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ABSTRACT In the past decade, deep learning methods, especially convolutional neural networks, have
received much attention in applications of single-image dehazing. However, the haze in hazy images cannot
be distinctly separated because it is complicatedly mixed with the background components. If we roughly
remove the haze, the background tone of global atmospheric light may also be destroyed. To resolve the
above problem and reconstruct clearer and higher-quality dehazing images, we introduced our progressive
feedback network (PFBN) in recurrent structure ties with a feedback mechanism. The feedback mechanism
is implemented by stacking feedback blocks that contain feedback connections among iterations. At the
input layer of each feedback block, its hidden state in the last iteration is delivered by a feedback connection
to the present block as part of the input. The last hidden state, also referred to as high-level information,
is fused with low-level information output by the previous block to generate effective feature representation.
Moreover, we proposed an enhancement self-ensemble strategy to decrease the random error of the network
to reconstruct clearer dehazing images. Finally, we designed a series of extensive experiments to verify the
outstanding performance of our method.

INDEX TERMS Image dehazing, deep learning, feedback mechanism, convolutional neural network.

I. INTRODUCTION
One of the most common types of weather is haze, which
generates complicated noise. Therefore, it brings about great
challenges if hazy images need to be used in upper appli-
cations. Removing haze is necessary for many outdoor
applications, such as objective recognition and video surveil-
lance [1]. However, because the amount of useful information
in a single hazy image is insufficient, dehazing algorithms
are always considered ill-posed tasks [2]. Today, this topic is
one of the most attention-grabbing academic explorations in
image reconstruction and artificial intelligence [3].

Many algorithms focusing on single-image dehazing
have been proposed in recent years. These algorithms
can be roughly classified into two categories: model-
based approaches and data-driven approaches, that is, deep
learning-based methods. According to previous studies
[4]–[6], the classical model for generating a hazy image, I ,
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is as follows:

I (x) = T (x)J (x)− (1− T (x))A (1)

where J refers to haze-free scene brilliance; I refers to the
observed hazy image; A denotes the global light of the atmo-
sphere, indicating the strength of the environmental light; T
refers to the transmission map; and x is the pixel location.

Most methods use this model and design two networks
to obtain A and T ; however, this model is computationally
intensive, and the proposed networks are always difficult to
train and have strict high PC requirements.

According to [2], a simpler but more effective model is
employed in this paper:

J (x) = K (x)I (x)− K (x)+ b

K (x) =
1

T (x) (I (x)− A)+ (A− b)

I (x)− 1
(2)

In the equation above, K (x) is a new unified variable
contains 1

T (x) and A. Variable b refers a constant bias and
default value is set as 1 as [2] did.
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Therefore, we only need to estimate one unified parameter
matrix K (x) through the network rather than two in Eqn.1.
It is more effective and computationally efficient.

Currently, there have been many upper applications in the
field of computer vision or image enhancement, and all these
applications, such as object detection and autopilot, require
a clean and high-quality dataset for their implementation.
Therefore, the performance of upper applications depends
to a large extent on whether the previous data processing
process was successful. Therefore, it is vital to enhance the
captured visual data, such as through the use of dehazing and
deraining, to pursue cleaner data, which can then be utilized
in upper applications.

II. RELATED WORK
A. DATA-DRIVEN SINGLE-IMAGE DEHAZING METHODS
To date, in the field of computer vision and image enhance-
ment, most of the designed networks have been end-to-end
networks: introducing a specific network to reconstruct clean
images immediately from the original hazy images. There
exists a wide consensus that the key point of reconstructing
clean images is to obtain a precise medium transmission
map. [7], [8].

The recurrent structure is also employed in image dehaz-
ing. These methods are aimed at removing haze accumulated
in images both iteratively and progressively. Jiang et al. [9]
proposed a lightly recurrent network for video dehazing,
which makes it possible to train such a large dataset in a
limited amount of time. Tan et al. [10] introduced a novel
method in which a random Markov field was employed to
obtain transmission map T .

B. FEEDBACK MECHANISM
The feedback mechanism is a simple but effective approach
to enhancing the performance of networks in recurrent struc-
tures. The core of this mechanism is delivering high-level
information to low-level information through a feedback
connection to integrate a power feature representation. The
output of the network and reconstruction of clean images are
then iteratively clearer.

Many previous studies have successfully applied feedback
mechanisms in various missions. The author of [11] first
introduced a feedbackmechanism and successfully adopted it
for image classification and designed some helpful strategies
that obtained outstanding performance. Later, [12] utilized a
feedback strategy for superresolution and replaced the LSTM
[13] block with their own feedback block to achieve a better
result. Then, Shama et al. [14] found a helpful improvement
by combining a feedback approach with generative adversar-
ial networks, the feedback loop is employed to transmit the
discriminatory spatial information to the generator. Recently,
a feedback strategy has been employed in action detection
with graph neural networks to enhance the representation
ability of networks [15]. [16] proposed a novel feedback
network for single image deraining, a residual dense block

(RDB) [17] is employed as feedback block, RDB is effec-
tive for image deraining but not helpful for image dehazing
according to our experiments.

In this paper, we introduce a unique feedback block to
make it apposite with a feedback mechanism. After several
feedback blocks are stacked, the designed deep neural net-
work can extract more precise information and features from
the original hazy images; then, strong representation can be
helpful for reconstructing the dehazing images. Due to the
ability to correct the previous state, haze can be eliminated
gradually, while the background iteratively becomes clearer.

III. PROPOSED METHODS
Two components are required in a feedback mechanism.
1) iterativeness. 2) rerouting the output back into the sys-
tem to amend the input in each loop. To meet this demand,
the recurrent structure is employed and feedback loops are
adopted in each feedback block. As Fig.1, the whole network
is folded by T sub-networks, where T refers to the settled
parameter that represents the number of iterations. Besides,
the parameters of each sub-networks are globally shared
across iterations. What’s more, each sub-networks will be
forced to estimate K (x) and reconstruct a dehazing image for
sub-loss calculating.

A. NETWORK STRUCTURE
1) Input Layer: The input layer f tin in the t th iteration

receives the original hazy image I and the dehazing
image output by the previous iteration J t−1.

F tin = f tin([J
t−1
|I ]) (3)

where [·|·] refers the concatenation operation and F tin is
the feature map produced by the input layer. The input
layer essentially a fusion layer that merge the high-level
information of its previous iteration and the low-level
original information. The input layer consists of a con-
volutional operation Conv(6,m), where m is the number
of channels of F tin, we set m = 64 in this paper.

2) Feedback Backbone: The feedback backbone f tbackbone
is a combination of several stacked feedback blocks
{FB1,FB2, . . . ,FBB} (The detailed description of feed-
back block is in III-B and the exact number of feedback
blocks will be explored in IV-A). The feedback back-
bone receives the F tin output by the input layer.

F tbackbone = f tbackbone(F
t
in) (4)

where F tbackbone refers the hidden states produced by
feedback backbone in the t th iteration. It is noticeable
that each feedback block in the internal of feedback
backbone will receive extra information, more descrip-
tion can be found in III-B.

3) Output Layer: In the output layer f tout , feature map
F tbackbone is used to calculate the unified parameter
matrix K t (x).

K t (x) = f tout (F
t
backbone) (5)
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FIGURE 1. Illustration of our proposed method with T iterations. The green block on the left refers the input layer. The pink block on the right refers the
output layer. The red lines denotes the feedback connection designed for information transmission. The black lines from dehazy images to input layer
indicate that the input layer will receive the reconstruction dehazing image of last iteration. It is notable that the parameters at each iteration are shared
globally. The network is forced to restore the background at each iteration and T sub-losses are calculated to obtain the final loss.

The output layer contains a convolutioanal operation
Conv(m, 3) to transform the m-channels F tbackbone into
3-channels K t (x).

4) Recurrent Loss: In each iteration, after obtaining the
estimated K t (x), sub-network will be enforced to gen-
erate a hazy-free scene and calculate the sub-loss.

loss =

∑T
i=1 wilossi∑T
i=1 wi

(6)

where loss is the final loss of the whole network, lossi
is the sub-loss of the ith sub-network, and wi is the
weight corresponding to each sub-loss. In this paper,
we set wi = 1, i = 1, 2, . . . ,T as [11] did, and T is
the number of iteration of proposed network (The exact
value of T will be discussed in IV-A).
The feedback mechanism requires rerouting the output
back into the system in each iteration [11]. In that
case, the main difference between feedback network and
recurrent feedforward network is recurrent loss. If sim-
ply adopting the loss of the last iteration as final loss will
lead to a feedforward network rather than feedback net-
work. Therefore, every sub-loss of each iteration must
be considered in our proposed network.

B. FEEDBACK BLOCK
A feedback block is composed of a fusion layer and a
K -estimation module proposed by [2]. The fusion layer of the

FIGURE 2. A closer look of feedback block.

ith feedback block in the t th iteration will receive the output of
the i− 1th feedback block in the t th iteration and the output
of the ith feedback block in the t − 1th iteration, denotes as
FBti−1 and FBt−1i respectively. The fusion layer is essential
a average operator, it will deliver the average feature map of
FBti−1 and FB

t−1
i to K -estimation module.

As shown in Fig.2. The K−estimation contains 5 con-
volutional operations and 3 concatenation operations. The
first concatenation layer will concatenat the hidden states
produced by Conv1× 1 and Conv3× 3. Similarly, the second
concatenation layer is responsible for processing those of
Conv3× 3 and Conv5× 5. The final concatenation layer will
receive all hidden states produced by previous 4 convolutional
operations and deliver the concatenated feature map to the
final convolutional layer.
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FIGURE 3. The illustration of self-ensemble strategy.

C. SELF-ENSEMBLE
The self-ensemble method is an enhancement method to
decrease the variance in the model [18]. By horizon-
tally, vertically, or diagonally flipping the outputs of aug-
mented images, we can obtain eight ensemble hazing images
[IB1 , IB2 , . . . , IB8 ] as shown in Fig.3. With the inspiration
of great success achieved by this strategy in field of super
resolution, we hope to adopt this strategy in singe image
dehazing.

After feeding the network these eight hazing images,
we can obtain eight dehazing images [OB1 ,OB2 , . . . ,OB8 ],
flip them back and average them to obtain the final output of
the network.

O =

∑8
i=1OBi
8

(7)

IV. EXPERIMENTS RESULTS
In this section, we conduct a series of ablation experiments
to determine the key components of our proposed network
(PFBN). Then, we quantitatively and qualitatively evaluate
our network on several common benchmark datasets with
state-of-the-art methods.

In the details of our proposed method, the number of
channels m is set to 64, and the kernel size of convo-
lutional operations is 3. All experiments are implemented
with the PyTorch framework [19]. The training processes
are conducted on a PC with a Linux system equipped with
NVIDIA 2080Ti GPUs and Intel(R) Core(TM) i7-11800H
CPUwith 16GBRAM. In the experiments, ADAMoptimiza-
tion [20] is adopted to train the models with an initial learning
rate of 1e-5.

A. ABLATION STUDIES
All ablation studies are carried out on a benchmark test
dataset called SOTS [12], which contains 1,000 pairs of haze
images and cleaning images, the evaluationmetrices of which
are PSNR and SSIM [21].

1) STUDY OF ITERATIONS
In this subsection, we discuss the influence of the number of
iterations (denoted as T ) while fixing the number of blocks

FIGURE 4. PSNR values corresponding to each iteration.

FIGURE 5. PSNR values corresponding to each number of feedback
blocks.

as 3. Fig. 4 indicates the PSNR values of the proposed FBN,
and T = 1, 2, 3, . . . , 7, 8. It is notable that when T > 1 (with
feedback connection), the metric of reconstruction images
is significantly higher than T = 1. This means that our
proposed PFBN indeed benefits from the feedback strategy.
Moreover, when T increases, the performance continues to
rise. In addition, we note that when T > 7, the performance
almost converges to a constant. Although there is still a slight
improvement in performance when T > 7, we comprehen-
sively consider the GPU memory and running time, and we
set T = 7 as final number of iteration in proposed network
structure.

2) STUDY OF THE NUMBER OF FEEDBACK BLOCK
Similar with the study of iterations, we explore the number of
feedback blocks (denoted as B) by settle B = 1, 2, 3, 4 while
fixing the T = 7. Fig.5 shows that B = 3 is the most
suitable value. So, the final structure of our proposed PFBN
is designed as B = 3,T = 7.
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FIGURE 6. Visual quality comparison with state-of-the-arts. PFBN can reconstruct higher-quality detailed features than other
state-of-the-arts, notes that the self-ensemble strategy can enhanced the performance slightly.

TABLE 1. Comparison of different loss functions.

3) STUDY OF LOSS FUNCTION
There are several widely adopted loss functions, such asMSE
loss, L1 loss, negative SSIM loss and recurrent MSE (RMSE)
loss, the different formulas of which are as follows:

MSE =
1
mn

m∑
i=1

n∑
j=1

[X (i, j)− Y (i, j)]2

L1 =
1
mn

m∑
i=1

n∑
j=1

|[X (i, j)− Y (i, j)]|

−SSIM = −
(2µXµY + C1)(2σXY + C2)

(µ2
X + µ

2
Y + C1)(σ 2

X + σ
2
Y + C2)

RMSE =
1
T

T∑
t=1

MSEt (8)

where X ,Y are the reconstruction image and ground truth,
respectively; m, n denote the height and width, respectively;
µ refers to the mean value of all pixel values of an image;
σ refers to the deviation; and σXY denotes the covariance
of images X and Y . More details about SSIM can be found
in [21]. In recurrent MSE loss, each iteration is forced to
reconstruct the dehazing image and calculate the MSE loss,
and then, it must sum all iteration losses to obtain the recur-
rent loss.

We compare these formulas by setting B = 3,T = 7 and
training different networks with respect to each loss. The
results are shown in Table 1. It is clear that recurrent MSE
loss is most suitable, so we choose it as our method’s loss
function.

4) STUDY OF ACTIVATION FUNCTION
Similarly, now, we investigate the influence of the activation
function; the alternative activation functions that are widely
used in image reconstruction include RELU [23], leaky

TABLE 2. Comparison of various activation functions.

ReLU [24], and Gaussian error linear units (GELU) [25]. The
formula for the above activation functions are as follows:

RELU (x) =

{
x, x > 0
0, x <= 0

LRELU (x) =

{
x, x > 0
x
a
, x <= 0

GELU (x) = 0.5x(1+ tanh[
√
2/π (x + 0.04715x3)]) (9)

where a in leaky ReLU is a constant that satisfies a ∈
[1,+∞], and tanh(x) = ex−e−x

ex+e−x .
A comparison of various activation functions is shown in

Table 2. It is clearly shown that the network with RELU
achieves the highest performance. Therefore, in our network,
RELU is employed.

B. COMPARISON WITH THE STATE-OF-THE-ART METHODS
In this subsection, we evaluate our PFBN and other dehaz-
ing methods on three benchmark datasets, i.e., SOTS [12],
I-HAZE [26], and O-HAZE [27]. It is notaable that the net-
works are trained on 27,256 selected training pairs from
NYU2 datasets [28]. The SOTS consists of 500 pairs of test
images, I-HAZE consists of 35 image pairs that are hazy and
haze-free images, and O-HAZE contains 45 different outdoor
scenes.

Our PFBN is compared with several state-of-the-art dehaz-
ing methods, including NLD [7], AODNet [2], NLDN [29]
and a Geometric-Pixel Guided CNN proposed by [22].
We reproduce these methods to compare. Besides, the pro-
posed self-ensemble methods are implemented to enhance
the reconstruction ability. The only difference between PFBN
and PFBN+ is that PFBN+ is evaluated with the self-
ensemble strategy. Table 3 illustrates the comparison results
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TABLE 3. Comparison with state-of-the-art methods on three benchmark datasets.

TABLE 4. Comparison of trainable parameters, GPU memory and running time.

with state-of-the-art methods for three benchmark datasets.
The evaluation metrics are PSNR/SSIM. The results sig-
nificantly indicate that our PFBN has a stronger capability
of reconstructing a clean image than other methods, and
PFBN+ indeed benefits from such a simple strategy. Accord-
ing to [30], self-ensemble strategy actually decreases the
variance in each pixel of hazy images and keeps its bias
unchanged.

The visual results are shown in Fig. 6. It can be clearly
observed from Fig.6(a) that haze exists over the image. The
results of the comparison methods can remove this haze sig-
nificantly but are not effective. Such visual results illustrate
that the proposed PFBN can reconstruct high-quality clean
images.

The most critical advantage of our model is its perfor-
mance. The number of optimized parameters of PFBN and
other state-of-the-art methods is shown in Table 4. Although
the number of parameters, GPU memory and running time is
a little bigger than other states-of-the-arts, PFBN have more
powerful ability to reconstruct a haze-free scene.

Notes that self-ensemble strategy is only used in the test
processing, it don’t require any extra parameters, but it will
increase the GPU memory in test processing and the running
time is about 8 times that of PFBN.

V. CONCLUSION
In this paper, a progressive feedback network for single-
image dehazing was proposed, which is easy to train and
can achieve high performance for dehazing. The employed
feedback connections can fuse high-level and low-level infor-
mation through iterations, which enhances the representation
ability of the network. In the training process, the sub-losses
are tied to train the network according to the rules of the
feedback mechanism. Additionally, a self-ensemble method
tends to enhance the performance of the network. The exten-
sive experimental results show that the proposed methods
can reconstruct clearer dehazing images in some common
benchmark datasets compared with state-of-the-art methods.
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