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ABSTRACT Pipelines are backbone of the transportation of gases and liquids such as oil, gasoline, water,
and sewage. However, pipelines are constantly aging and sustaining damage, which may result in significant
resource loss and environmental contamination. Pipelines must be inspected and maintained on a regular
basis for effective functioning and to avoid cost overrun. Due to the fact that pipes are often located
underground and they have different sizes and configurations, inspection including condition assessment,
leak detection, and fluid quality monitoring of pipelines are challenging. For this purpose, in-pipe robots
have shown promising solutions to reach the inaccessible parts of pipeline networks. In this paper, we first
categorize the mechanical systems of in-pipe robots. Then, we review four missions performed by these
robots, including localization, mapping, navigation, and inspection, along with the core methods used in
each mission. Further, since image processing is a common and important approach to accomplish all the
mentioned missions, we decided to dedicate a separate section for reviewing comprehensive categorization
of image processing techniques. We also provide the list sensors used in in-pipe robots classified by the
mission and the method of use.

INDEX TERMS In-pipe robots, localization, mapping, navigation, inspection, image processing, sensors.

I. INTRODUCTION
Pipelines are prone to damages. So, it is essential to per-
form regular condition assessments in pipe networks to pre-
vent or cure those damages. However, pipelines are long
and have complicated configurations buried underground,
making most parts inaccessible. In-pipe robots have shown
promising results in condition assessment when the sens-
ing unit(s) are mounted on a body with controlled motion
inside the pipe. Various missions can be performed by in-pipe
robots, which help with saving time and energy for pipeline
maintenance.

There are different mechanisms and configurations for
in-pipe robots. Considering the mechanism, Shao et al. [1]
classified the in-pipe robots with active locomotion into
wheeled type, Caterpillar type, and non-wheeled type mech-
anisms. Robots with passive motion (moving by the flow
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in the pipe) use pressure inspection gauge (PIG) mecha-
nisms [2], [3]. Table 1 shows different classifications for
in-pipe robot mechanisms.

In wheeled type robots, the simple structures refer to the
robots that have wheels connected under their body and move
inside the pipe [4], [5]. In the wall-press types, the wheels
press the pipe while they are connected to the endpoint of
some adaptable arms anchored on a central body making a
120◦ angle with each other [6]. In the screw drive types, the
wheels are mounted on a rotational and a fixed units that
transmit the spiral motion of thewheels to linearmotion along
pipe axis [7].

In the Caterpillar type robots, belts and wheels move the
robot inside the pipe with high friction between the robot
and the pipe wall that ensures a reliable motion compared to
wheeled robots. The caterpillar type robots are divided into
the simple structure [8] and wall-press type [9].

In the non-wheeled types, snake types have some con-
nected modular units that enable the motion for the robot
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TABLE 1. Mechanisms of the in-pipe robots. Source: adapted from [1].

inspired by the motion type of a snake [10]. Inchworm type
robots move inside the pipes by contraction and extension
of a flexible body along the pipe axis [11]. Another type
of non-wheeled robots that are less common are legged
robots that provide better maneuverability in complicated
configurations by the expense of sophisticated motion con-
trol algorithms [12], [13]. Finally, free-swimming robots
suggested in the literature are designed for small diame-
ter pipes and move in the pipe with propellers that pro-
vide propulsion force for the robot during motion [14]
(see Fig. 1).

As for the actuation of the in-pipe robots, different
kinds of actuators have been used in the literature. Pneu-
matic actuators [11], [15], [16] and electrical actuators
that have DC motors [17]–[28] are the most common in
in-pipe robots. Some new actuators like shape memory alloy
(SMA) actuators have also been used to generate traction
and press forces in in-pipe robots [29]. The power supply
for in-pipe robots can be either provided by cable [18],
[19], [26], [28], [30]–[34] or battery [9], [17]. Fig. 2
shows the classification of the robots in terms of locomo-
tion, actuator, and power supply. Also, Table 2 compares
different mechanism types of in-pipe robots in different
performance indicators. Due to many uncertainties, distur-
bances, and complicated configurations in the pipelines, the
in-pipe robots need to have smart motion in pipelines during
operation.

In some cases, among tethered robots, communication is
facilitated by wire, and among the battery-powered robots,
communication is facilitated by wireless communication.
However, the short length of wires limits the inspection range
of the robots. Moreover, due to the high signal attenuation
of radio signals, wireless communication is a challenging
task [35]. In addition, pipeline networks include long pipes
with complicated configurations [36].

Due to advancements in numerical methods, it is pos-
sible to facilitate smart motion for in-pipe robots and
enable long pipe inspections with smart navigation. In this
paper, we define four specific tasks that are desirable
in in-pipe missions: Mapping, Localization, Navigation,
and Inspection. In this paper, we describe these con-
cepts and the different associated methods used for each
concept.

The remainder of the paper is as follows: In section II,
the localization is explained, and the methods for local-
ization are described. In Section III, mapping methods are
summarized; in Section IV, the navigation methods are

FIGURE 1. Different mechanisms for in-pipe robots. (a) Simple structure
for wheeled robots [5]; (b) wheeled wall-press mechanism [6];
(c) wheeled screw-drive type [7]; (d) simple structure for caterpillar
type [8]; (e) wall-press caterpillar type [9]; (f) snake type [10];
(g) inchworm type [11]; (h) legged robot [12]; and (i) free swimming
type [14].

presented; and in section V, the inspection methods are
explained. We explain and categorize the image processing
techniques and sensors used in in-pipe robots in sections
VI and VII, respectively. Finally, the paper is concluded in
Section VIII.
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FIGURE 2. Categorization of the in-pipe robots based on their locomotion, actuator, and power supply.

TABLE 2. Comparison of different mechanisms of in-pipe robots: adapted from [1].

II. LOCALIZATION
The term localization for in-pipe robots refers to determining
the location of the robot in the pipeline network. Local-
ization is desired once the robot moves in the long and

complicated configurations of pipelines. There are different
methods that the researchers use to localize the robot in
the pipe. Most localization techniques are a combination of
different methods. In the following subsections, we describe
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FIGURE 3. Kalman filter: The recursive estimation process includes two
steps: prediction and update. Adapted from [38].

the core methods used for localization and present the use of
these core methods with other methods to facilitate localiza-
tion for a specific application.

A. KALMAN FILTER
Kalman filter is an optimal estimation algorithm used in two
applications; first in the application where it is not possible
to measure the desired parameter, and second to estimate
a parameter from various measurements subject to noise.
Kalman filter is a recursive approach and works based on
the state-space representation of a system. A system can be
represented as:

xk = Axk−1 + Buk + wk (1)

yk = Cxk + vk (2)

where k is the current time-step, x is the state, A is the state
transition model of the system, B is the input model of the
system, u is the system input, y is the system measurements,
and C is system’s output model. Also, w ∼ N (0,Q) and
v ∼ N (0,R) are process and measurement noises, respec-
tively, that have zero mean and normal probability distribu-
tion (Gaussian distribution). Our goal is to estimate xk , that
we call it x̂k , using system measurements yk . The estima-
tion in the Kalman filter comprises two steps: 1) prediction
and 2) update. The prediction step can be represented as
follows:

x̂−k = Ax̂k−1 + Buk (3)

P−k = APk−1AT + Q (4)

In Eq. (3), x̂−k is a prior state estimate before the current
measurement is done and in Eq. (4), P−k is the prior estimate
error which represents a measure of uncertainty in the state
estimation. P−k comes from process’s noise and the propaga-
tion of the uncertain x̂k−1. The initial values for P and x̂ are
their initial estimates. The second part of the estimation (the
update step) uses the prior estimate, x̂−k , that is calculated in
the prediction step. The update step is represented as follows:

Kk =
P−k C

T

CP−k C
T + R

(5)

x̂k = x̂−k + Kk (yk − Cx̂
−

k ) (6)

Pk = (I − KkC)P
−

k (7)

In Eq. (6), x̂k is the posterior estimate of the state at step k .
The process of prediction and update is repeated until the
results converge (see Fig. 3) [37]–[39].

Wu et al. [40] proposed a method to use onboard sen-
sors, including an Inertial Measurement Unit (IMU), gyro,
and leak sensors to localize an in-pipe leak detection robot.
To do so, two methods are presented which utilize IMU data,
average and instantaneous speed, and relative distance con-
sidering candidate in-pipe joints. The Rauch-Tung-Striebel
(RTS) smoother algorithm and Extended Kalman filter are
applied to extrapolate and correct the robot’s trajectory.
Siqueira et al. [41] suggested a strategy to localize an in-pipe
robot to determine the defect position. They proposed using
the steering encoder data to pose the robot and to use the
IMU to acquire reliable robot orientations. Also, the extended
Kalman filter technique is implemented to fuse the encoder
and IMU data. Liu and Krys [42] proposed a method to
detect the pipe surface anomaly using a laser range finder.
A Kalman filter is implemented to the laser range finder
readings to reduce the noises and errors. Anjum et al. [43]
presented a method that utilized a low-cost accelerometer,
gyroscope, and encoders for robot localization and slips error
compensation. An unscented Kalman Filter is applied as an
efficient sensor fusion technique. Maneewarn and Thung-
od [44] have suggested a method with the combination
of the Extended Kalman filter (EKE) and Iterative Closest
Point (ICP) matching algorithm to localize, inspect, and map
the pipe. To help increase the localization process’s accuracy,
artificial landmarks have been introduced in the environ-
ment. They used Reduced Inertial Sensor System (RISS)
and data fusion by extended Kalman filter to improve PIG
localization. Al-Masri et al. [45] have proposed two mech-
anization approaches, Inertial Navigation System (INS) and
3-D Reduced Inertial Sensor System (RISS), to improve the
Pipeline Inspection Gauge (PIG) to navigate and localize the
robot and map the pipe profile. An Extended Kalman filter is
used to fuse the IMU data (used in the navigation problem)
with PIGmeasurements and to reduce the accumulated errors.

B. PARTICLE FILTER
The particle filtering method uses the parameters in the sys-
tem that can be measured directly from sensors to estimate
other parameters in the system that cannot be measured
directly (e.g., the location of an in-pipe robot) using the
mathematical relation between those parameters (similar to
Kalman filter). For that purpose, a distribution of points
named particles with random weights (usually uniform) is
assigned to the unknown parameters updated iteratively by
their mathematical relationship with the measured parame-
ters. In these iterations, the updated values for the particles
will converge to the true estimate of the unknown parameters.
The advantage of particle filtering over the Kalman filter is
that neither the input nor the output distributions need to
be Gaussian [46]. Algorithm I shows the particle filtering
algorithm. In this algorithm, St is the set of particles that is
empty at the beginning and updated in each iteration. xt is the

162038 VOLUME 9, 2021



S. Kazeminasab et al.: Localization, Mapping, Navigation, and Inspection Methods in In-Pipe Robots: A Review

unknown parameter (e.g., location of the robot in the pipe) at
step t . zt is the measured parameter at time t . wt is associated
with the weight of particles that would be updated based on
the likelihood of the measured parameter given the unknown
parameter. ut is a random noisy movement that would be
added to the particles at step t . Also, η is the normalization
factor updated by wt in each time step.

Algorithm 1 Particle Filtering Method. Source: Adapted
From [47]
1 St = Ø, η = 0,k = 0
2 while(xtnot converged){
3 With weight wt−1, sample particles from the

distribution and put their index in j (k) .
4 Add a random noise to the robot movement and apply

the noisy movement,ut , to position of the particles at
index j (k) , x j(k)t−1, then sample xkt from the particles
with the distribution p(xt |xt−1,ut).

5 wkt ← p
(
zt | xkt

)
Update the weights of the particles

using the new measurement zt.
6 η← η + wkt Update normalization factor.
7 St ← St ∪ {< xkt ,w

k
t >} Add the particle to the set.

8 k+ = 1;
9 }
10 for i from 1to k {
11 wit ← wit/η Normalize the weights.
12 }

In [47] and [48], the researchers used pipe vibration
amplitude as the input to the Kalman filter to estimate the
parameters of the map and the particle filter to estimate
the robot’s location in the pipe. The wireless radio fre-
quency (RF) signals have periodic fading in metal pipes that
can be used as a sense of the map of the pipe. The authors
in [49] presented the particle filter method using the peri-
odic nature of RF signal fading for the initialization of the
particles. Also, it is possible to locate wireless transceivers
at different locations of the pipelines as ‘‘beacons.’’ In [50],
the authors deployed several wireless transceivers at different
pipeline locations, which give the pipe map to the particle fil-
ter algorithm for localization (see Fig. 4). Kazeminasab et al.
proposed a localization method based on particle filtering
which uses the non-straight configurations of the pipeline that
the robot needs to pass through during operation as the map
of the pipeline [51].

C. SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM)
Simultaneous localization and mapping (SLAM) is a cyclic
nature problem for in-pipe robots in the pipeline environment.
In this problem, the autonomous robot needs the information
about its location in the network to build a map of the envi-
ronment while it needs the map of the pipeline to localize
itself simultaneously. As shown in Fig. 5, in the SLAM prob-
lem, the output of the robot’s localization is the input of its
mapping and vice versa [52]. Several studies have been done

FIGURE 4. The wireless transceivers that are used in the pipeline during
operation of the mobile robot and gives the robot the map of the
pipeline. Source: adapted from [51].

FIGURE 5. The cyclic nature problem of SLAM. Adapted from [53].

to solve this problem in the pipeline environment, and some
algorithms are proposed to address the issue. The SLAM
algorithms used in robot navigation, robotic mapping, and
odometry are based on concepts in computational geometry
and computer vision.

In [47] the authors proposed a method so-called PipeS-
LAM based on the RaoBlackwellised particle filter (RBPF).
Their technique is based on exciting and measuring pipe
vibration using a pair of hydrophones to create a map of
mean vibration amplitude along the length of the pipe. Their
algorithm utilizes a radial basis function network which is
linear in the parameters to decompose the map. Then, they
used Kalman filter to estimate the map parameters. Also, the
particles have been used for estimating the location of the
robot in the pipeline. In [53], the authors utilized a multi-
sensor fusion system that can construct a global image of
the internal surface of the pipeline and also localize non-
destructive testing (NDT) sensors. For localization purpose,
they utilized rangefinders to provide the distance between the
cameras and the front objects. The sequential images of a dig-
ital camera are stitched together using an inertial navigation
system (INS). Sequential images acquired from the camera
are used to measure travel distance and to construct the global
image of the internal surface.

In [54], the researchers proposed a method for fault detec-
tion in a sewer pipewith data fusion of depth camera, infrared,
and g-sensor and built the 3D map of the pipeline with
SLAM. The authors in [48] considered the SLAM problem
for metal water pipes. In this paper, mapping is based on
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hydrophone-induced vibration signals of metal pipes, and
signals from hydrophone excitation of the metal pipe lead
to a map of pipe vibration amplitude over space. The map-
ping algorithm uses spatial warping and averaging of dead
reckoning signals to calibrate the map based on dynamic time
warping. The localization is based on nonlinear state estima-
tion, and they performed both terrain-based extended Kalman
filtering and particle filtering. In the proposedmethod in [55],
the orientation sensor and position sensor provide the infor-
mation about the direction change and the moving distance,
respectively. Using these sensors’ information and images
taken by the CCD camera, they can construct the pipeline
map. Also, they utilized a gyro sensor and encoder for both
the localization of the robot and the mapping of the pipeline.
In [56], for mapping, the authors utilized: 1) The encoder
information to locate the robot inside the pipeline, 2) the gyro
sensor and accelerometer to measure the roll motion, and
3) the information of the camera image to detect the pitch and
yaw angles. Finally, they used the information given from the
camera image and sensor data to construct a complete map
of pipelines. Also, using the map, they can localize the robot
by measuring the moving distance of the robot. In SLAM,
landmark detection is a challenge, and designing a temporal
visual landmark on the inner surface of the water pipe is a
promising solution to this aim. The authors in [57] designed
an artificial landmark generation module using paintball guns
placed on the robot to make artificial landmarks and used a
mono camera located at the robot’s tail for SLAM purposes
in the future. In [58], the authors proposed a pipe inspection
robot called the boiler header inspection robot (BHIR). For
the localization of the robot, they utilize a moving average fil-
ter method to ensure the accuracy of the localization system.
Also, they used an accelerometer sensor and an embedded
encoder sensor to measure the robot’s position.

D. LANDMARK DETECTION
A pipeline consists of two general configurations: 1) straight
configuration, and 2) non-straight configurations such as
elbows and branches. The changes in robot direction are fixed
to a certain value when it passes non-straight configurations
(see Fig. 6). Therefore, we can use the non-straight config-
urations for localization purposes in which these standard-
ized pipe elements of certain geometries will be referred
to as landmarks. With the provided explanation, landmarks
can be used for robot tracking if the mobile robot is con-
strained to move on a horizontal pipeline. In addition, since
the non-straight configurations have certain angles, only the
number of changes in the direction of the robot is sufficient
to find the its position in the network. Several studies have
been done to recognize the landmarks in the pipeline environ-
ment such as vision systems [59], sonar sensors [60], and IR
sensors [61]. We can categorize these methods into two main
categories: 1) vision-based systems 2) laser-beam projection
based. In vision-based systems, a special illuminator has been
used in an in-pipe robot for obtaining shadow images. The
robot can use these shadow images to identify landmarks,

FIGURE 6. Pipeline’s non-straight elements such as (a) elbows and
(b) branches.

traverse through the pipeline, and simultaneously create a
map of the environment. In methods based on laser beam
projection, the robots use the fact that the projected beam on
landmarks has different line patterns that can be useful for
localization and navigation inside the pipelines [62].

In themethod provided in [62], the robot uses three features
of pipelines by laser scanners for landmark detection: pipe
inlets, manholes, and pipe joints in sewer pipes. In [61],
the robot uses an Infrared (IR) sensor to get the landmarks
of the pipe and localize itself in the pipe using the pipe
inlets, pipe joints, and T-junctions in pipes. In [63], the robot
uses a 2D laser scanner and fuse data with a fisheye cam-
era for landmark detection. In [64], the authors calculated
the position of the landmarks such as manhole and pipe
joint using the image of the KANTARO camera system.
The study converted the taken images into a map which can
be a descriptor for landmarks and distances between them.
The authors in [65] developed a competitive sensor called
a bespoke sensor that can detect the corner direction and
radius. Also, they have a custom-designed test rig for reliable
testing of the developed sensor package (e.g., the testing of
the radius prediction on different radius bends). In [66], the
authors used an illuminator that has been designed on the
robot for detecting landmarks. This shadow will be generated
by the shapes of the elbow or branch. When the robot moves
inside the pipe, they captured the pipe images and check
them for the existence of a shadow region. For this purpose,
the authors implemented a pattern matching image process
to recognize the shadows. Then, they use the result of this
process to extracts the landmark type and pipeline directional
change.

The difference in viewing direction between the camera
and line laser projector will generate shadow regions. In land-
marks and straight pipelines, the shadow region’s distribution
is different. In [67], the authors project a line laser beam
on the internal surface of the pipeline. This generates some
unique line patterns on the surface of the landmarks. The
robot can utilize these line patterns to detect and distinguish
landmarks and follow the direction of the pipeline path.
In [68], the authors used a line laser beam projected on
the internal surface of the pipeline to deploy the generated
unique line pattern. Then, they applied an image processing
procedure to detect generated line patterns. For making this
procedure easier, they utilized a line laser beamwith a distinct
color. They rotated the laser beam around the camera to
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obtain a set of line segments. In [69], the authors proposed an
algorithm for navigation and self-localization to reduce the
unreliability of landmark classification for navigation using
the Markov decision, KURT platform. In [70], the authors
used the line-laser beam landmark detection method. They
used a red laser that rotates around the center of the image.
Because of the special shape of landmarks, the laser beam
can’t reach certain regions. They detected these regions and
extract geometrical information of the landmark. The method
will return three outputs when it encounters a landmark,
including: 1) the type of landmark, 2) distance, and 3) the
relative rolling angle which is useful for the yawing estima-
tion. They utilized three kinds of sensors to build the map:
1) posture sensor: to recognize its posture, 2) line laser beam
to detect landmark, and 3) distance sensor to measure the
distance of robot movement.

In [71], the authors studied the application of time-of-flight
(TOF) cameras in pipelines. They used this camera to detect
and track the features or landmarks in the pipeline. In the
feature extraction process, they fitted a cylinder to the images
taken by the TOF camera. In [72], the authors used the gaps
between the pipe wall and soil-voids as a new type of land-
mark feature which can be sensed by ultrasonic scanning. The
landmark detection method in this paper is based on the out-
side of the pipe and voids that existed on the soil. The authors
in [73] took advantage of the 3D data provided by the TOF
camera to find significant deviations from the cylindrical
shape of the pipeline. To facilitate the obstacle traversal and
find the obstacle position relative to the pipeline, a simplified
model is used to map the robot’s environment into an along-
axis view. In [62], the authors proposed two methods for
landmark detection. 1) Landmark Detection Using Shadow
using the landmark’s unique patterns of shadow produced by
the robot’s illuminator. 2) Landmark detection using the laser
projection method which uses a line-laser beam projector to
extract the geometrical feature of pipeline elements. They
utilized two image-processing methods to extract landmark
information. In [74], the authors used conventional gradient
measures for stereo matching [75] to calculate the distance
data of each feature pixel at manholes or joints [76]. Then,
using these results, they measured the distance between the
robot and landmarks. When this distance becomes zero, the
technician can detect it. Also, to reduce the error of the stereo
image, the authors applied the laser scanner data to detect the
exact location of the landmark. They only checked the laser
scanner data if the distance to a landmark is less than a thresh-
old. In [77], they proposed a landmarks detection method to
navigate an autonomous sewer inspection robot. They used
stereo camera images to estimate the location of the robot in
the sewer pipe. But since this method lonely is not enough for
a good estimation, they used the laser scanner data to ensure
the accuracy of the landmark localization and reduce the error
in the estimation of distance. In [78], the authors presented
two methods to provide position and orientation information
for mobile robot navigation with a panoramic camera and the
results of a synthetic and real experiment are reported. The

FIGURE 7. Topological robot localization: A network of pipes consists of
nodes which are connected together by distinctive travel edges. Adapted
from [80].

location detection methods track the projections of environ-
ment landmarks predicted according to the robot camera’s
position. The first used a modified corner tracking procedure
in a quasi-cylindrical view, and the second tracked line seg-
ments and determined corners from the junction of two-line
segments. In [79], they proposed a method for localization.
They used a pre-generated map that aid the robot. They used
three types of sensors for localization IMU sensor, an IR
sensor, and an ultrasonic sensor. They utilized the IMU sensor
to determine the robot’s orientation, the IR sensor for the
motor encoder, and the ultrasonic sensor to determine the type
of landmark in the way.

E. TOPOLOGICAL ROBOT LOCALIZATION
Topological maps include a network of distinctive places
which are connected by distinctive travel edges [80]. Fig. 7
shows a schematic of a typical pipeline network that con-
sists of several distinctive places and the path between them.
In a pipeline environment, landmarks such as elbows and
branches are distinctive places [81]. The in-pipe robot can
utilize sensors and cameras to detect landmarks from nearby
regions called ‘‘neighborhoods.’’ It can locate itself in a
pipeline environment related to the position of landmarks.
In the motion control level, a distinctive place is a local
maximum of a distinctiveness measure related to its next
neighborhood which can be found by hill-climbing control
strategy. Hill-climbing is a mathematical optimization tech-
nique that can be used for local search. This algorithm starts
with an arbitrary solution and tries to iteratively find a better
solution by making an incremental change to the current
solution [80], [82]. Also, a distinctive travel edge is measured
by a path-following control strategy that the robot can follow.
Using the path following approach results in many advan-
tages on the control performance and design of the robot
since it removes time dependence of the problem [80]. The
identification of distinctive places and distinctive travel edges
can be done using the interaction between the robot’s con-
trol strategies, its sensorimotor system, and the surrounding
environment. The robot updates its states at landmarks, and it
does not represent the orientation and position between states.
In this way, the robot only navigates between local distinctive
places, and hence, motion errors do not accumulate globally
in topological maps. Also, since topological maps only rep-
resent landmarks, they are more compact in representing the
pipeline environment [81].
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In probability theory, aMarkovmodel is a stochastic model
used to model changing systems [83]. It is assumed that
current states (Xn0) depend only on the immediate previous
state (Xn0−1), not on the events that occurred before the
previous state (Xn<n0−1)(Markov property). Hidden Markov
Model (HMM) is a statistical Markov model in which the
modeled system is a Markov process with hidden states (X).
The goal of HMM is to learn about X by some observations,
Y. It is assumed that current observations (Yn0) depend only
on current (i.e., hidden) states (Xn0, e.g., current location)
and does not depend on the previous states (Xn<n0); in other
words, the transition between the hidden states does not affect
the current observation [81]. Fig. 8 shows an example of an
HMM [84].

In [69] and [81], the authors proposed an HMM to localize
a robot in the pipeline. In [73], the hidden state has three
components, including the robot’s current position (Xt ), pre-
vious position (Xt−1) and current orientation (θt ). The robot
state is only updated at junctions or the ends of pipes. But
the robot’s position and orientation are not considered in
transitions between these states. In this method, the distance
traveled since its last state is measured by odometry (or dead
reckoning).

F. RADIO FREQUENCY (RF) SIGNALS METHOD
ARadiofrequency odometry method is used to localize an in-
pipe robot. Most localization methods are failed to determine
the robot’s position due to the limitation of the pipe size.
As a solution, it is possible to use radio frequency methods
to estimate the robot’s location as wireless communication.
Generally, three main approaches using wireless communi-
cation can be implemented to localize the robot which are
described as follows:

1) OUTDOOR LOCALIZATION BASED ON THE RELAY NODE
PLACEMENT IN A STRAIGHT PATH
Relay node (RN) placement is a method in which some radio
transceivers are placed aboveground along with the water
pipe. RNs pass the information from the sensor network (SN)
to the base station (BS) (see Fig. 9). The proposed system
is a so-called wireless sensor network (WSN). In [85], the
researchers investigated the wireless communication channel
and developed a path loss model for the communication chan-
nel considering signal attenuation (due to absorption of water,
plastic pipe, and soil), signal reflection, and refraction at the
interface of each medium, and multi-path characterization.
In this framework, the path loss is designed for optimum
placement of the above rely nodes in order to minimize the
energy consumption of SNs and create a reliable commu-
nication. In this homogeneous network and all of the nodes
have same coverage for signal propagation. When the SN is
moving along the pipe, the sensed information will be send
to the base station through multiple static aboveground RNs.
In [86], this team investigated the optimum number of RNs
required to have a reliableWSN. In [87], the authors proposed

FIGURE 8. Hidden Markov model (HMM). Adapted from [84]. Xi− hidden
states yi− observations aij− state transition probabilities bkm−
conditional probabilities (P(Y | X)).

a localizationmethod to developWSNbased on the RSS from
the SN and the Kalman filter.

2) RELY NODE LOCALIZATION ON NON-STRAIGHT
CONFIGURATIONS OF PIPELINES
Kazeminasab and Banks [88] proposed a method using RNs
that extends the RN-based method’s application to non-
straight paths. In this method, the RNs are located at non-
straight configurations of the network that is the operation
path of the robot (see Fig. 10). The underground robot
switches its communication with each RN based on its
location in the network. A wireless sensor module is also
developed for the robot that facilitates a bi-directional com-
munication link between the robot and RN. Also, a multi-
phase motion control algorithm is developed for the robot in
which:

• Stabilizes the robot with zero velocity at the junctions.
• Steers the robot to the desired path at junctions like
bends, Y-shapes, and Tees.

• Stabilizes the robot and enables it to track the desired
velocity at straight paths.

The wireless sensor network is synchronized with the multi-
phase motion control algorithm. The robot switches between
different phases of the motion control algorithm based on the
motion commands from the RN. There may be an overlap
between the commands from the RNs that are delivered to the
robot. To address this effect, the map of the operation which
is an array and includes the non-straight configurations (in
which the robot needs to path through) is given to the robot.
Hence, the robot can distinguish the right command from the
associated RN.

3) ABOVEGROUND PARALLEL MOVING VEHICLE
Qi et al. [89], [90] proposed a localization method in metal
pipes using extreme-low frequency electromagnetic pulse
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FIGURE 9. Reference architecture of the proposed WSN for pipeline inspection. Source:
adapted from [87].

FIGURE 10. Overall view of the wireless robotic network. The robot moves inside pipe underground and the RNs are located at special
configurations of the pipelines like bends and T-junctions. RN i represents the i th RN in the network. Source: adapted from [88].

to overcome the shielding feature of metal pipes. In this
method, the robotmoves inside a pipe underground. A vehicle
moves on the ground approximately in parallel with the robot
which contains a sensor array. The robot sends pulses, and
the sensor array on the vehicle analyzes the strength of the
received signal. The location of the sensor with stronger
RSS is the location of the robot underground (see Fig. 11).
Magnetic induction is a promising solution for underground
wireless communication which mitigates the effect of multi-
media propagation in the underground environment. The
authors in [91] proposed a localization method based on
magnetic induction in which two coils with 10-cm diame-
ter are located on two robots: one robot moves inside the
underground pipe (A-robot), and another one moves above
the ground in parallel with the underground robot (U-robot).
A-robot and U-robot have constant wireless communication
during operation (see Fig. 12). However, in this method, the
coils need to be in exact parallel orientation with respect to
each other. Otherwise, communication link efficiency drops
dramatically.

FIGURE 11. Localization technique by extreme-low frequency
electromagnetic pulse in metal pipes. A moving vehicle with sensor array
measures the RSS from the underground robot. Source: adapted from [89].

4) RADIOFREQUENCY SIGNALS INSIDE THE METAL PIPES
The metal pipes behave as waveguides for RF signals if the
frequency of the carrier signal is beyond a value called the
cutoff frequency. To localize the robot inside the pipeline,
each in-pipe robot is equipped with a microwave module for
communication. The system consists of a signal transmitter,
including the continuous wave signals to create the radio
signals and a mounted spectrum analyzer as an RF receiver.
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FIGURE 12. Parallel robots with magnetic induction communication. Each
robot (A-robot and U-robot) has a coil that acts as an antenna and they
move in parallel with each other during operation and they have constant
communication with each other. Source: Adapted from [91].

The transmitter is placed at the beginning of the pipe, and the
RSS recording is done when the receiver is moving along the
pipe with constant speed. In comparison to other localization
methods, this method requires no previous known map to
localize the robot [92]. It’s possible to use the periodic fading
feature of RF signal as waveguide inside pipes using mul-
tiple transmitter-receiver setups and internal configurations.
In other words, using the periodicity nature of radio signals
as odometry measurement, one can localize the in-pipe robot
by RSSI module inside the pipe. The effect of the antenna
position and orientation in the robot over the periodic fading
is determined in [93].

G. MISCELLANEOUS METHODS
The authors in [94] proposed a localization method in sewer
pipes based on sensor fusion of the IMU and the cable
encoder based on optimizing a set of windowed stages.
Echo-localization is another method for localization. The
researchers in [95] proposed a mechanism by placing a loud-
speaker and microphone on the in-pipe robot to do acoustic
echo-based localization. In this method, they measured the
position of the robot and detected distant features in the pipe
using echoes of the acoustic mechanism. Also, for sensitivity
analysis and removing undesired measurements, they clas-
sified the acoustic echoes by estimating the length of the
pipe. In addition, they used Kalman filter to incorporate the
robot’s motion into the localization to remove uncertain and
limited measurements. In [96], the authors used pipe junction
detection to correct continuous azimuth and pitch errors to
enhance position estimation done by MEMS-based Inertial
navigation systems.

III. MAPPING
As its name suggests, mapping is the process of constructing
the map of the pipeline using an in-pipe robot. The pipelines
were usually implemented a long time ago. Hence, their map
is not accurate. The in-pipe robots are promising solutions
that can be used to this aim. There are several methods intro-
duced so far to extract the pipeline map. In the SLAM-based
methods, the operation map is constructed at the time local-
ization is performed and we covered it in section II. In this
section, we introduce other main methods that are popular in
mapping as follow.

FIGURE 13. (a) Generating a 3D point cloud by 3D LiDAR sensor;
(b) removing the ground, planes and slopes; (c) projection of the
remaining 3D point cloud onto a 2D point cloud. Adapted from [99].

A. 3D POINT CLOUD
3D point cloud contains coordinates of a set of points in space
that form the shape of an object in 3D space. 3D point clouds
can be used to achieve the dynamic 2D global map of the
pipes that show the real-time position of different objects in
the map. Using a 3D LiDAR or stereo camera, a real-time
3D point cloud can be generated (see Fig. 13a). However,
since it would take a long time to process the 3D map for
robot navigation, the real-time 3D point cloud should be
converted into a dynamic 2D point cloud. For that purpose,
the ground, slopes, and planes are removed from the 3D
map using image processing techniques (see Fig. 13b); a 2D
static global map would be obtained by projection of the
remained 3D map. Then 2D dynamic global maps can be
achieved by using the projected 2D static global map (see
Fig. 13c) [97]. In [98], they used an omnidirectional camera
and laser to acquire an image sequence of the robot during
motion and calculated the 3D coordinates of themeasurement
points, and hence proposed a reconstruction method for the
pipe. Next, they estimated the camera motion and produced a
triangular mesh from the measurement results. Finally, they
generated a 3D model of the pipe by mapping the texture to
the triangular mesh. In [99], a method called Structure-from-
Motion (SfM) system is used for mapping. SfM is a vision-
based 3D reconstruction that reconstructs the 3D structure
of pipe from sequential images for a pipe trajectory with
an endoscope camera. SfM extracts the local features of the
image to get 2D correspondence between images for ordering
a set of images. It uses the 2D series of images to construct
the 3D structure of the object. Also, in this method, bundle
adjustment is applied for minimizing the 3D points from
corresponding 2D observations.

B. MISCELLANEOUS METHODS
The authors in [100] proposed a method to reconstruct the
trajectories of a pipeline inspection gauge. In this method, the
data from an IMU and odometers are fused by an extended
Kalman filter. In [101], the authors used a rangefinder con-
structed with an omnidirectional camera and an omnidirec-
tional laser to construct the 3-D shape of the pipe. They
calculated 3-D coordinates using the light section method
and integrated it with the camera motion information which
is estimated by the Structure from Motion (SFM) technique
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to reconstruct the shape of the pipe. In [102], the robot
location and pipeline map have been estimated using a sound-
based localization method. The authors put a microphone on
the robot and a loudspeaker at the entrance of the pipeline
and measured the time of flight (ToF) of a reference sound
emitted from the loudspeaker to estimate the distance of
the robot. They combined the calculated distance with the
robot orientation estimated from IMU observations to simul-
taneously estimate the robot location and pipeline map. For
this purpose, they present a nonlinear state-space model to
show the relationships among the observations, robot loca-
tion, and pipeline map. They estimate the robot location and
the pipeline map using an extended Kalman filter and the
past locus of the robot location, respectively. The researchers
in [103] presented a visual odometry and mapping system
using calibrated fisheye imagery and a sparse structured light-
ing system. They also proposed an image processing method
implemented offline after dataset collection and provided
the necessary data for the pose estimation and mapping.
The authors in [104] used the Kalman filter and reference
stations (Landmarks) for localization and mapping purposes.
The robot uses a laser rangefinder to scan the inner surface
of the pipeline and utilizes decentralized exploration and
centralized mapping methods to construct the pipeline envi-
ronment map [105].

IV. NAVIGATION
Navigation is the process of movement of the robot in the pipe
and steering to a desired direction in non-straight configura-
tions. Navigation is the nature of an in-pipe robot and once
we talk about a mobile in-pipe robot, it means it moves in
the pipe. Motion controller algorithms are the heart of navi-
gation that control the motion of the in-pipe robot in different
configurations of pipelines. In the following, we explain the
motion control algorithms used in in-pipe robots.

A. LINEAR QUADRATIC REGULATOR (LQR) CONTROLLER
LQR controller is an optimal state feedback controller used
for dynamical systems andminimizes the cost function [106].
To design an LQR controller for a system, the state-space
representation of the system is required in the following form:

ẋ = Ax + Bu

y = Cx + Du (8)

In Eq. (8), x, u, and y are the system states, input, and
output, respectively. Also,A,B,C , andD are systemmatrices,
input matrices, output matrices, and feedforward matrices,
respectively. Based on the system matrices and the desired
functionality for the states, a cost function in the quadratic
form is defined as:

J (K ) =
1
2

∫
∞

0
[xTQx + uTRu]dt (9)

In (9), Q weights the stabilizing states, and R weights the
input vector. The cost function, J (K ) is minimized with the

value of K as:

K = R−1BTP (10)

P is computed with the algebraic Riccati equation:

−PA− ATP− Q+ PBR−1xBTP= 0 (11)

The control input, u, is computed in (12) as:

u = −Kx (12)

In [107], an LQR-assisted controller is designed for an
under-actuated in-pipe robot that stabilizes the robot inside
the pipeline against uncertainties and disturbances. The LQR
controller in this robot is combined with a velocity-tracker
controller. The authors in [108] proposed a control system
based on the LQR controller for a screw-type in-pipe robot.

B. PID CONTROLLER
Most of the in-pipe robots use direct current DC motors
as actuators and proportional-integral-derivative (PID) con-
trollers are the best choice for controlling the position velocity
and torque of DC motors. For each parameter in the system
that needs to be controlled, an error of e (t) is defined as the
difference between the reference value of the parameter r(t)
and the measured parameter y(t). The PID controller assigns
the control input u (t) to the system based on the following
equation:

u (t) = KPe (t)+ Ki

∫ t

0
e(t)+ KD

de(t)
dt

(13)

where KP, Ki, and KD are proportional constants, integral
constants, and derivative constant, respectively [109].

Kakogawa et al. developed an omnidirectional bent-pipe
self-adaptation mechanism to pass through bends by propos-
ing a PID-based controller that controls the joint torque in
which a motor is attached to that joint [110]. The authors
in [111] proposed a multi-phase motion controller for their
developed under-actuated in-pipe robotic system that enables
their robot to have a reliable motion against disturbances and
uncertainties in in-service distribution systems for water qual-
ity monitoring. The multi-phase motion controller comprises
three phases; in phase 1, the robot stabilizes motion with zero
velocity, in phase two, the robot moves in a straight path with
the desired velocity, and in phase 3, the robot steers to the
desired direction in non-straight configurations based on the
PID controller.

C. FUZZY LOGIC CONTROLLER
Fuzzy logic control (FLC) works based on fuzzy values that
can take continuous variables between 0 and 1 rather than
crisp values of 0 or 1. The input to the fuzzy controller is
usually two values 1) error and 2) the rate of error [112].
Fig. 14 shows different stages of FLC. The first stage is
fuzzification in which the input variables are mapped into
membership functions and givenmembership degrees (values
between 0 and 1). An example of membership functions is
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FIGURE 14. Block diagram of fuzzy controller. Adapted from [114].

shown in Fig. 15. The second stage is the processing stage
in which the membership labels with their degree are fed
into several logic rules (IF-THEN statements). The common
general form of logic rules is:

if [input(MFi, µi)] then {output(µout )} (14)

where MF stands for membership function. The final stage
is the defuzzification stage in which the output values of all
the rules are solved together to generate a crisp composite
output [112].

Type-1 FLC, triangular and trapezoidal membership func-
tions, is used to avoid the robot from turning over [113]. Also,
[114] used a charge-coupled device (CCD) camera and image
processing for locating elbow or junction and navigation
using FLC. In [115], a two-mode controller consisting of a
proportional-integral-derivative (PID) controller for control-
ling the actuators and an FLC for setting the output of sensors
such as speed, angle of climbing, and the rate of this angle was
used.

Other navigation methods for in-pipe robots are also sug-
gested for in-pipe robots. In [116], the authors proposed
a sliding mode controller [117] for a screw-type robot for
navigation in the presence of flow in pipelines.

D. MISCELLANEOUS METHODS
In [118], the authors presented a new laser vision system to
navigate mobile robots. To obtain the selective 3-D front-
pipe maps, which are needed to recognize T-junctions and
elbows, they mount weaving 2-D laser scanners on robots.
Based on the pipe scenarios for straight pipes and T-junction,
a partial weaving plan and full weaving plan are needed,
respectively. Also, for the recognition purpose, they devel-
oped algorithms using the mathematical approach to describe
the pipeline structures. In another research, the authors used
multiple robots that each of them acts as a relay com-
munication node and used wireless relay communication
to assist the robot to extend the inspection range [119].

FIGURE 15. Membership functions (N = negative, P = positive, L = large,
M = medium, S = small). Adapted from [114].

The authors in [120] developed a crawler robot that can
move in pipes with vertical directions using a magnetic
adsorption mechanism with pipe walls. In [121], an in-
pipe robot used position-sensitive device (PSD) sensors for
navigation and distinguishing between t-branch and miter.
In [122], a controller for negotiating elbows in pipe based
on differential motion is proposed. This paper [123] used
a laser spot array (LSA) and a camera to find the pathway
direction. To do so, the Levenberg-Marquardt method (LM
method [124]–[126]) is applied as a solution to the nonlin-
ear least square problem used to estimate the pipe central
vector.

V. INSPECTION
The inspection of the pipelines is categorized as assessing
the conditions of the pipes, leak detection, and monitoring
the quality of the fluid inside the pipe. In the following,
we describe these methods.

A. LEAK DETECTION BY PRESSURE GRADIENT
To avoid using several pressure sensors on the pipe wall,
a leak detection method via pressure gradient technique is
proposed [129]. This method is based on finding a localized
pressure gradient ( ∂p

∂r ) where p denotes pressure and r denotes
the radial coordinate of the pipe. In the vicinity of the leaks,
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FIGURE 16. The operating principle of leak detection based on
mechanical system. (a) The carrier moves the detector from left to right;
(b) the detector’s membrane gets pulled toward the leak due to pressure
gradient; (c) the leak gets covered by the membrane and a friction force
Fz is exerted by the pipe wall on the membrane; and (d) the membrane
detaches from the pipe wall and the drum get back to their original
position. Adapted from [129].

there is always a pressure gradient between the inside (pHigh)
and outside (pLow) of the pipe. This pressure gradient causes
the fluid to come out of the pipe. Referring to Fig. 16, we have
the following formulas:

1p = pHighpLow (15)

F = 1p(ALeak ) (16)

Fz = g(1pALeak ) (17)

M = FzR(cos(ϕ)êysin(ϕ)êx) (18)

where Fz is the friction force applied on the membrane, ALeak
is the cross-sectional area of the leak, R is the radial distance
from the point of exertion of Fz on the membrane to the center
of rotation of the drum, pointG. In fact, in the pressure gradi-
ent method, instead of identifying a radial pressure gradient
directly, we can measure the torque on the detector (i.e., M )
by force sensors installed on it and calculate the pressure
gradient indirectly. This method is independent of the pipe
material and radius [127].

B. PIPE PENETRATION RADAR
The pipe penetration radar (PPR) survey system (as a
non-destructive method) is applied for in-pipe condition
assessment and inspection, including accurate pipe wall
thickness estimation and pipe corrosion and void detec-
tion in non-ferrous (such as concrete, PVC, HOPE, vitri-
fied clay, etc.) underground pipes. The PPR system includes
two high-frequency ground-penetrating radar (GPR) anten-
nas which consist of a high-resolution electromagnetic tech-
nique mounted on a tracked robot to move along a survey
line into an underground pipe to build the pipe profile. The
GPR data is analyzed on the pipe penetrating radar data inter-
pretation application (PP-RADIAN). For data correlation and
having more accurate results, CCTV is applied to record the
pipe information simultaneously [128].

FIGURE 17. Neural network architecture. Source: adapted from [131].

C. ARTIFICIAL NEURAL NETWORKS (ANNs)
The fundamental concept of the artificial neural network was
given from the function of the biological nervous systems.
Like the natural brain, a neural network has the ability to learn
based on the available data to perform tasks.

An artificial neural network includes an input layer of
neurons that receives the input values, an output layer of
neurons, and hidden layer(s) between input and output lay-
ers. The neurons are connected by links (Fig. 17) such that
each link is labeled by a numeric number named connection
strength or weight which conveys a signal from one neuron to
another one. This value determines whether the signal can be
amplified (positive weight) or diminished (negative weight)
using the corresponding link; when there is no connection,
the weight would be zero [129]–[131].

The output can be calculated using the activation function
using the following formula [131]:

hi = σ (
∑N

j=1
Vijxij + T hidi ) (19)

where σ is the activation function, Vij are the weights, xij are
the inputs, T hidi are the threshold of hidden layers, and N is
the number of inputs.

Alejo et al. [132] have designed a mobile platform (SIAR)
to measure the gas concentration and detect detection faults
such as cracks and holes in gas pipelines. As for localiza-
tion, Monte Carlo Algorithm fuses the information from the
wheels and the RGB camera in the odometry prediction stage.
This platform uses prior information such as topology, ele-
ments’ positions like manholes, and cross-sections traveled to
update the localization. As for manhole detection, a 3D image
and also an artificial neural network are used. The features of
the 3D images are extracted with features from the Accel-
erated Segment Test (FAST) algorithm. Waleed et al. [5]
have designed an in-pipe robot and equipped it with several
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FIGURE 18. Cross-sectional view of the Comsol Multiphysics model
showing the Eddy current induction phenomenon. Source: adapted
from [139].

pressure sensors to detect the leak using pressure-distance
diagrams. To do so, an operator detects a leak by analyzing the
pressure changes across the total length of the pipe. To verify
the accuracy and robustness of the detection approach, an arti-
ficial neural network is proposed to process the pressure
sensor data with 501 hidden layers and two output layers
(no leak vs. leak). Results showed that the in-pipe inspec-
tion robot could detect the leak with an 83.3% success rate.
Duran et al. [133], [134] have suggested a method to use laser
profilers to improveCCTV illumination used in inspection in-
pipe robots. Their proposed method has two steps of defect
detection and classification using an artificial neural network
and fusing positional and intensity data. Duran et al. [135]
have proposed amethod that used image processing (based on
the light intensity variations) and neural networks to identify
the defective and non-defective pipe sections. They employed
MLP, which is a commonly used neural network architecture.
Also, they apply a preprocessing step on the input of the
neural network to highlight the characteristics of defective
versus non-defective pipe sections.

D. PULSE EDDY CURRENT
Pulsed Eddy Current (PEC) is one of the non-destructive
(NDT) methods applied for electrically conductive materials’
inspection at very high speeds [136]. A PEC system includes
an exciter coil, a detector coil, an amplifier, and a voltage
generator for excitation [137]. The coil, which is excited by
a voltage pulse, can detect a greater depth of the material
thickness in a more significant frequency [136]. This voltage
creates a magnetic field around the sensor, and the resulting
the magnetic field induces an eddy current in the conducting
piece. As Fig.18 shows, the induced eddy currents affect the
more significant area than the area physically covered by the
sensor [137].

Ulapane et al. utilized the PEC signals for profiling the
remaining wall thickness in ferromagnetic cast iron water
pipe by applying the GP-based machine learning technique.

FIGURE 19. Operation principle of miniaturized water sensors. The
ion-selective membrane absorbs the target analyte and produces a
voltage (EPB) with respect to the reference electrode that is silver-silver
chloride (AgCl). Source: adapted from [142].

The data produced by the sensor is used to train the Gaussian
process model [137]. Later on, Miro et al. used the NDT
PEC-based method for metallic pipe wall thickness evalu-
ation and corrosion inspection. In this method, a signal is
excited and sent to the pipe wall, and then reflected. By ana-
lyzing the reflected signal, it is possible to analyze the pipe
wall thickness [138]. One of the most significant advantages
of this method is that it doesn’t require direct physical contact
between the test location and the sensor [139].

E. ION-SELECTION SENSORS FOR WATER QUALITY
MONITORING
In some applications, it is needed to monitor the concen-
tration of target analytes in the flow. However, since there
is space limitation in the pipe, miniaturized sensors are
needed. Researchers have recently developed small-sized
sensors operated by the ion selection technique. In this tech-
nique, two electrodes of working and reference electrodes
generate a voltage based on the concentration of the ion
(target analyte) called potentiometric voltage. For example,
PH is a health-related parameter in water and hydrogen ion,
H+ represents the value for this parameter. Fig. 19 shows
the operation principle of ion-selective sensors in which the
potentiometric voltage (EPB) is generated between the work-
ing electrode (WE) and the reference electrode (RE). The
value of the parameter (e.g., PH) can be computed by EPB
using the Nernst equation [140].

In [141], the concept of multi-analyte biochip (MAB) is
presented in which multi-parameters can be measured with
one chip. In [111], a wireless sensor module is developed
based on an active radio frequency identification (RFID) syn-
chronizing the miniaturized ion-selective sensors and motion
controller. The robot operates in an in-service water distribu-
tion network for quality monitoring.

F. MISCELLANEOUS METHODS
Researchers in [144] and [145] developed a practical wireless
radio communication (using coaxial leakage cable) that can
be used for localization of in-pipe robots and also devel-
oped a rotating probe using a piezo element that will be
used for inspection using a touch sensor system in pipes.
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TABLE 3. The image processing overview in in-pipe robots.
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TABLE 3. (Continued.) The image processing overview in in-pipe robots.

162050 VOLUME 9, 2021



S. Kazeminasab et al.: Localization, Mapping, Navigation, and Inspection Methods in In-Pipe Robots: A Review

TABLE 3. (Continued.) The image processing overview in in-pipe robots.

FIGURE 20. Image processing utilization in-pipe robot focus.

FIGURE 21. Distribution of image processing purposes of previous papers.

In [144], a free-swimming acoustic-based leak detection
device is designed to operate in long pipelines and locate
small leaks and bends in large pipes. To overcome the

problems with regular ultrasonic inspection for automatic
inspection in steel pipelines, the authors in [145] developed an
ultrasonic inspection robot with an electromagnetic acoustic
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TABLE 4. The sensors in in-pipe robots.
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TABLE 4. (Continued.) The sensors in in-pipe robots.

transducer (EMAT) that does not need a coupling medium
in pipelines. The authors in [146] proposed a non-destructive
testing method by using an In-Line Inspection (ILI) robot.
They utilized several sensors such as ultrasonic, light, and
Light Detection And Ranging (LiDAR) sensors to collect
typical data features. They used some sensors in the defect
detection system and the remaining sensors support naviga-
tion and improve data visualization. Also, for localization
purposes, the IMU sensor is used to keep track of the trav-
eling distances. In [128], the authors used pipe penetrating
radar (PPR) to inspect two diameter pipes (21’’ and 36’’).
Their suggested method can determine the amount of H2S
corrosion in these interceptors. When a hydrophone pro-
duces a sound wave in the kilohertz range, the metal pipes
show vibrations. This vibration is different over space and
can be used as a map in loop closing [147]. The use of
the acoustic signal with pose-graph optimization for robot
localization in a pipe has been demonstrated in [147]. They
incorporated information from the measurement of an acous-
tic spatial field, such as the combination of a correlation-
based matching method and a quadratic fit-based prediction
method.

VI. IMAGE PROCESSING IN IN-PIPE ROBOTS
This section summarizes the algorithms and methods asso-
ciated with image processing technique that have been
implemented for in-pipe missions (the summary shown in
Table 3 ). Indeed, this categorization provides a comprehen-
sive overview for future studies to explore the effective image
processing methods that have been frequently implemented
for those four specific tasks, including in-pipe localization,
mapping, navigation, and inspection.

Generally, image processing can be categorized into image
analysis and manipulation, image enhancement (including
quality and resolution), image rectification, and image com-
pression. Image processing has been widely utilized in

inspection, fault detection, and localization inside the pipe
environments.

The sensors that have been frequently implemented for
image processing studies can be categorized into two groups:
1) Range sensors conclude range-type lasers or ultrasonic
rangefinders, and 2) Different kinds of cameras include
eye fish, monocular endoscopic, CCD, CCTV, time-of-flight
(TOF) and RGBD cameras.

The distribution of Image Processing methods in the litera-
ture review associated with described main groups, including
Localization, Mapping, Navigation, and Inspection, has been
graphically presented in Fig. 20.

It is revealed that Image processing contributes to 35% of
utilization in in-pipe inspection and defect detection. Local-
ization with 27%, navigation with 25%, and mapping with
13% are placed respectively. In another categorization, 77%
of image utilization has been used for image analysis and
detection (See Fig. 21.)

VII. SENSORS IN IN-PIPE ROBOTS
In this section, we list the common sensors used in the in-
pipe robots for different tasks in Table 4. This categorization
helps the researchers to find the appropriate sensor for each
task or method. Section VI lists the sensors or tools for image
processing methods, so we do not list them here.

VIII. CONCLUSION
In this paper, first we reviewed different mechanisms
and configurations for in-pipe robots along with their
specific applications. We categorized them by their type
of motion (active/passive) and their shape (wheeled/non-
wheeled/caterpillar). Second, then we categorized in-pipe
missions into four parts: localization, mapping, navigation,
and inspection. In each part, we listed the core methods
that were used to accomplish that mission. For localization,
multiple methods have been investigated including Kalman
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filtering, particle filtering, SLAM, landmark detection, topo-
logical localization, RF signals and combination of these
methods. To extract the pipeline map, different methods such
as 3D point cloud, IMU, extended Kalman filter and SFM
have been discussed. For navigation in non-straight config-
urations, motion controller algorithms including LQR, PID
controller and fuzzy logic controller have been explained. For
inspection which includes condition assessment, leak detec-
tion, and fluid quality monitoring, different methods such
as pressure gradient, PPR, ANNs, PEC, ion-selection selec-
tion sensors, wireless communication, and acoustic-based
inspection, and LiDAR sensors have been reviewed. Then,
a broad overview and categorization of algorithms associ-
ated with image processing approaches used in each of the
above-mentioned missions have been provided. Finally, a list
of sensors used in in-pipe robots that helps the researchers
to find the appropriate sensor(s) for each mission has been
included. This paper provides a comprehensive perspective
for the researchers that work on in-pipe robots and need to
have a deep understanding of the methods, sensors, and their
implementation technique for different tasks.
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