated
buffer space for hot data and (2) the proposed method has
larger buffer space (SORB) for hot data candidates.

Even though the proposed method reduces HitRatioTotal ,
the storage access performance of the system is maintained.
This is because HitRatioTotal is low in systems in which
the LSMKV operates, and the buffer does not significantly
reduce the storage access latency of the LSMKV. According
to Fig. 16, the total storage access latency of the method pro-
posed in (e) was 1.002 times that of VBBMS. The proposed
method was primarily employed to reduce the storage access
latency of the target application in an environment where
LSMKV and the target application access the storage simul-
taneously without significantly sacrificing the overall storage
access performance. As shown in Fig. 16, total storage access
latency of the proposed method was 0.986-1.002 times that of
VBBMS.

Figure 15 demonstrates the storage access latency of the
target application (LatencyTA) of the existing buffer man-
agement and proposed methods in the 32 MB and 128 MB
buffers; the y-axis represents LatencyTA and x-axis represents
the specific workload, buffer size and the applied buffer
management method. The value indicated in each column bar
was normalized based on LatencyTA of VBBMS, which is the

VOLUME 9, 2021 157695



J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

most recent among the algorithms compared in this study. The
lower the storage access latency, the shorter the waiting time
for I/O request completion, leading to a faster I/O response
speed.

Because the proposed method reads the entry of the LAT of
the requested logical address for each storage access, it incurs
additional memory access and LAT search overhead. Herein,
the entry of LAT can be randomly accessed because LAT
is an array which is indexed by LCA. The search for the
entry of LAT with a given address can be processed within
the constant time of Big-O notation. Therefore, the latency
of additional memory accesses for LAT is included in the
storage access latency measurement of the proposed method
but the search time for LAT is not included.

As shown in Fig. 15 and Fig. 13, the higher the HitRatioTA
of the algorithm, the lower the LatencyTA. However, the
performance gaps between the algorithms in the two figures
are different. Because the access latency of NAND flash is
significantly longer than that of DRAM [47], the storage
access latency is more affected by the buffer miss ratio,
i.e., the NAND access count, than the buffer hit ratio.

Figure 15 demonstrates that LatencyTA of the proposed
method was considerably low in comparison to that of
other methods; especially for prxy_0 of Fig. 15 and usr_0
of Fig. 15 (c), (d) and rsrch_0 of Fig. 15 (d). This is
because HitRatioTA of the proposed method was substan-
tially high in aforementioned cases (approximately 76%-
91%). Meanwhile, Fig. 13 demonstrates that MissRatioTA
(1−HitRatioTA) of the proposed method was approximately
0.56-0.15 times that of VBBMS, which is similar to the dif-
ference in LatencyTA between the two methods demonstrated
in Fig. 15.

Figure 17 illustrates HitRatioTA for various chunk sizes
of the proposed method in case 32-128 MB buffer. In the
experiment, chunk sizes of 4 KB (same with the page size)
and 1MB (default) were used. The larger the chunk size of the
proposed method, the smaller the LAT size. The size of LAT
with 4 KB chunk was 18.75 MB, thus buffer less than 16 MB
was not available. Consequently, the available buffer space
of the proposed method increased, thereby increasing the
HitRatioTA.

However, an increase in chunk size may decrease
HitRatioTA. The proposed method manages the logical
address space by dividing it into chunk units. If the chunk
size is large, the likelihood of requesting I/O commands
with different access patterns in the same chunk is high. For
example, when random and sequential I/O are mixed in the
narrow address space of a workload, the address space for
both random and sequential I/O can be included in one chunk
if a coarse-grained chunk is used. In this case,HitRatioTA can
be reduced by increasing the chunk size.

VI. CONCLUSION
We presented an SSD internal buffer space separation and
management method for environments where applications
such as the LSMKV, which intensively requests data with

low re-access frequency, access the storage concurrently with
other applications. LSMKV intensively generates append-
only data that are rarely re-accessed. The proposed method
analyzed the storage access pattern for the append-only data
of the LSMKV and detected I/O for the append-only data.
Append-only data I/O can be detected based on (1) whether
the incoming write access pattern matches the write pattern
of append-only data or (2) if the read command is requested
for the append-only data. To detect append-only data I/O,
a table called LAT, which maps logical addresses, writes
the size, and re-accesses the status of corresponding logical
addresses, was proposed. As append-only data are considered
to be cold data in the proposed method, the append-only
data I/O was allocated to a separate buffer space, BAW,
and BAR. Other non-append-only data I/O requests can be
allocated to the entire buffer space; i.e., the buffer space
where general I/O requests are allocated is SORB. When
a buffer entry is to be evicted, the proposed method first
evicts BAW and BAR. Thus, the storage access speed of
applications, such as the LSMKV, that access the storage
simultaneously is increased by alleviating the buffer evic-
tion of data with a high probability of being re-accessed
owing to data I/O in the LSMKV with a low buffer hit ratio.
In comparison to the results of the existing buffer manage-
ment schemes, our experimental results demonstrated that
the proposed method can reduce the storage access latency
of target applications by 30.84%, on average, when multi-
ple applications, including the LSMKV, access the storage
concurrently.

REFERENCES

[1] M. Bjørling, ‘‘From open-channel SSDs to zoned namespaces,’’ in Linux
Storage Filesyst. Conf., Boston, MA, USA, 2019, pp. 1–18.

[2] C. C. Aggarwal, N. Ashish, and A. Sheth, ‘‘The Internet of Things:
A survey from the data-centric perspective,’’ in Managing and Mining
Sensor Data. Springer, 2013, pp. 383–428.

[3] H. Jiang, F. Shen, S. Chen, K.-C. Li, and Y.-S. Jeong, ‘‘A secure and
scalable storage system for aggregate data in IoT,’’ Future Gener. Comput.
Syst., vol. 49, pp. 133–141, Aug. 2015.

[4] S. Ghemawat and J. Dean. LevelDB. Accessed: Mar. 10, 2021. [Online].
Available: https://github.com/google/leveldb

[5] D. Borthakur. Rocksdb A Persistent Key-Value Store. Accessed:
Mar. 10, 2021. [Online]. Available: https://rocksdb.org/

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, ‘‘Bigtable: A distributed storage
system for structured data,’’ ACM Trans. Comput. Syst., vol. 26, no. 2,
pp. 1–26, Jun. 2008.

[7] M. N. Vora, ‘‘Hadoop-HBase for large-scale data,’’ in Proc. ICCSNT,
vol. 1, 2011, pp. 601–605.

[8] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor, and M. Strum,
‘‘Optimizing space amplification in rocksdb,’’ in Proc. CIDR, vol. 3, 2017,
p. 3.

[9] H. Sun, S. Dai, and J. Huang, ‘‘Cascaded write amplification of LSM-
tree-based key-value stores underlying solid-state disks,’’Microprocessors
Microsyst., vol. 78, Oct. 2020, Art. no. 103217.

[10] L.-P. Chang and T.-W. Kuo, ‘‘An adaptive striping architecture
for flash memory storage systems of embedded systems,’’ in
Proc. 8th Real-Time Embedded Technol. Appl. Symp., 2002,
pp. 187–196.

[11] C. Du, Y. Yao, J. Zhou, and X. Xu, ‘‘VBBMS: A novel buffer management
strategy for NANDflash storage devices,’’ IEEE Trans. Consum. Electron.,
vol. 65, no. 2, pp. 134–141, May 2019.

157696 VOLUME 9, 2021



J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

[12] H. Jung, H. Shim, S. Park, S. Kang, and J. Cha, ‘‘LRU-WSR: Integration
of LRU and writes sequence reordering for flash memory,’’ IEEE Trans.
Consum. Electron., vol. 54, no. 3, pp. 1215–1223, Aug. 2008.

[13] Z. Li, P. Jin, X. Su, K. Cui, and L. Yue, ‘‘CCF-LRU: A new buffer
replacement algorithm for flashmemory,’’ IEEE Trans. Consum. Electron.,
vol. 55, no. 3, pp. 1351–1359, Aug. 2009.

[14] P. Jin, Y. Ou, T. Härder, and Z. Li, ‘‘AD-LRU: An efficient buffer replace-
ment algorithm for flash-based databases,’’ Data Knowl. Eng., vol. 72,
pp. 83–102, Feb. 2012.

[15] J. Cui, W. Wu, Y. Wang, and Z. Duan, ‘‘PT-LRU: A probabilistic page
replacement algorithm for NAND flash-based consumer electronics,’’
IEEE Trans. Consum. Electron., vol. 60, no. 4, pp. 614–622, Nov. 2014.

[16] Y. Yuan, Y. Shen, W. Li, D. Yu, L. Yan, and Y. Wang, ‘‘PR-LRU: A novel
buffer replacement algorithm based on the probability of reference for flash
memory,’’ IEEE Access, vol. 5, pp. 12626–12634, 2017.

[17] Y. Yuan, J. Zhang, G. Han, G. Jia, L. Yan, and W. Li, ‘‘DPW-LRU:
An efficient buffer management policy based on dynamic page weight
for flash memory in cyber-physical systems,’’ IEEE Access, vol. 7,
pp. 58810–58821, 2019.

[18] A. Cassandra. (2014). Apache Cassandra. [Online]. Available:
http://planetcassandra. org/what-is-apache-cassandra

[19] C. Luo andM. J. Carey, ‘‘LSM-based storage techniques: A survey,’’VLDB
J., vol. 29, no. 1, pp. 393–418, Jan. 2020.

[20] L. Lu, T. S. Pillai, H. Gopalakrishnan, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, ‘‘WiscKey: Separating keys from values in SSD-
conscious storage,’’ ACM Trans. Storage, vol. 13, no. 1, pp. 1–28,
Mar. 2017.

[21] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, ‘‘The log-structured
merge-tree (LSM-tree),’’ Acta Inform., vol. 33, no. 4, pp. 351–385, 1996.

[22] J.-U. Kang, J.-S. Kim, C. Park, H. Park, and J. Lee, ‘‘A multi-channel
architecture for high-performance NAND flash-based storage system,’’
J. Syst. Archit., vol. 53, no. 9, pp. 644–658, Sep. 2007.

[23] Y. Deng and J. Zhou, ‘‘Architectures and optimization methods of
flash memory based storage systems,’’ J. Syst. Archit., vol. 57, no. 2,
pp. 214–227, Feb. 2011.

[24] Y. Hu and X. Dong, ‘‘A kind of FTL scheme which keeps the high
performance and lowers the capacity of RAMoccupied bymapping table,’’
in Proc. IEEE Int. Conf. Netw., Archit. Storage (NAS), Aug. 2016, pp. 1–2.

[25] C. Gao, L. Shi, K. Liu, C. J. Xue, J. Yang, and Y. Zhang, ‘‘Boosting the per-
formance of SSDs via fully exploiting the plane level parallelism,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 31, no. 9, pp. 2185–2200, Sep. 2020.

[26] S. Im and D. Shin, ‘‘Flash-aware RAID techniques for dependable and
high-performance flash memory SSD,’’ IEEE Trans. Comput., vol. 60,
no. 1, pp. 80–92, Jan. 2011.

[27] J. Kim, H. Kim, S. Lee, and Y.Won, ‘‘FTL design for TRIM command,’’ in
Proc. 5th Int. Workshop Softw. Support Portable Storage, 2010, pp. 7–12.

[28] D. Shin, ‘‘About SSD,’’ in Proc. Linux Storage Filesyst. Workshop, 2008,
pp. 1–27.

[29] T. Frankie, G. Hughes, and K. Kreutz-Delgado, ‘‘SSD trim commands
considerably improve overprovisioning,’’ in Proc. Flash Memory Summit,
2011, pp. 1–19.

[30] F. Geier, ‘‘The differences between SSD and HDD technology regarding
forensic investigations,’’ Tech. Rep., 2015.

[31] M. Jung and M. Kandemir, ‘‘Revisiting widely held SSD expectations and
rethinking system-level implications,’’ ACM SIGMETRICS Perform. Eval.
Rev., vol. 41, no. 1, pp. 203–216, Jun. 2013.

[32] Y.-S. Yoo, H. Lee, Y. Ryu, and H. Bahn, ‘‘Page replacement algorithms
for NAND flash memory storages,’’ in Proc. Int. Conf. Comput. Sci. Appl.
Springer, 2007, pp. 201–212.

[33] S.-Y. Park, D. Jung, J.-U. Kang, J.-S. Kim, and J. Lee, ‘‘CFLRU:
A replacement algorithm for flash memory,’’ in Proc. Int. Conf. Compil.,
Archit. Synth. Embedded Syst., 2006, pp. 234–241.

[34] J. Lee and J.-S. Kim, ‘‘An empirical study of hot/cold data separation
policies in solid state drives (SSDs),’’ in Proc. 6th Int. Syst. Storage Conf.,
2013, pp. 1–6.

[35] H. Jo, J.-U. Kang, S.-Y. Park, J.-S. Kim, and J. Lee, ‘‘FAB: Flash-aware
buffer management policy for portable media players,’’ IEEE Trans. Con-
sum. Electron., vol. 52, no. 2, pp. 485–493, May 2006.

[36] H. Kim and S. Ahn, ‘‘BPLRU:A buffer management scheme for improving
random writes in flash storage,’’ in Proc. FAST, vol. 8, 2008, pp. 1–14.

[37] J. Kwak, J. Lee, D. Lee, J. Jeong, G. Lee, J. Choi, and Y. H. Song,
‘‘GALRU: A group-aware buffer management scheme for flash
storage systems,’’ IEEE Access, vol. 8, pp. 185360–185372,
2020.

[38] Y. Kim, B. Tauras, A. Gupta, and B. Urgaonkar, ‘‘FlashSim: A simulator
for NAND flash-based solid-state drives,’’ in Proc. 1st Int. Conf. Adv. Syst.
Simulation, Sep. 2009, pp. 125–131.

[39] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
‘‘Benchmarking cloud serving systems with YCSB,’’ in Proc. 1st ACM
Symp. Cloud Comput., 2010, pp. 143–154.

[40] H.-S. Lim and J.-S. Kim, ‘‘LevelDB-Raw: Eliminating file sys-
tem overhead for optimizing performance of LevelDB engine,’’ in
Proc. 19th Int. Conf. Adv. Commun. Technol. (ICACT), Feb. 2017,
pp. 777–781.

[41] T. Yao, J.Wan, P. Huang, X. He, Q. Gui, F.Wu, and C. Xie, ‘‘A light-weight
compaction tree to reduce I/O amplification toward efficient key-value
stores,’’ in Proc. 33rd Int. Conf. Massive Storage Syst. Technol. (MSST),
May 2017, pp. 1–13.

[42] X.Wu, Y. Xu, Z. Shao, and S. Jiang, ‘‘LSM-trie: An LSM-tree-based ultra-
large key-value store for small data items,’’ in Proc. Annu. Tech. Conf. ,
2015, pp. 71–82.

[43] K. Ren, Q. Zheng, J. Arulraj, and G. Gibson, ‘‘SlimDB: A space-efficient
key-value storage engine for semi-sorted data,’’ Proc. VLDB Endowment,
vol. 10, no. 13, pp. 2037–2048, Sep. 2017.

[44] P. Menon, T. Rabl, M. Sadoghi, and H.-A. Jacobsen, ‘‘CaSSanDra: An
SSD boosted key-value store,’’ in Proc. IEEE 30th Int. Conf. Data Eng.,
Mar. 2014, pp. 1162–1167.

[45] D. Narayanan, A. Donnelly, and A. Rowstron, ‘‘Write off-loading: Practi-
cal powermanagement for enterprise storage,’’ACMTrans. Storage, vol. 4,
no. 3, pp. 1–23, Nov. 2008.

[46] C. Gao, Y. Di, A. Deng, D. Liu, C. Ji, C. J. Xue, and L. Shi,
‘‘F2FS aware mapping cache design on solid state drives,’’ in Proc.
IEEE 7th Non-Volatile Memory Syst. Appl. Symp. (NVMSA), Dec. 2018,
pp. 31–36.

[47] C. Zambelli, G. Navarro, V. Sousa, I. L. Prejbeanu, and
L. Perniola, ‘‘Phase change and magnetic memories for solid-state
drive applications,’’ Proc. IEEE, vol. 105, no. 9, pp. 1790–1811,
Sep. 2017.

JOONYONG JEONG received the B.S. degree
from the Department of Information System,
Hanyang University, Seoul, South Korea, in 2015,
where he is currently pursuing the Ph.D. degree
with the Department of Electronics and Computer
Engineering.

His research interests include NAND flash-
based storage systems, databases, and key-value
stores.

GYEONGYONG LEE received the B.S. degree
from the Department of Electronic Engineer-
ing, Hanyang University, South Korea, in 2014,
where he is currently pursuing the Ph.D. degree
with the Department of Electronics and Computer
Engineering.

His research interests include embedded com-
puting and NAND flash memories.

VOLUME 9, 2021 157697



J. Jeong et al.: Buffer Management With Append-Only Data Isolation for Improving SSD Performance

JUNGKEOL LEE received the B.S. degree from the
Department of Electronic Engineering, Hanyang
University, South Korea, in 2014, where he is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Electronics and Computer Engineering.

His research interests include embedded com-
puting and IoT devices.

JUNGWOOK CHOI (Member, IEEE) received
the B.S. and M.S. degrees in electrical and com-
puter engineering from Seoul National University,
South Korea, in 2008 and 2010, respectively, and
the Ph.D. degree in electrical and computer engi-
neering from the University of Illinois at Urbana–
Champaign, USA, in 2015. He worked with the
IBM T.J. Watson Research Center as a Research
Staff Member, from 2015 to 2019. He is currently
an Assistant Professor with Hanyang University,

South Korea. His research interest includes the efficient implementation of
deep learning algorithms. He has received several research awards, such as
the DAC 2018 best paper award, and has actively contributed to academic
activities, such as the Technical Program Committee of DATE 2018–2020
(the Co-Chair) and DAC 2018–2020, and the Technical Committee (DiSPS)
in IEEE Signal Processing Society.

YONG HO SONG received the B.S. and M.S.
degrees in computer engineering from Seoul
National University, Seoul, South Korea, and the
Ph.D. degree in computer engineering from the
University of Southern California, Los Angeles,
CA, USA, in 1989, 1991, and 2002, respectively.

He is currently working as a Professor with the
Department of Electronic Engineering, Hanyang
University, Seoul. He is also the Senior Vice Pres-
ident at Samsung Electronics Company Ltd. His

current research interests include the system architecture and software sys-
tems of mobile embedded systems, which further include SoC, NoC, mul-
timedia on multicore parallel architecture, and NAND flash-based storage
systems.

Prof. Song has served as a Program Committee Member of several
prestigious conferences, including the IEEE International Parallel and Dis-
tributed Processing Symposium, IEEE International Conference on Parallel
and Distributed Systems, and IEEE International Conference on Computing,
Communication, and Networks.

157698 VOLUME 9, 2021


