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ABSTRACT The economic problem is a primary consideration in mega-constellations design. This work
aims to quantify the cost of mega-constellation deployment missions and analyze the contribution of reusable
launch vehicles to cost savings. In this paper, the cost estimation model of mega-constellation deployment
missions is investigated, consisting of the launch cost and satellite cost. Simulation examples demonstrate
the high applicability of the cost estimation model and the considerable cost-effectiveness of the reusable
launch vehicle in mega-constellation deployment missions.
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least square regression.

I. INTRODUCTION
In recent years, along with the mass production and indus-
trialization of satellite manufacturing [1], breakthroughs in
reusable launch vehicle (RLV) technology [1] have reduced
the cost of entering space drastically and made it possible
to deploy a mega-constellation in low earth orbit (LEO).
At present, many organizations and commercial corporations
have proposed LEO mega-constellations plans [2]. Starlink
system designed by SpaceX plans to launch 42,000 LEO
satellites [3], of which 1,791 have been in orbit by the
end of Oct 16, 2021. OneWeb initially plans to launch 648
satellites to form a global Internet constellation [4], [5].
For the unprecedentedly complex large-scale space system,
funding issues are the primary constraint for deploying
mega-constellation [6]. Huge costs are the crucial factor in
determining whether the plan can be implemented smoothly.
The cost estimation of the mega-constellation program plays
a vital role in effectively controlling the mission cost.

Cost estimation and cost analyses are indispensable steps
for space mission project management [7]. The ‘‘NASA Cost
Estimating Handbook 4.0’’ [8] Summarizes three cost esti-
mation methodologies: analogy cost estimating, parametric
cost estimating, and engineering build-up methodology (also
known as ‘‘bottom-up’’ estimating). As the most common
method, parametric cost estimating keeps the advantages
of objectivity, consistency, and speed compared to other

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Gaggero .

methods. Parametric cost estimating depends on historical
data and regression analysis to create Cost Estimating Rela-
tionships [9] (CERs). In recent decades, parametric cost
estimation models widely used mainly include Unmanned
Space Vehicle Cost Model [10] (USCM), Small Satellite Cost
Model [11] (SSCM), NASA Instrument Cost Model [12]
(NICM), Mission Operations Cost Estimating Tool [13]
(MOCET), NASA Air Force Cost Model [14] (NAFCOM),
Spacecraft/Vehicle Level Cost Model [15] (SVLCM), and
Project Cost Estimating Capability (PCEC) [16], etc. Specif-
ically, SSCM is developed by The Aerospace Corporation,
which estimates the development and manufacturing costs of
small satellites. USCM is another cost model developed by
The Aerospace Corporation, which estimates the Unmanned,
earth-orbiting spacecraft cost, but does not include launch
vehicles. NASA develops NICM, NAFCOM, PECE, and
SVLCM. NICM provides CERs for specific types of instru-
ments; NAFCOM estimates the cost for launch vehicles,
Landers, and other flight hardware elements; SVLCM is
used for calculating the development and production cost
for spacecraft and launch vehicle stages based on NASA/Air
Force Cost Model database.

Although there are many existing cost estimation models
for spacecraft or spacemissions, many of them have restricted
access, and an available cost estimation model for mega-
constellation deployment missions does not yet exist. In addi-
tion, a CER ultimately depends on a particular historical
dataset. It only reflects the nature of that set. In other words,
a given CER can only predict the future based on trends
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in the historical dataset, and a paradigm-shifting mission
may be inappropriate. Therefore, it is necessary to create
a specific cost estimation model for the mega-constellation
deployment missions based on the parametric cost estimating
method.

Launch cost is one of the most critical parts of the mega-
constellation deployment missions that this paper focuses on.
At the same time, the Reusable Launch Vehicles (RLVs) have
been proven to be an effective cost-cutting tool [17]. The
RLVs share the cost by reusing some devices multiple times,
thereby reducing the mission’s total cost. The Falcon 9 used
by the Starlink system [18] offers a very competitive price
depending on its reusability, and it has been reused up to
10 times. However, the RLV cannot be reused indefinitely,
and its lifetime determines the upper limit of the number
of times it can be used. On the one hand, extreme ther-
mal cycling conditions lead to uneven heat distribution and
instantaneous changes in the internal structure of the engine’s
high-temperature components, causing changes in the ther-
modynamic properties of the material. Multiple reuses will
cause the high-temperature components to fatigue failures,
which is the main constraint on the lifetime of the RLVs.
On the other hand, the engine’s moving components (includ-
ing turbopumps and bearings) are severely worn under high-
speed and high-pressure environments, limiting the number
of times the RLVs can be used. Apart from the technical
aspect, the lifetime of the RLVs is also determined based on
the highest economic efficiency criteria. When the increase
in the number of used times cannot contribute to cost-saving,
the RLV’s lifetime has reached an end. In conclusion, how
the lifetime of the RLV affects the mission cost should
be put into consideration. It is significant to evaluate the
cost-effectiveness of the RLVs, compared with Expendable
Launch Vehicles (ELVs), in mega-constellation deployment
missions.

This paper provides a cost model based on the parameter
estimation method to estimate and perform quantitative anal-
ysis for the cost of a mega-constellation deployment mission.
The mega-constellation deployment cost is divided into two
parts in this work, launch cost and satellite cost. At first,
establish the cost estimation model for launch vehicles by
parameter estimation method. The CER is obtained by the
partial least square regression (PLSR) method based on small
sample data. Then, considering various factors affecting the
cost of the RLV, we create the RLV cost estimation model on
the foundation of the ELV cost model. Meanwhile, we calcu-
late the small satellite cost with mass customized production.
The last, the cost model of mega-constellation deployment is
obtained. Summarized, the main contributions of this paper
are as follows: First, the total cost of mega-constellation
deployment is analyzed quantitatively and systematically, and
the impact of ELV and RLV on the total cost is compared.
Second, this paper gives a specific cost model for the con-
stellation rather than theoretical analysis compared with [19].
Third, Reference [20] proposed a bottom-up approach to
estimate the costs linked to RLV operations and recovery

with simplified assumptions. However, it didn’t quantify the
contribution of the RLV to controlling the cost of space
missions. This paper can supplement the above shortcomings.
In conclusion, this paper systematically analyzes the total
cost ofmega-constellation deploymentmissions, and the final
results could provide some reference for the designers of
mega-constellations.

The remainder of the paper is structured as follows.
Section II presents the theory and method for establishing
the cost estimation model of mega-constellation deployment
missions. Section III develops the cost model in detail, and
a corresponding numerical simulation is performed. Finally,
conclusions are drawn.

II. COST ESTIMATION MODEL OF
MEGA-CONSTELLATION DEPLOYMENT MISSIONS
In order to quantitatively analyze the total cost of a
mega-constellation deployment mission, an effective cost
estimation model must be established. The cost of a mega-
constellation deployment mission includes launch cost, satel-
lite production and manufacturing cost, and the cost of the
ground system responsible for satellite operation and control.
The rental and construction costs of the ground system are
affected by many complicated factors, such as the scale of
construction, geographic location, economic conditions, and
so on, leading to a considerable challenge for the cost estima-
tion of the ground system. Therefore, this paper assumes that
the mega-constellation makes full use of the existing ground
system to provide satellite operation and control services, and
regardless of the cost of the ground system. In conclusion,
this paper’s mega-constellation deployment cost estimation
includes the launch cost estimation of the launch vehicle and
the mass-produced satellite cost estimation. In addition, the
cost of RLVs and ELVs are discussed in the launch cost
estimation model.

A. ELV COST ESTIMATION MODEL
Using the parameter estimation method to determine the
CER of ELV requires the launch vehicles dataset, including
launch cost data and the cost drive factors data that directly
affect the launch cost of ELV [21]. Obviously, larger sam-
ple datasets will lead to a better accuracy estimation. How-
ever, it is challenging to collect large amounts of accurate
launch vehicles data. Due to the limited number of launch
vehicles in service and the confidentiality requirements of
certain types of launch vehicles, some data are unavailable.
Moreover, some cost drive factors have high correlations,
which means that there is multicollinearity between vari-
ables. PLSR method is a statistical tool designed to solve
multiple regression problems with small sample data and
overcome multicollinearity between variables [22]. There-
fore, due to the lack of sufficient launch vehicle sam-
ple data and multicollinearity between variables, this paper
utilizes the PLSR method to solve the cost estimation
model.
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1) ESTABLISHING CER OF ELV
The cost drive factors of the ELV mainly include payload
capacity, lift-off mass, size dimensions, lift-off thrust, etc.
In order to verify the validity of the selected factors, a corre-
lation analysis of the data must be carried out. The cost drive
factors that have a strong correlation with the launch cost
are denoted as P1,P2, . . . ,Pn. There is a particular function
relationship between each factor and launch cost, which is the
CER of the ELV.

CELV = F(P1,P2, . . . ,Pn) (1)

where CELV is the launch cost of the ELV.
To determine the CER relationship, we need to observe the

regression fitting effect of the launch vehicle data on several
common functional relationships, such as linear relationship,
power function relationship, exponential function, Gaussian
function, etc. The CER of the ELV is determined in which the
regression accuracy is consistent with expectations.

2) MODELING STEPS OF PLSR
PLSR is a practical technique that generalizes and combines
features from principal component analysis and multiple
least-squares regression [23]. The steps of the PLSR method
are described as follows.

The dependent variable y of n observations is described by
a n×1 matrix. The k independent variables x1, x2, . . . , xk are
represented as a n× k matrix.

X = [xij]n×k Y = [yi]n×1 i = 1, . . . , n j = 1, . . . , k

where xij represents the j th independent variable of the
i th observation and yi is the dependent variable of the i th
observation.

Step1: Standardize X and Y denoted as E0 and F0:
Step2: Regression analysis. Extract the first principal com-

ponent t1 from E0. t1 = E0w1, and

w1 =
E′0F0∥∥E′0F0

∥∥ (2)

E0 and F0 are regressed on t1:

E0 = t1p1 + E1 F0 = t1r1 + F1 (3)

where p1 and r1 are the regression coefficients, and

p1 =
E′0t1
‖t1‖2

r1 =
F′0t1
‖t1‖2

(4)

Step 3: Accuracyanalysis. If the regression equation of y
on t1 meets the accuracy requirements, continue to the next
step; else, E0 = E1,F0 = F1, and repeat step 1, step 2 to
extract a new principal component from the matrix remnants

Step 4: If the extracted h th principal component meets the
accuracy requirements, The regression equation of F0 can be
derived by PLSR:

F̂0 = r1t1 + r2t2 + · · · + rhth (5)

Eq. (5) can also be expressed as follow:

F̂0 = r1E0w∗1 + r2E0w∗2 + · · · + rhE0w∗h

w∗h =
∏i−1

j=1
(I − wjp′j)wi (i = 1, 2, . . . h) (6)

I is a unit matrix, and Eq. (6) can finally be expressed as

ŷ∗ = α1x∗1 + α2x
∗

2 + · · · + αkx
∗
k (7)

where x∗j = [x∗1j, x
∗

2j, . . . , x
∗
nj]

T , y∗ = [y∗1, y
∗

2, . . . , y
∗
n]
T , and

the regression coefficient αj of x∗j is

aj =
h∑
i=1

riw∗ij (8)

w∗ij is the j th element of w∗i .
Step 5: Reversing the process of standardization and con-

verting to the regression equation of y on x1, x2, . . . , xk .

B. RLV COST ESTIMATION MODEL
Taking advantage of the RLV in deploying the LEO mega-
constellations is a cost-effective and efficient way. The recent
Starlink constellation deployment by SpaceX has success-
fully proved this point. In this work, the RLV cost estima-
tion model builds on the ELV cost estimation model and
increases RLV recovery costs, maintenance and refurbish-
ment costs [24]. In addition, loss of payload capacity due to
the landing process, number of used times, and reusable rate
of the RLV are the key factors directly affecting the total cost
of mega-constellation deployment [25].

1) RECOVERY COST
The RLV recovery costs mainly include the transporta-
tion and operation costs of vehicles, vessels, and other
ground infrastructure generated during the recovery process
and the labor costs associated with recovery. Referring to
the TRANSCOST, a top-down model, the estimation for-
mula [20] of RLV recovery cost is given:

Crecovery =
1.5
L

(7 · L0.7 + m0.83
rec ) · fi (9)

where L is the launch rate, mrec is the mass of the recovered
stage, and fi is the factor influenced by country and business.

2) MAINTENANCE AND REFURBISHMENT COST
Maintenance and refurbishment costs for RLV include repair-
ing the damaged parts, refurbishing the worn parts, and
replacing some disposable parts. At present, there is a lack of
empirical data on the refurbishment cost of RLV for analysis
since only SpaceX has successfully recovered and reused
launch vehicles. Moreover, the maintenance and refurbish-
ment cost is only a tiny part of the launch cost. The mainte-
nance and refurbishment cost is calculated as a fraction of the
RLV launch cost [20].

Cm,r = k1CRLV (10)

where, k1 is the ratio coefficient of RLV maintenance and
refurbishment cost to launch cost.
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3) NUMBER OF USED TIMES
The number of times the RLV is used as a critical cost driver
plays an essential role in saving the total cost of the space
mission, and its effect on total cost must be evaluated. SpaceX
recently achieved that one of the Falcon 9 boosters be used
10 times, and this figure will likely keep rising. The reuse
times of the RLVmainly depend on the lifetime of the engine.
The fatigue resistance of the thermal structure and the friction
and wear degree of the moving components are the main
factors that affect the engine’s lifetime. At present, the thrust
chamber of China’s LOX/ kerosene engine adopts various
cooling methods. The seal and bearing of turbopump adopt
surface spraying to reduce the wear. A preliminary evaluation
that the LOX/ kerosene engine can be reused more than
30 times [26]. Based on the current technical status, this paper
holds that each rocket booster should theoretically be able to
launch up to dozens of times.

4) REUSABLE RATE
The reusable degree of RLV is another crucial factor affecting
the mission cost. In order to describe the degree of reusable
after the recovery process, this paper defines the reusable
rate means that the cost of the reusable part accounts for the
proportion of the entire launch vehicle cost. Since the speed
of the upper stage far exceeds that of the first stage, it poses
a considerable challenge to recover the upper stage. At the
same time, the upper stage only accounts for about 20 %
of the launch vehicle cost. In other words, the benefits of
recovering the upper stage are difficult to make up for its
price. Therefore, from the perspective of cost-effectiveness,
there is no need for recovering the upper stage. Generally,
if only the first stage is recovered, the reusable rate can be
controlled at around 70 %. If the fairing is also recovered, the
reusable rate is estimated to reach 80 %.

5) LOSS OF PAYLOAD CAPACITY
RLV’s reusability comes at the expense of reduced payload
capacity. Since the RLV must carry extra fuel for the reentry
and landing process of the reusable first stage, and this will
reduce the payload capacity of the RLV [27]. The loss of pay-
load capacity has a considerable impact on the cost estimation
of mega-constellation deployment. Thus, it is necessary to
calculate the loss of payload capacity.

Assuming that the RLV is a two-stage rocket, and recovery
the first stage can be realized. Moreover, the landing plat-
form can be deployed in the first stage landing area when
adopting the marine recovery mode. Then, large-scale lateral
maneuvers are not required during the reentry and landing
process, reducing the demand for propellant [28]. Therefore,
assuming that the RLV adopts marine recovery mode, and
regardless of the fuel consumption by the lateral maneuver.
The Tsiolkovsky equation is the basis of the derived formulas
for the propellant mass calculations:

1vi = g0 · Isp,i · ln(
m0

mf
)i (11)

Here g0 is the standard gravity. All other variables are
for the i th stage. 1vi is maximum change of velocity, Isp,i
is the vacuum specific impulse, m0 is the initial total mass
(including propellant) also known as ‘‘wet mass,’’ and mf is
final total mass also called as ‘‘dry mass.’’

After the first stage separation, the wet mass of the first
stage includes the structure mass and the propellant mass
needed for the landing process. Assuming that the propellant
is fully utilized in the recovery process, then the mass of the
first stage after landing includes only the structure mass. The
propellant mass required for the first stage recovery can be
obtained as:

mp,recovery = ms,1 · (e
1vrecovery
g0·Isp,1 − 1) (12)

where, mp,recovery is the propellant mass consumed by the
recovery process, and 1vrecovery is the velocity change in the
landing process. ms,1 is the structural mass of the first stage.

Under ideal conditions, the velocity change during the
ascent of the first stage can be expressed as:

1v1 = g0Isp,1 ln(
mp,1 + mp,2 + ms,1 + ms,2 + mpl

mp,recovery + mp,2 + ms,1 + ms,2 + mpl
)

(13)

where,mp,1 is the propellant mass of the first stage, similarly,
mp,2,ms,2 stand for the mass of upper stage, and mpl is the
payload mass.

the upper stage’s delta-v is calculated as:

1v2 = g0Isp,2 ln(
mp,2 + ms,2 + mpl

ms,2 + mpl
) (14)

If using the same launch vehicle but without recovering the
first stage, the velocity change of the first stage and the upper
stage are expressed as:

1v′1 = g0Isp,1 ln(
mp,1 + mp,2 + ms,1 + ms,2 + mplmax

mp,2 + ms,1 + ms,2 + mplmax
)

(15)

1v′2 = g0Isp,2 ln(
mp,2 + ms,2 + mplmax

ms,2 + mplmax
) (16)

where, mplmax is the maximum payload capacity when the
first stage recovery process is not carried out.

It is generally a reasonable assumption that the final total
velocity change of the ELV and the RLV is equal when the
satellite is sent to the same altitude. Besides, the velocity
change of RLV’s first stage in ascent and descent is the same.
Equations can be derived as:

1v1 +1v2 = 1v′1 +1v
′

2 (17)

1vrecovery = 1v1 (18)

Combining Eq (17) and Eq (18) can obtain the maximum
payload capacity of the RLV. We define the payload capacity
loss rate as η which stands for the reduction degree of the
RLV’s payload capacity compared to the ELV under the same
conditions. It can be calculated by:

η =
mplmax − mpl

mplmax
× 100% (19)
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C. SMALL SATELLITE COST ESTIMATION MODEL
For small satellite cost estimation, the method of parame-
ter estimation is usually used to give approximate results.
The Small Satellite Cost Model (SSCM) model proposed by
Aerospace Corporation is widely used to estimate the cost of
small spacecraft with mass less than 1000 kg [29]. According
to the SSCM model, when other factors are set as nominal
values, the estimated relationship between cost and weight of
small satellites is expressed as:

Csat = −1.2× 10−8 · m3
sat − 4× 10−5 · m2

sat + 0.096 · msat
+ 26 (20)

where, Csat is the cost per satellite, and msat is the mass of a
satellite.

In addition, to deploy thousands of satellites in space,
a volume production model of satellites is indispensable.
With the expansion of the satellite production scale, the unit
price will decrease accordingly. In industrial manufacturing,
a learning curve [30] is used to describe the impact of volume
production on the cost quantitatively and is defined as:

Y (N ) = Csat × N 1− ln(1/S)
ln 2 (21)

where N is the number of satellites produced, S is the learning
coefficient, and Y (N ) represents the total cost of N satellites
in mass production.

For the aerospace industry, N and S have the following
corresponding relations:

D. COST MODEL OF MEGA-CONSTELLATION
DEPLOYMENT
Through the above analysis, the total cost of a mega-
constellation deployment mission can be estimated. In order
to obtain a comparative study of ELV and RLV cost-
effectiveness for the space mission, the cost model of mega-
constellations deployment missions using ELV and RLV was
established, respectively.

1) COST MODEL OF TOTAL MISSION WHEN USING ELV
The cost using an ELV to launch the satellites is denoted
as CELV , then, the number of launch vehicles needed to
accomplish the entire constellation deployment mission is
represented as nELV and calculated by:

nELV =
N⌈

mplmax
msat

⌉ (22)

Thus, the total cost of mega-constellation deployment mis-
sions is computed by:

C1 = nELV · CELV + Y (N ) (23)

2) COST MODEL OF TOTAL MISSION WHEN USING RLV
In order to estimate the total cost of deploying a mega-
constellation with the RLVs, the number of satellites that
can be carried by one rocket and the number of the RLVs
required for the mission must be obtained. Furthermore, it is

assumed that all launch vehicles have reached the upper limit
of reusability, and all of them can be used for nr times.
In order to facilitate comparison with ELV, the parameters of
the RLV are set to be consistent with it, that is, the first launch
cost of the reusable rocket is CELV , then the i th launch cost
of RLV expressed as:

CRLV ,i =

{
CELV i = 1
(1− λ)CELV + Cm,r + Crecovery 2 ≤ i ≤ nr

(24)

where, λ is the reusable rate of the RLV.
For the sake of calculation, we define the average cost per

launch of RLV, and it represents the average cost of an RLV
used for nr times. Then, the average cost per launch of RLV
can be computed as:

CRLV =
1
nr

nr∑
i=1

CRLV ,i

=
1
nr

[CELV + (1− λ)(nr − 1)CELV

+ (nr − 1)Cm,r + (nr − 1)Crecovery] (25)

According to the payload capacity of RLV and the satellite
mass, the maximum amount of satellites that RLV is capable
of launching into space at one time can be derived:

n =
⌊
(1− η) · mplmax

msat

⌋
(26)

Subsequently, the quantity of the RLVs required to accom-
plish the deployment mission of the mega-constellation is
expressed as:

nRLV =
N

n · nr
(27)

Consequently, when using the RLVs deploys the satellites,
the total mission cost is calculated as:

C2 = nRLV nr ·CRLV + Y (N ) (28)

III. CASE STUDY
Aim at the cost estimation problem of the mega-constellation
deployment missions. This work refers to relevant literature
and data. The cost model proposed in this paper is used to
perform simulation analysis.

Before going into details, To ensure the rationality of the
model, some necessary assumptions need to be clarified. The
specific content is as follows:

a) It is assumed that the launch vehicle can reach the upper
limit of its carrying capacity in each launch mission.

b) Suppose that the launch vehicle sends the satellites into
a circular orbit at the height of 200km. Then the satellite
relies on its propulsion system to lift to the pre-selected
orbit.

c) Under the same conditions of all technical indicators,
the launch cost of RLV when it is not recovered is the
same as that of ELV.
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TABLE 1. Functional relationships.

TABLE 2. Relationship between N and S [30].

A. COST ESTIMATION SIMULATION OF ELV
1) SIMULATION DATA COLLECTION AND ANALYSIS
Data is the basis for simulation using parameter estimation
methods. This paper collects the technical parameter data and
cost data of part of the Long March series launch vehicle
in service [31]. The technical parameter data of the ELV
includes the height, the diameter, the payload to LEO, the lift-
off mass, and the thrust. It is shown in Table 3.

In order to measure the correlation degree between the
technical parameter and the cost, the correlation coefficient
between the observations must be calculated. It is calculated
as:

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑
i=1

(xi − x̄)2
√

n∑
i=1

(yi − ȳ)2
(29)

where, n is the sample size, xi and yi are the individual sample
points indexed with i. x̄ and ȳ are the sample mean.

Table 4 shows the correlation between the various parame-
ters. According to the correlation coefficient matrix, it is evi-
dent that the correlation between the 5 technical parameters of
the ELV and the launch cost is greater than 0.7. These studies
suggest a strong correlation between the 5 parameters and the
cost, and the technical parameters can be used as the cost drive
factors of the ELV cost estimation model. In addition, some
factors are also closely related. For instance, the correlation
coefficient between the lift-off mass and the thrust is close
to 1. It is proved that there is multicollinearity between the
selected factors.

2) DETERMINATION OF CER
Table 5 to 7 show the regression effect of the data on the
5 classic functional relationships. In order to obtain a more
accurate CER model, using the lift-off mass, the thrust, and
the payload to LEO as the object of study on account of these
three factors are highly correlated with launch cost. The least-

FIGURE 1. The total cost of mega-constellation deployment missions
breakdown.

FIGURE 2. Fitting effect of lift-off mass.

squares regression method is used for comparative analysis,
and the specific results are shown as follow:

The smaller the RMSE is, the smaller the deviation
between the predicted and sample values, and the better the
fitting effect is. If the R-square is closer to 1, it indicates that
the function’s independent variable has a more vital ability to
interpret the dependent variable, which shows that the model
fits the data. In Table 5, although the regression result of
lift-off mass on the linear function is the best, the RMSE and
the R-square value of the power function are extremely close
to it. Table 6 and 7 show that the power function’s results are
the most ideal. A conclusion can be drawn from the results in
multiple tables. When the relationship between the parameter
and the cost is a power function, the RMSE and the R-square
result are both outstanding and prove that the fitting effect is
the best.

Figures 2 to 4 visually show the distribution of the sample
points and the fitting curve. The line donates the regression
curve of launch cost, and the two dashed lines indicate the
95% confidence interval of launch cost. In the three figures,
the sample points are relatively evenly distributed on both
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TABLE 3. Parameters of long march series launch vehicle.

TABLE 4. Correlation coefficient matrix of launch vehicle parameters.

TABLE 5. Regression results of lift-off mass on common functional relationships.

TABLE 6. Regression results of payload to LEO on common functional relationships.

TABLE 7. Regression results of thrust on common functional relationships.

sides of the fitting curve, which means that the regression
curve conforms to the distribution trend of the sample points.
In general, the fitting effect is fairly ideal when the CER
model is established based on the power function.

According to the above data analysis, the results in Tables 5
to 7 indicate that the smallest RMSE and R-square closest to
1 will be obtained when the launch vehicle’s technical param-
eters and the launch cost are in a power function relationship.
In other words, the regression effect of the vehicle data on
the power function is the best. At the same time, the results in

Figures 2 to 4 intuitively show that the launch vehicle data has
a good regression effect on the power function. In addition,
the TRANSCOST model [32] also uses a power function to
establish the CER model. Therefore, through data analysis
and reference to an existing model, it can be concluded that
the relationship between the launch cost and the performance
parameters of the ELV is a power function, and the final CER
model can be expressed as:

CELV = a× Pb11 × P
b2
2 × · · · × P

bk
k (30)
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FIGURE 3. Fitting effect of payload to LEO.

FIGURE 4. Fitting effect of thrust.

where, a, b1, b2, . . . , bk are constant coefficients of the equa-
tion and P1,P2, . . . ,Pk are k cost drive factors.

3) APPLICATION OF PLSR TO ELV COST ESTIMATION
This work takes the logarithm of both sides of Eq (29), which
reduces to a linear equation. After that, we use the PLSR
method to obtain the final CER of ELV as follow:

CLV = e−4.4901 · H0.9549
· D0.5109

·M0.224
· P0.143 · T 0.3325

where H , D, M , P, T are all cost drive factors of ELVs.
Specifically, H is the height, D is the diameter, M is the lift-
off mass, P is the payload to LEO, and T is the total thrust.

The histogram visually compares the actual value and the
predictive value generated by the ELV cost estimation model.
The model’s predicted value is close to the true value, and
the average deviation rate of the model estimation result is
2.507%. Moreover, RMSE = 2.432, which is significantly
reduced compared to regression analysis results on the inde-
pendent variables. In conclusion, the simulation results of the
ELV cost model are in line with expectations and have an

TABLE 8. Parameters of Falcon 9 block5.

FIGURE 5. ELV cost estimation result based on the PLSR method.

ideal predictive performance for the launch cost of the Long
March series of rockets.

B. COST ESTIMATION SIMULATION OF RLV
This paper refers to the performance parameters of Falcon 9,
which is currently the only fully-used RLV in the world to
estimate the loss rate of payload capacity caused by the RLV
recovery process. Table 8 lists the performance parameters of
Falcon 9 Block5.

After calculation, the Falcon 9 Block 5’s first stage recov-
ery will be at the cost of increasing 52.6 tons of propellant.
At the same time, it will lead to a 33.6% reduction in the LEO
carrying capacity of the launch vehicle. This result will be
applied to subsequent simulation calculations.

In the following simulation for cost estimation of the
launch vehicle, it is assumed that the diameter of all launch
vehicles is 3.35 meters, the annual launch frequency is set to
24, and k1 = 1%. Moreover, this paper’s launch vehicle cost
estimation depends on five critical performance parameters,
and some are closely related. Combining the parameter data
of the Long March series of launch vehicles and the correla-
tion analysis results, the consistent relationship between the
performance parameters is obtained: M = 89.48 · P0.6916,
T = 1420 · P0.6163, H = 30.18 · P0.2247.

Figure 6 compares the launch cost of ELV and RLV,
the impact of the number of times the RLV is used, and the
reusable rate of RLV on the average cost per launch. In the
simulation, the payload to LEO capacity of ELV is set to
20 tons, and the payload capacity of RLV is reduced by 33.6%
based on ELV. The curved surface in the figure describes the
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FIGURE 6. Comparison of the RLV and ELV cost per launch. The
relationship between the number of used times, reusable rate and the
cost per launch of the RLV.

FIGURE 7. The relationship between the number of mass-produced
satellites, weight and the cost per satellite.

variation trend of average cost per launch with the number of
used times of RLV ranging from 2 to 30 times and the reusable
rate ranging from 50% to 80%. It can be seen that RLV has
a significant cost advantage compared to ELV. Even if it is
reused only once, it can still save at least 24.3% of the cost
per launch on average compared to ELV.

Furthermore, if the reusable rate is constant and the number
of used times is less than 10, the average single launch cost
of RLV decreases rapidly as the reuse times increase. If the
number of used times is greater than 10 times, the average
cost per launch of RLV decreases significantly slower as the
number of used times increases. At this time, it mainly relies
on increasing the reusable rate to reduce the cost.

C. COST ESTIMATION SIMULATION OF SATELLITES
Figure 7 depicts the trend of the cost per satellite with the
satellite mass and the number of satellites. The curved surface
clearly shows that the satellite cost will decrease significantly

FIGURE 8. The total launch cost corresponds to payload capacity and the
number of used times of RLV.

as the number of satellites increases in the case of mass
production. However, if the number of satellites continues to
increase, the cost of a single satellite decreases less and less.

D. COST ESTIMATION SIMULATION OF
MEGA-CONSTELLATION DEPLOYMENT
The curves in Figure 8 respectively show the relationship
between the payload to LEO capacity of an ELV, the payload
to LEO capacity of an RLV, the number of used times of
an RLV, with the total launch cost of the mega-constellation
deployment missions. The simulation process assumes that
10,000 small satellites are deployed in low earth orbit, the
satellite mass is 200kg, and the reusable rate of the RLV is
70%.

The simulation results illustrate that the payload to LEO
capacity of the launch vehicle is negatively correlated with
the total launch cost. Still, the downward trend of the entire
launch cost will slow down when the payload capacity
increases to a certain extent. Moreover, as the number of
used times of RLV increases, the total launch cost gradually
decreases. The entire launch cost of RLV and ELV is almost
the same when the RLV is reused once. Only when the
reused times of the RLV are greater than 2 can RLV save the
total launch cost. However, when an RLV is used more than
10 times, the distribution of the curve in the figure becomes
denser. In other words, the overall launch cost reduction effect
becomes worse and worse as the number of used times of an
RLV increases to a certain extent. To sum up, increasing the
payload capacity of the launch vehicle and utilizing the RLV
to complete the mega-constellation deployment missions has
a significant effect on saving the total launch cost of the mis-
sion. However, when the number of used times and payload
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FIGURE 9. The total launch cost corresponds to the number of satellites,
payload capacity of RLV, and used times of RLV.

FIGURE 10. The total cost of mega-constellation deployment mission
breakdown.

capacity increases to a certain extent, the reduction rate in the
full launch cost of the mission slows down significantly.

Figure 9 analyzes the relationship between the total num-
ber of satellites in the mega-constellation, the used times, the
payload capacity of RLV with the total launch cost. It can
be seen that the total number of satellites is the main factor
affecting the total launch cost, and the payload capacity has a
significant impact on the total launch cost when the number
of satellites is large. In addition, if the RLV can be reused
more than 10 times, it has little effect on saving the mission’s
total cost.

Figure 10 compares the total satellites costs and launch
costs using the RLV and the ELV, respectively, in the mega-
constellation deployment missions. The payload to LEO
capacity of ELV is set to 20 tons, and the payload capacity of
RLV is reduced by 33.6% compared with ELV, the reusable

rate is set to 70%, and the number of used times is 10 times.
It can be seen that satellite costs account for the largest pro-
portion of the total mission costs. As the quantity of satellites
increases, the proportion of launch costs gradually increases.
Besides, compared with ELV, RLV can reduce the launch cost
by at least 42.3% under the same conditions.

IV. CONCLUSION
A cost estimation model for the mega-constellation deploy-
ment missions is proposed in this paper. As the mega con-
stellation is a newly developed project, only two systems,
Starlink and OneWeb, are currently being constructed and
have not yet been completed. Therefore, it is difficult to verify
the accuracy and efficiency of the model by comparing it
with real data. However, in the simulation process, some
mathematical statistics can be used to verify the model’s
accuracy to a certain extent.

The accuracy of the model proposed in this paper is illus-
trated from the following aspects. Firstly, the best RMSE
and R-square results are acquired when the power function
establishes the CER model. It proves the efficiency of using
the power functions to develop the cost estimation model of
the ELV. Then, the ideal average deviation and RMSE results
between the predicted value and the real sample data show
that using the PLSR to solve the cost estimation problem
of the ELV has high accuracy and effectiveness. Moreover,
based on the Tsiolkovsky equation, the LEO payload capacity
loss rate of the RLV is derived in this paper. The simulation
result is 33.6%, in line with SpaceX’s official claim that
Falcon 9’s LEO payload capacity loss rate is less than 40%.
Furthermore, the simulation results show that if the RLV is
reused only once, it can save 24.3% of the cost per launch
on average. This result is roughly consistent with the average
launch cost reduction of 25.9% described in [33]. It means
that the model related to the launch cost in this paper has a
certain degree of credibility. In conclusion, the model pro-
posed in this paper has certain accuracy and efficiency.

The following viewpoints can be obtained preliminarily by
modeling and simulating the cost estimation of the mega-
constellation deployment missions. Firstly, the cost estima-
tion model of the launch vehicle based on the PLSR method
can effectively estimate the launch cost of the Long March
series of rockets. Secondly, compared with ELV, the applica-
tion of the RLV to deploy mega-constellations has obvious
cost advantages. Although increasing the number of used
times and reusable rate of RLV is a significant way to reduce
the cost of launch missions, the degree of the mission cost
reduction will become very small if the number of used times
exceeds 10. Therefore, weighing the safety and reliability of
the launch vehicle, blindly pursuing an increase in the number
of used times does not contribute much to the cost-saving
of the mission. In addition, total satellite costs account for
the largest proportion of total mission costs. It is necessary
to reduce the satellite manufacturing costs by introducing
new technologies, optimizing management mechanisms, and
selecting commercial off-the-shelf (COTS) devices.
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