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ABSTRACT Imbalanced data classification is one of themost important tasks in the field ofmachine learning
because abnormality, which is usually of our interest, appears less frequently than normality in real-world
systems. Learning classifiers from imbalanced data can be troublesome due to no absolute standard as to how
much imbalance can be said to be imbalanced or balanced. To address this issue, this research proposes a new
sphere-based classification method named LOCS (learning objective controllable sphere-based classifier),
which is designed to maximize AUC (area under ROC curve). The AUC learning objective was adopted
from the fact that it approximates the accuracy as class distribution becomes balanced. Therefore, the
proposed method properly performs a classification task for both imbalanced and balanced data. It constructs
a classification model by a single training, whereas existing cost-sensitive learning and resampling methods
usually attempt different parameter settings. In addition, the learning objective can be easily modified within
LOCS for each of application domains by setting different importance levels for positive and negative classes,
respectively. Numerical experiments based on 25 real datasets with several investigational settings showed
the effectiveness and the intended strengths of the proposed method.

INDEX TERMS Classification, class imbalance, sphere covering, learning objective, area under ROC curve.

I. INTRODUCTION
One of the most important challenges in the research field of
machine learning and pattern recognition is the imbalanced
data learning problem, which is an issue in various practical
fields, such as software defect prediction [1], medical diagno-
sis [2], disaster information [3], industrial maintenance mon-
itoring [4], financial trading order [5], and customer churn
prevention [6]. The problem of learning from imbalanced
data is attributable to the skewed distribution of the class.
Rare instances represented by minority classes are relatively
difficult to detect owing to infrequency and casualness [7].
However, these minority classes— such as cancer, fraud, and
faults — are considered more important than the majority
class in the various practical problems listed above, and the
risk of misclassification of minority class instances is higher
than the risk of misclassification of majority class instances
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correspondingly. Traditional classification techniques such as
decision trees, support vector machines, and neural networks
have been developed under the assumption that the class
distribution of data is balanced [8]. As the majority class in
imbalanced data is composed of a relatively larger number
of instances than the minority class, it has an overwhelming
influence on the minority class. Therefore, a relatively small
number of minority classes are underestimated during the
training process, which may lead to the failure of classifiers
to accurately learn the pattern or distribution of minority
classes [9]. This problem becomes more severe as the degree
of imbalance increases, resulting in the failure to detect a
minority class instance [10]. These traditional classification
methods, trainedwith learning objectives that maximize over-
all accuracy [11], can become useless if they cannot be used
for classification even though high accuracy is achieved. For
example, a model that classifies all instances into majority
classes with an accuracy of 99% cannot be used in the case of
imbalanced data with ten minority classes and 1000 majority
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classes. Therefore, a classification method that maximizes
accuracy or minimizes error rate can be irrelevant as it results
in low classification performance in imbalanced data classi-
fication [12]. A number of studies have been conducted to
address this imbalanced data classification problem. These
studies can be divided mainly into two approaches: data level
approaches and algorithm level approaches [13]. The data
level approach is a method of resizing data through resam-
pling [14]. By doing so, the performance of the classifier can
be improved by training after solving the imbalanced distri-
bution of data. It can be divided mainly into over-sampling
minority class instances and under-sampling majority class
instances. Cost-sensitive learning (CSL), which sets mis-
classification costs differently for the majority and minority
classes, is a representative algorithm level approach method.

Over-sampling is a method of reinforcing the influence
of minority class instances, which consists of a process of
randomly extracting and replicating instances from a set of
minority instances in the data and adding them to the exist-
ing set of minority instances. In this method, the size of
the minority instances set increases as much as the number
of duplicated minority numbers shows a balanced distribu-
tion with the set of majority instances. A synthetic minor-
ity oversampling technique (SMOTE) generates synthetic
data using more advanced over-sampling method [15]. This
method does not replicate minority instances but creates
new synthetic minority instances by interpolating between
minority instances and their k-nearest neighbors and com-
bining them with original minority instances to form a set of
minority instances. Variants of SMOTE such as border-line
SMOTE [16], adaptive synthetic sampling (ADASYN) [17],
safe-level SMOTE [18], and MWMOTE [19] have been pro-
posed since this study was published.

Under-sampling method is a method of randomly extract-
ing instances from the majority class and removing them
from the original set of majority instances. As a result,
the total data size is reduced as much as the number of
removed majority instances. Several strategies have been
introduced for the rebalancing of minority and majority dis-
tribution by reducing majority instances more effectively.
One of them is cluster-based under-sampling for the major-
ity class that forms a cluster [20]. Furthermore, a study
was conducted to substitute representatives of majority class
instances with centers of clusters [21]. However, in gen-
eral, resampling-based imbalance problem-solving tech-
niques have a weakness in that original data cannot be used.
Although resampling techniques create balanced distribution
data for classifier training, it is difficult to be free from infor-
mation loss caused by changes in the original distribution
owing to synthetic data or by excluding informative majority
instances [22].

Algorithm level approaches have been attempted to solve
the imbalance problem without changing the data distribu-
tion. While the resampling approach focuses on a balanced
class ratio of the original data, the algorithm level approach
is designed to prevent damage to the original data and to use

the original distribution, without changes, for training to solve
the imbalance problem in the learning process rather than pre-
processing. CSL is one of the most widely used algorithm
level approaches to solving imbalance problems [10], [23],
[24]. CSL is a method of minimizing the overall expected
cost by allocating different misclassification costs to each
class [10], [25], and the misclassification cost are usually
determined by domain experts. In the past decades, CSL
has received great attention as a problem-solving method
for skewed class distribution [26], and many studies have
proved that CSL is effective in addressing class imbalance
problems [9], [13], [27], [28]. Representative studies that
applied CSL to existing classification algorithms include
cost-sensitive kNN [29]–[31], cost-sensitive SVM [32], [33],
and cost-sensitive ANN [34], [35]. Although CSL has
attempted to solve the imbalance problem by imposing dif-
ferent misclassification costs for each class using the domain
knowledge of experts, it is usually difficult to determine the
optimal cost for both the majority and minority classes [12],
[14]. In addition, in the case of highly imbalanced data, the
CSL may be biased towards a minority class given a high
cost, and conversely, neglect majority classes, resulting in
poor classification performance [36].

On the other hand, the sphere covering method for classi-
fying instances using spheres has been developed as a method
of finding prototypes that can represent instances of each
class and determine a radius that evaluates the area that can
be covered by the prototypes. The class cover problem was
introduced in [37]. The class cover problem is to find a small
number of sets covering, i.e. containing, points from one class
without covering any points from the other class. Greedy
sphere covering [38] used the class cover catch digraph to
solve this problem and applied it in classification. In other
words, the spatial area that can be covered by the proto-
type was regarded to be the distance to other class data
located at the shortest distance using the nearest neighbor
rule, which was set as the radius of the sphere. In addition,
an instance containing as much data as possible was selected
as a prototype. Interpretable prototype selection [39] has
translated the optimization problem to select a minority of
prototypes, including all possible training data, to a set cover
optimization problem. To this end, a greedy algorithm was
introduced that independently selects a prototype for each
class. Randomized sphere cover (RSC) [40], [41] randomly
selects the center (prototype) of the sphere from the training
data and constructs a sphere with the radius as the short-
est distance between the selected center and another class
instance. A classification model consisting of a set of spheres
constructed by repeating this process was introduced. This
method constructs many spheres by repeatedly selecting cen-
ters randomly and allows α instances of the same class in
each sphere. It is intended to improve classification accuracy
by classifying test instances using spheres that only cover
instances of the same class. However, in the case of binary
classification, although the aforementioned spherical classi-
fication methods have been developed under the premise that
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the class distribution is balanced and is suitable for increasing
the accuracy, minority class instances cannot be accurately
classified in imbalanced distribution since the number of
minority instances is small, thereby decreasing the number of
minority spheres. In other words, they are not suitable for the
classification of imbalanced data as in the existing traditional
classification methods.

The aforementioned methods have two drawbacks: first,
additional parameters need to be set in advance, and sec-
ond, the learning objective and the evaluation measure are
inconsistent. In particular, the second drawback is a serious
problem inmachine learning. Sampling rates need to be deter-
mined in advance for resampling methods, and misclassifica-
tion costs need to be determined in advance for CSLmethods.
In general, since the exact values of these parameters are
unknown, a number of previous studies have tried different
values, and the classifier with the best performance among
the classifiers thus trained was selected based on G-mean,
F1-score, or area under ROC curve (AUC), which is a mea-
sure used to evaluate a classifier for imbalanced data. At this
moment, there is a discrepancy between the learning objec-
tive and the evaluation measure. This study proposes a new
method in which the evaluation measure for classification
performance evaluation of imbalanced data and the learning
objective of the classifier are consistent in solving these
problems. The proposedmethod is similar to the conventional
RSC where the classification model is expressed as a sphere.
However, there is a significant difference in the fact that the
learning objective is set as AUC ROC and is designed to
maximize its value during the learning process of the sphere,
which is the main idea of this study. The contributions of this
study in the research field of imbalanced data classification
are as follows. First, a novel sphere-based classifier for the
classification of imbalanced data is proposed. Second, the
learning objective and evaluation measure for the classifi-
cation of imbalanced data are matched as AUC. Third, the
proposed algorithm has the advantage that the user can train
the classifier by controlling the value of the true positive
rate (TPR) and the false positive rate (FPR) according to the
application problem.

The remainder of this paper is organized as follows.
The RSC, which is the basis of the proposed classifier,
and the classification performance evaluation indicator of
imbalanced data will be reviewed in Section II. The algo-
rithm of a learning objective controllable sphere-based classi-
fier (LOCS) proposed in this study will be described with an
illustrative example for ease of understanding in Section III.
The proposed method will be tested with 25 real data sets,
and its performance will be compared with the conventional
methods in Section IV. Finally, this study will be concluded
in Section V.

II. BACKGROUND
This section briefly describes the RSC classifier and the basic
performance evaluation measures used in the imbalanced
data classification as background information to explain the

FIGURE 1. A set of spheres constructed by RSC from a binary class data.
In this example, α was set to three. A constructed sphere thus contains at
least three instances.

proposed method. As in other literature, ‘‘majority’’ and
‘‘negative’’, and ‘‘minority’’ and ‘‘positive’’ have been used
interchangeably hereafter.

A. RANDOMIZED SPHERE COVER
The RSC is one of the sphere covering methods introduced
in [40], [41]. RSC constructs sphereBi from training dataD =
{(xi, yi)}ni=1, where xi represents a vector of observation i, and
yi indicates the class of the ith instance. The sphere Bi has
a specific class CBi and consists of a center ci and a radius
ri. Therefore, the sphere is defined by the following 4-tuple,
Bi = 〈CBi , ci, ri,XBi〉, where XBi = {x ∈ D | d(x, ci) < ri}
[37]. The radius ri of the sphere Bi is defined as the distance
between the center ci and the closest instance which class is
different from the class of ci, and it is given below.

ri = min
xj∈{X\XBi } ∧ yj 6=CBi

d(xj, cj),X = {x ∈ D} (1)

The αRSC algorithm uses an input parameter α, which
represents the number of minimum instances within a sphere,
which means that the sphere is not constructed if the number
of instances included in the sphere is less than α when con-
structing a sphere. Informally, the training process of αRSC
is as follows:

Repeat the process below until all training data is covered
or discarded.

1) Randomly select an instance regarded as a center and
add it to the set of covered instances.

2) Find the closest instance that has a different class with
the instance selected as the center.

3) Set the distance between the closest instance and the
center as the radius of the sphere.

4) Construct a sphere with the center and the radius.
5) Find all instances within the sphere in the training data.
6) If the number of instances inside the sphere is greater

than α, add all of them to the set of covered instances
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and the store sphere details (center, class, and radius).
Otherwise, discard the instances.

The detailed pseudo code is described in [41]. Through the
above training process, αRSC constructs the set of spheres,
and for example, spheres are constructed as shown below
in Fig. 1.

Through the set of spheres constructed during the training
process, new instances are classified in the prediction stage
according to the following rules.

• Classification rule 1: The test instance, which is covered
by a sphere, takes the target class of the sphere. If there
is more than one sphere of different target class covering
the instance, the instance will take the target class of the
sphere with the closest center.

• Classification rule 2: In the case where an instance is
not covered by a sphere, the classifier selects the closest
spherical edge.

Classification rule 2 is reasonable as it can classify
test instances – mainly outliers – in areas not covered by
spheres [40]. It is better for the spheres constructed in RSC
to contain as many instances as possible, as this can lead to
an increase in accuracy during the prediction stage. However,
in the imbalanced data in which the number of minority
instances is less than that of the majority instances, the
number of spheres of the minority class constructed in the
training stage will be less than that of the majority class.
In addition, the fact that the number of minority class spheres
is small implies that the probability that new minority class
instances will be covered in the sphere in the prediction
stage is reduced compared to the majority class instances,
thereby degrading the classification performance. Therefore,
to mitigate the minority class from being overwhelmed by the
majority class, this research proposes to extend the radii of
the constructed spheres to ensure that the AUC, an evaluation
measure suitable for the classification of imbalanced data,
is maximized. In other words, the evaluation measure and the
learning objective will be matched by setting the evaluation
measure, AUC, as a learning objective for the training of the
classifier. This will induce the influence of the minority class
spheres to increase. After completion of the training, the two
classification rules of reasonable RSC will be applied as they
are in the classification step.

B. EVALUATION MEASURES FOR BINARY CLASSIFICATION
In binary classification, the measure for evaluating the pre-
dictive performance of the classifier is generally computed
based on the confusion matrix in Table 1. In this matrix,
true positives (TP) is the number of positive instances classi-
fied correctly, false negatives (FN) is the number of positive
instances classified incorrectly, false positives (FP) is the
number of negative instances classified incorrectly, and true
negatives (TN) is the number of negative instances classified
correctly.

The accuracy defined in (2), below, using a confusion
matrix, refers to the proportion of the total data that is

TABLE 1. Confusion matrix.

correctly classified and used as a general performance mea-
sure of a classifier.

Accuracy =
TP+ TN

TP+ FN + FP+ TN
(2)

However, in the case of imbalanced data, the accuracy
cannot properly express the performance of the classifier as
the positive class is overwhelmed by the negative class. For
example, the accuracy of the classifier is 95% even if all
instances are predicted as negative class for data composed of
5% positive class and 95% negative class. However, it can be
said that if a classifier cannot detect positive class instances
at all, then it is completely ineffective. Therefore, the clas-
sification performance needs be evaluated by two measures
rather than one measure in the imbalanced data classification
problem, and the two measures defined in (3) and (4) below
are one of the most used pairs of measures.

TPR =
TP

TP+ FN
(3)

FPR =
FP

FP+ TN
(4)

TPR refers to the rate at which the classifier was cor-
rectly classified as positive class instances, also referred to
as sensitivity. FPR refers to the rate at which the classifier
was incorrectly classified as negative class instances. When
evaluating the classification performance of imbalanced data,
it is generally necessary to consider both TPR and FPR at the
same time so that the receiver operating characteristics (ROC)
graph makes it possible to organize and visualize the perfor-
mance of the classifier [42]. The ROC graph can visualize the
performance of the classifier based on the two indicators by
plotting TPR and FPR on the vertical and horizontal axes,
respectively. The area under this ROC curve is the AUC.
Although the AUC calculation is complicated in the case of a
soft classifier, the AUC value in the case of a hard classifier
is defined below by (5). In the end, in the imbalanced data
classification, the AUC makes it possible to evaluate the
performance of the classifier as a single indicator instead of
considering both TPR and FPR indicators at the same time.

AUC =
1+ TPR− FPR

2
(5)

The AUC has been widely used as an indicator for eval-
uating the performance of classifiers in the classification of
imbalanced data [12]. However, few studies have used this
indicator as a learning objective for the training of a classi-
fier [14]. As mentioned above, this study proposes a classifier
training method that AUC itself as a learning objective.
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FIGURE 2. A binary class example to show constructing and expanding positive spheres. (a) The first sphere with A as the center, which has the largest
number of covered instances among positive instances, is constructed. (b) The second sphere with B as the center is constructed. (c) After constructing
two positive spheres, no more positive spheres are constructed because the input parameter α is three. (d) The existing positive sphere D is expanded to
the sphere D′ where the AUC value is maximum. The other positive sphere E is not expanded.

III. PROPOSED METHOD
In this section, LOCS proposed in this study is described.
As conventional classifiers were designed to increase the
classification accuracy, it was recognized that they were weak
in the classification of imbalanced data. Therefore, the main
idea of the proposed algorithm is to directly set the AUC,
which is a classification performance evaluation indicator
in the imbalanced data classification, as an objective func-
tion to induce the classifier to maximize this and to design
a sphere-based classifier that allows users to control the
objective function according to their intentions by assigning
different weights to TPR and FPR at the same time.

Algorithm 1MakeSphere
Input: an instance (x, y), a set of instances D = {(xi, yi)}
Output: (r, D̃) denotes the radius of a sphere and a set of

instances in the sphere
1: Find min

(xi,yi)∈D
d(x, xi) such that y 6= yi

2: Let r = d(x, xi)
3: Let D̃ = {(xj, yj) | d(x, xj) < r, (xj, yj) ∈ D}
4: return (r, D̃)

A. LOCS
To construct a sphere in the training process of the classifier,
a center and a radius are required, and a class representing
the constructed sphere needs to be specified. Sphere class
evidently follows the center class. New data can be classified
according to classification rules through this set of spheres.
In the same context as the previous studies, the radius of
the sphere is defined as the distance from the center to the
closest instance that has a different class from the center.
In addition, the instances within the radius of the sphere are
defined as covered instances. More formally, the radius r =
min

(xi,yi)∈D
distance(c, xi) such that yc 6= yi, the set of covered

instances D̃ = {(xj, yj) | distance(c, xj) < r, (xj, yj) ∈ D},
where c denotes the center, yc denotes the class of the c, and
D denotes the dataset. Therefore, all covered instances within

the radius have the same class as the center. The process of
constructing a sphere when an instance x is selected as the
center is as shown in Algorithm 1.

Spheres are constructed to cover as many instances as pos-
sible, ultimately to construct as few spheres as possible, and to
reduce the computational time of the subsequent Algorithm 4.
When an instance is selected as the center, the radius of
the sphere to be constructed and the number of instances
to be covered are reviewed to determine the center of the
sphere that can cover most of the instances in the current
situation, as described in lines 5-11 of Algorithm 2. Note
that Algorithm 1 is invoked in Algorithm 2. If there are
many covered instances inside the constructed sphere, this
means that the class has a high density. The aim of construct-
ing a dense sphere is to improve the classification perfor-
mance of the final-trained classifier. As shown in lines 12-16
of Algorithm 2, even though a sphere containing as many
instances as possible is constructed, the sphere is no longer
constructed if the number of instances in it is smaller than the
predetermined minimum sphere size α. Otherwise, it stores
the data of the constructed sphere, center, and radius, and
the instances covered by the constructed sphere are excluded
from the training set T . This process is repeated until the
algorithm termination condition is satisfied.

The process of constructing a set of spheres in which target
class cl is positive is described through an illustrative exam-
ple. The binary and imbalanced data containing 17 positive
instances and 60 negative instances in which the two classes
are divided into overlap states are shown in Fig. 2. All positive
instances become candidates for the center to construct the
first sphere. Instance A is the one with the largest number
of instances covered by the radius of each central candidate.
Therefore, the first positive sphere with instance A as the cen-
ter can be constructed in a dotted line, as shown in Fig. 2 (a).
As these instances covered by the constructed sphere are
excluded from consideration, the center of the sphere contain-
ing the next largest number of instances becomes instance B,
as shown in Fig. 2 (b). In this example, it was assumed that
the minimum size of sphere α is set to three. As spheres with

158014 VOLUME 9, 2021



Y. Park, J.-S. Lee: Learning Objective Controllable Sphere-Based Method

Algorithm 2 PreCreateSpheres
Input: training set T = {(xi, yi)}, minimum sphere size α,

target clss cl ∈ {+,−}
Output: a set of spheres S = {(cj, rj)} where the elements

denote center and radius of jth sphere
1: S ← ∅
2: repeat
3: Let Tcl = {(xi, yi) | yi = cl, (xi, yi) ∈ T }
4: r∗← 0, c∗← ∅, maxCardinality← 0, D̃∗← ∅
5: for each instance (xi, yi) ∈ Tcl do
6: (ri, D̃i)←MakeSphere((xi, yi),T )
7: if |D̃i| > maxCardinality then
8: r∗← ri, c∗← xi,
9: maxCardinality← |D̃i|, D̃∗← D̃i

10: end if
11: end for
12: if maxCardinality < α then
13: break
14: end if
15: S ← S ∪ {s = (c∗, r∗)}
16: T ← T \ D̃∗

17: end repeat
18: return S

Algorithm 3 LOCS
Input: training set T = {(xi, yi)}, minimum sphere size α,

TPR importance w1, FPR importance w2
Output: a set of positive spheres S+, a set of negative

spheres S−

1: S+← PreCreateSpheres(T , α,+)
2: Compute the imbalance ratio IR of T
3: Let β = IR× α
4: S−← PreCreateSpheres(T , β,−)
5: (S+, S−)←PostExpandSphere(S+, S−,T ,w1,w2,

GAparameters)
6: return (S+, S−)

the cardinality of three or above can no longer be constructed,
no more spheres are constructed after the construction of two
spheres. Fig. 2 (c) shows that the center of the third sphere
is instance C, and as two instances are covered, the sphere is
not constructed.

The LOCS proposed in this study is described in
Algorithm 3. As the spheres for cl = + are constructed
with the PreCreateSphere() function in Algorithm 2, the
same process is repeated for cl = − as shown in line 4 of
Algorithm 3. In other words, spheres for negative class are
constructed. However, for the purpose of preventing toomany
negative class spheres from being constructed, the minimum
number of instances that the sphere needs to cover is com-
puted as β = α × IR, which is the value obtained by
multiplying α by imbalance ratio (IR) (line 3 of Algorithm 3).
In the example of Fig. 2, since α = 3, IR = 3.5, the
minimum number of instances that will be covered by the

sphere that will be used when constructing negative class
spheres is β = 11.

It should be noted in advance that the LOCS() func-
tion calls the PostExpandSpheres() function described
in Algorithm 4, in which the EvaluateFitness() func-
tion described in Algorithm 5 is invoked. Likewise, the
PredictClass() function described in Algorithm 6 is invoked
in the EvaluateFitness() function. After constructing the
initial sphere for both positive and negative classes, the sphere
will be expanded to maximize the AUC of the sphere clas-
sifier when the training is completed. This corresponds to
line 5 of Algorithm 3. After line 4 of the LOCS() function
has been completed, instances of the same class are covered
in each of all spheres. Consider the sphere D in Fig. 2 (d).
When there are instances of the same class as the sphere
outside the sphere, it has been observed that there is an
opportunity to increase the TPR by expanding the sphere
and incorporating the instances into the sphere. This also
means that there is an opportunity to increase AUC. In other
words, in the case of imbalanced data with severe overlap,
if there are class instances such as spheres outside the sphere
but around the sphere boundary, expanding the sphere and
incorporating them into the sphere can be better for increasing
AUC. Fig. 2 (d) shows two positive spheres of class D and E.
In the case of a positive sphere D, five new instances around
the sphere can be covered if the radius is extended to D′.
In this case, although FPR is increased by misclassifying
three negative instances, an increase in TPR by covering two
more positive instances will result in an increase in AUC.
On the other hand, in the case of positive sphere E, there is no
reason to expand the radius because there are only negative
instances around it even if the radius is expanded. Consider
the case where Sphere D is not extended to D′, but sphere
E is extended to further cover the closest positive instances.
In this case, the loss to FPR is greater than the gain from
TPR due to the negative instances covered by the addition of
sphere E. In other words, whether to expand the sphere, if so,
how far to expand it will be determined using the AUC for the
training set, and as AUC is a suitable measure for evaluating
performance in imbalanced data classification as mentioned
above, this is a reasonable approach to setting the learning
objective.

The abovementioned is implemented in Algorithm 4.
The genetic algorithm (GA), which is one of the most
widely used evolutionary algorithms, is employed to find
the new radius of all spheres that can maximize AUC.
In the process of fining the optimally expanded radii of
spheres in terms of AUC, lines 1-3 are intended to secure
feasible regions. The lower bound of a solution is set
to the radii of the given spheres before expansion r =
(r+1 , . . . , r

+
a , r

−

1 , . . . , r
−

b ), and the upper bound set to the
distance from the farthest instance among instances with
the same class as the center of each sphere to the dis-
tance to the center (m+1 , . . . ,m

+
a ,m

−

1 , . . . ,m
−

b ). As shown
in lines 4-12, Algorithm 4 precisely follows the general pro-
cesses of GA, such as fitness evaluation, selection, crossover,
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Algorithm 4 PostExpandSpheres
Input: a set of positive spheres S+, a set of negative spheres

S−, training set T = {(xi, yi)}, GA parameters(crossover
probability, mutation probability, maximum number of
generations, and population size), TPR importance w1,
FPR importance w2

Output: updated sets of positive and negative spheres
(S+∗, S−∗)

1: Let r = (r+1 , . . . , r
+
a , r

−

1 , . . . , r
−

b ),
where r+i ∈ s

+

i and r−i ∈ s
−

i
2: lower← r
3: upper← (m+1 , . . . ,m

+
a ,m

−

1 , . . . ,m
−

b ),
where m+i =max d(c+i ∈ s

+

i , xj|yj=+ ∈ T ) and
m−i =max d(c−i ∈ s

−

i , xj|yj=− ∈ T )
4: Generate an initial population ranging from lower to

upper
5: while number of generations is less than maximum num-

ber of generations do
6: Compute the fitness of each individual as radii of S+

and S− using EvaluateFitness with w1,w2
7: Order the population and perform selection process
8: Perform crossover with crossover probability
9: Perform mutation with mutation probability and

(lower, upper)
10: Update the population for next generation
11: end while
12: Select the best individual corresponding to the best fit-

ness
13: Update S+ and S− by replacing their radii with the best

individual
14: Let S+∗ and S−∗ denote the updated sets of positive and

negative spheres
15: return (S+∗, S−∗)

Algorithm 5 EvaluateFitness
Input: a set of positive spheres S+, a set of negative spheres

S−, training set T = {(xi, yi)}, TPR importance w1, FPR
importance w2

Output: evaluated fitness value(mAUC)
1: Let y = (yi)
2: Let ŷ = (ŷi← PredictClass(xi, S+, S−))
3: Compute mAUC in Equation (7) using y, ŷ,w1,w2
4: return mAUC

and mutation. The updated set of spheres (S+∗, S−∗) returned
by this algorithm has the same centers as the set of spheres
(S+, S−) used as input but has different radii.
The process of evaluating the fitness of a solution in GA

is described in Algorithm 5. The modified AUC (mAUC) of
Equation (7) is computed using the sets S+ and S−, TPR
importance w1, FPR importance w2, and the training set
T , which are the inputs of the EvaluateFitness() function.
In the case of w1 = 1,w2 = 1, it is the same as the

Algorithm 6 PredictClass
Input: test instance x, a set of positive spheres S+, a set of

negative spheres S−

Output: predicted class label ĉl
1: if x is covered by a sphere in S+ then
2: ĉl ←+
3: else if x is covered by a sphere in S− then
4: ĉl ←−
5: else if x is covered by spheres in both S+and S− then
6: Find the closest center ci and let si denote the sphere
7: if si ∈ S+ then
8: ĉl ←+
9: else if si ∈ S− then

10: ĉl ←−
11: end if
12: else if x is not covered by any sphere then
13: Find the closest sphere face and let si denote the sphere

14: if si ∈ S+ then
15: ĉl ←+
16: else if si ∈ S− then
17: ĉl ←−
18: end if
19: end if
20: return ĉl

AUC of Equation (5). w1 and w2 will be described in detail
in Section III-C.

To compute AUC, the prediction class ŷ needs to be com-
puted based on the given sphere sets. This is performed by the
PredictClass() function described in Algorithm (7), which is
the Classification rule 1 and Classification rule 2 mentioned
in Section II-A. In brief, the class of the test instance follows
the class of the spheres if the instance is only covered by the
spheres of the same class; it follows the closest center class
if covered by different classes of spheres, and it follows the
class of the sphere with the closest distance to the sphere face
if it is not covered by any sphere.

B. AUC LEARNING OBJECTIVE FOR BOTH BALANCED
AND IMBALANCED DATA
In this study, the proposed LOCS method sets AUC as the
learning objective of classification. In fact, this works not
only for imbalanced data classification but also for cases
where the class distribution is balanced. This is because the
AUC measure itself is insensitive to class distribution [14].
There are different degrees of class imbalance, and there
is no absolute standard as to how much imbalance can be
said to be imbalanced or balanced. Setting the AUC as the
objective function for training the classifier works for both
balanced and imbalanced data as the AUC approximates
the accuracy as the number of positive instances TP+FN
becomes closer to the number of negative instances FP+TN
as shown in Equation (6). Therefore, if the classifier is trained
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FIGURE 3. Variation of the decision boundaries for kNN, CART, LOCS (w1:w2 = 1:1), LOCS (w1:w2 = 2:1), LOCS (w1:w2 = 3:1) at varying overlap
0%, 25%, 50%.
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to maximize the AUC, the advantage is that the degree of
imbalance when training the classifier need not be considered
as it can be used not only for the classification of imbalanced
data but also for balanced data. Empirical evidence will be
provided through an experiment in Section IV-B.

AUC =
1+ TPR− FPR

2

=
1+ TP

TP+FN −
FP

FP+TN

2

≈
TP+ FN + TP− FP

2(TP+ FN )

=
TP+ TN

TP+ FN + FP+ TN

= Accuracy, as
TP+ FN
FP+ TN

→ 1 (6)

C. IMPORTANCE OF TPR AND FPR
In real-world problems, the importance of TPR and FPR
may be different for each domain. For example, a precise
classification of the positive class may be more important
than misclassification of the negative class in the diagnosis
of diseases in the medical field or for the detection of defects
in the manufacturing industry. Another advantage of directly
setting the AUC as an objective function is that although the
AUC is composed of the same importance of TPR and FPR
(1:1), the importance within the objective function can be
freely controlled by assigning different weights such as (2:1)
and (3:1) to TPR and FPR as needed by simply modifying the
AUC.As shown in Equation (7), mAUC that assigns priorities
w1 and w2 to TPR and FPR, respectively, is suggested as
a learning objective of the proposed LOCS. As mentioned
above, in the case of w1 = 1, w2 = 1, the mAUC is the
same as the previously known AUC of Equation (5). Note
that, with w2 = 1, although the importance of TPR can
increase and the TPR may increase correspondingly as w1 is
increased to a number greater than one, the FPR may also
increase, and the AUC value of Equation (5) may decrease.
With the proposed method, users can appropriately control
the decision boundary of the classifier to suit their domain.

mAUC =
1+ w1 · TPR− w2 · FPR

2
(7)

The decision boundary of the model generated by the pro-
posed classifier was observed through a graphical example
to examine whether the proposed method works as designed.
The decision boundary of the proposed classifier and conven-
tional classifiers is as shown in Fig. 3. The graphic example
data was imbalanced data, with the number of positive and
negative classes being 60 and 300, respectively. The positive
class of the data consisted of three sub-clusters, and three
datasets were prepared by designing such that 0%, 25%, and
50% of the number of positive instances overlap with the neg-
ative class. ‘a%’ means that 60 × (a/100) positive instances
are located in the negative class region. For comparison of
decision boundaries, kNN (k = 5) and decision tree (CART)
were selected as conventional classifiers. In addition, in the

objective function of the proposed LOCS, the importance of
TPR and FPR varied from w1:w2 = 1:1 to w1:w2 = 3:1 so as
to observe how the decision boundary changes.

According to Fig. 3 (a) and (d), it was found that con-
ventional classifiers (kNN, CART) classified well even in
imbalanced data in areas where there was no overlap between
the two classes. However, conventional classifiers could not
properly classify positive classes as overlaps between classes
increased when comparing Fig. 3 (b)(e) and (c)(f). However,
in the case of LOCS, the decision boundary widened even in
the class overlapped area to maximize the objective function
mAUC as shown in Fig. 3 (g)(h)(i) where the overlap gradu-
ally increased. From another point of view, the change in the
decision boundary based on the importance of LOCS is as
shown in Fig. 3 (g)(j)(m), (h)(k)(n), (i)(l)(o). In particular, the
decision boundary did not change significantly even when the
TPR importance was increased because there was no overlap,
as shown in Fig. 3 (g)(j)(m). On the other hand, the LOCS
took a decision boundary towards the positive instances to
bear the loss of FPR and increase the TPR in regions with
severe overlap as the importance of TPR in the objective func-
tion increased, as shown in Fig. 3 (i)(l)(o). Therefore, to train
the classifier by varying the importance of true positive in a
specific situation, the decision boundary of the model can be
precisely varied by adjusting the TPR importance of LOCS.

IV. NUMERICAL EXPERIMENTS
In this section, the performance of the proposed classifier
LOCS was verified through experiments. The main aim of
this experiment is to examine the design intent of the pro-
posed method for various distributions of real-world data
sets. The various environments of experiments conducted
in this study are described in Section IV-A. The effect of
maximizing the AUC for balanced data on the increase in
accuracy was examined in Section IV-B. The performance
of the proposed classifier LOCS was verified by comparing
it with the conventional methodologies for imbalanced data
classification such as resampling methods and CSL methods
in Section IV-C. The importance of TPR and FPR within the
mAUC of LOCS was varied as mentioned above to examine
whether the performance changed as intended based on vari-
ous real data sets in Section IV-D.

A. EXPERIMENTAL SETTINGS
The total experimental environments are described in this
section. The characteristics of binary class real data sets to
be used in the experiment, that is, IR, class description, total
number of instances, number of attributes, number of positive
instances, and number of negative instances, are as shown in
Table 2. All datasets were obtained from UCI data reposi-
tory [43] and KEEL data repository [44] and sorted in ascend-
ing order based on IR. The experimental data were selected
by considering the various number of instances (214-5,820),
attributes (7-32), and IRs (1.1-87.8). In this experiment, five
data with less than two IR (#1-#5) were defined as balanced
data, and 20 data with two IR or more (#6-#25) were defined
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TABLE 2. Detail description of datasets.

as imbalanced data to be used in the experiment. For the
datasets with originally more than two classes, we chose
the classes with fewer instances as the positive class and
integrated the other classes as the negative class. Therefore,
the classification task involved discriminating specific classes
from the others. In addition, all data were normalized.

The benchmarking classifiers for comparison were random
sphere cover (RSC) [41], classification and regression tree
(CART) [45], and support vector machine (SVM) [46]. Ran-
dom over-sampling (ROS), random under-sampling (RUS),
SMOTE [15], adaptive-SMOTE (AS) [47], under-sampling
using sensitivity (USS) [48], and clustering and density-based
hybrid (CDBH) [49] were used as resampling methods to
solve the imbalance problem, and the cost-sensitive CART
(CS-CART) and cost-sensitive SVM (CS-SVM) were used
as CSL methods. SMOTE used k= 5, and the kernel of SVM
was a radial basis function. Although LOCS was designed to
maximize AUC, G-mean and F1-score [13], which are given
below, with AUC were used for performance evaluation.

G-mean =
√
TPR× TNR (8)

F1-score =
2TP

2TP+ FP+ FN
(9)

Fifty models were trained after assigning one to the
majority instance and different values from 1 to 50 to the
minority instance as misclassification cost for CSL. Among
them, the cost with the best performance according to AUC,
G-mean, and F1-score was respectively selected as the mis-
classification cost for the minority. For the parameter α of
the sphere-based classifier RSC and the proposed method
LOCS, the highest performance accoridng to the evaluation
measures selected its value from 1 to 10 with considera-
tion of various data sizes. The crossover probability, the

TABLE 3. Accuracy and AUC performances of LOCS in the balanced cases.

mutation probability, and the population size, which are the
GA parameters in the LOCS, were set to 0.8, 0.1, and 200,
respectively. The 10-fold cross validation was applied in
all experiments, the accuracy of Equation (2) was used for
balanced cases, and the AUC of Equation (5), G-mean, and
F1-score were used for imbalanced cases to evaluate the
experimental results.

B. BALANCED CASES
The performances of classifiers for relatively balanced data
were compared. The accuracy of CART, SVM, RSC, LOCS,
and AUC results of LOCS for data #1 to #5 with less than two
IR are summarized in Table 3. In other words, LOCS (Acc) is
the accuracy of the classifier trained with the proposed algo-
rithm, and LOCS (AUC) is the AUC performance of the same
classifier. For the five data, although there was a slight differ-
ence in accuracy performance for each of the four classifiers,
it showed that there was no significant difference between
the AUC value and the accuracy value of the LOCS that
maximizes AUC. It experimentally supports the fact that the
proposed algorithm works well for balanced data because the
AUCmaximization approximated the accuracymaximization
as the number of positive instances approximated the number
of negative instances, which implies as IR approximated one
as the aforementioned theoretical analysis.
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FIGURE 4. Comparison of accuracy and AUC performances between RSC and LOCS on phishing and pima data. We artificially increased the IR by
repeatedly removing positive instances from data.

TABLE 4. AUC performances of resampling methods and LOCS in the imbalanced cases. R denotes rank of each method.

The robustness of the proposed method for changes in IR
was compared with the conventional sphere-based classifier
RSC through an experiment. A comparison of the accuracy
and the AUC of RSC and LOCS by removing 20 and 10
positive instances from each phishing data (#1) and pima
data (#5) repeatedly is shown in Fig. 4. As a result of repeat-
edly removing positive instances until no positive spheres
were constructed, the IRs of the two data increased to 14.04

and 3.62. For both data, the accuracy of RSC increased
as IR increased, while the AUC value of RSC decreased.
This is because the classifier was trained mainly on negative
classes to increase accuracy as the IR increased as expected.
On the contrary, as the influence of positive instances grad-
ually decreased, the AUC value continuously decreased.
In contrast, LOCS was similar to the RSC in terms of both
accuracy and AUCwhen the IR of data was low, and the AUC
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TABLE 5. G-mean performances of resampling methods and LOCS in the imbalanced cases. R denotes rank of each method.

TABLE 6. F1-score performances of resampling methods and LOCS in the imbalanced cases. R denotes rank of each method.

performance remained robust even when the IR increased.
As a result, it was found that setting the objective function as

AUC in LOCS was effective in classifying both imbalanced
and balanced data.
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FIGURE 5. AUC differences of existing methods from LOCS. (a) AUC differences of resampling methods from LOCS. (b) AUC differences of CSL methods
from LOCS.

FIGURE 6. G-mean differences of existing methods from LOCS. (a) G-mean differences of resampling methods from LOCS. (b) G-mean differences of CSL
methods from LOCS.

C. IMBALANCED CASES
The performance of LOCSwas compared with representative
methods of two approaches, resampling approaches and CSL
approaches, to solve the imbalanced classification problem.
To this end, 20 imbalanced datasets ranging from glass0 (#6)
to wine-quality-red-8 (#25) were used. The comparison of
AUC, G-mean, and F1-score performances of the resampling
methods and LOCS is summarized as shown in Table 4,
Table 5, and Table 6, respectively. ROS, RUS, SMOTE, AS,
USS, and CDBHwere used as comparisonmethods, and RSC
classifier was used as the base learner of each comparison
method. The data number and IR, the rank of the performance
in the right column of each method, and the average rank in
the last row are as shown in the tables In addition, the results

of the method with the highest performance for each data are
emphasized in bold.

The AUC results are shown in Table 4. Although one of
the resampling methods showed better results than LOCS
in #6, #8, #9, #10, #11, #13, #14, #16, #18, #22, #23, #24,
and #25 data, LOCS showed the best result in all other data.
The average rank of all data showed that LOCS ranked 2.4,
ROS, RUS, SM, AS, USS, and CDBH ranked 5.45, 3.9, 3.8,
4.8, 4.15, and 3.5, respectively. To make further comparisons,
we conducted statistical analyses of the experimental results
by adopting the Wilcoxon Signed-Rank test [50]. From the
bottom of Table 4, we can see that LOCS has significantly
better performances than others because the p-value are very
small.
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FIGURE 7. F1-score differences of existing methods from LOCS. (a) F1-score differences of resampling methods from LOCS. (b) F1-score differences of CSL
methods from LOCS.

Likewise, the G-mean results and the F1-score results are
shown in Table 5 and Table 6 respectively. The G-mean
results are very similar to the AUC results. According to
the average rank, the best performing method was LOCS,
which was followed by CDBH, RUS, USS, SM, AS, and
ROS in sequence. TheWilcoxon Signed-Rank tests supported
the significant better performance of the proposed method.
However, the F1-score results, which are shown in Table 6,
were different from the AUC and G-mean results. The best
performance came with SM which average rank was 2.3.
LOCS was comparable with ROS, AS, and CDBH, which
can be seen from the insignificant p-values of the Wilcoxon
Signed-Rank tests. These are due to that F1-score evaluates
TP and FP, i.e. number of instances, while AUC and G-mean
evaluate the rates TPR, FPR, and TNR. Although FP is small,
F1-score is small if TP is not large enough. This is why the
F1-scores tend to decrease as IR increases, which can be seen
from Table 6.

A demonstration of the AUC values of ROS, RUS, SM,AS,
USS, and CDBH subtracted from the AUC values of LOCS
in each data from the results of Table 4 is shown in Fig. 5 (a).
If the difference is greater than zero, it implies that the
performance of LOCS was better. Except for some data, the
AUC value difference was found to be greater than 0 in most
of the data, and in particular, the AUC difference was found
to be greater in the data with a large IR. The same demon-
strations for G-mean and F1-score are shown in Fig. 6 (a)
and Fig. 7 (a) respectively. The G-mean graph provides the
same interpretation with the AUC case, whereas the F1-score
graph shows that LOCS was worse than RUS, SM, and AD
for several datasets. Considering that the proposed method
was designed to maximize AUC, we believe that these results
are reasonable.

The results of comparing LOCS with CSL for the
same 20 imbalanced data are shown in Table 7, Table 8,

TABLE 7. AUC performances of CSL methods and LOCS in the imbalanced
cases. R and C denote rank and misclassification cost corresponding to
highest AUC, respectively.

and Table 9, where each table corresponds to AUC, G-Mean,
and F-score, respectively. CART and SVM, which are
widely used, were selected as the base learners of CSL.
As mentioned above, the classifier was trained by fixing the
misclassification cost of the negative class to one and varying
the misclassification cost of the positive class from 1 to 50.
Among 50 classifiers, the classifier with the highest perfor-
mance according to each evaluation measure was selected,
and its performance was shown along with the cost. In the
average rank of each method, LOCS ranked 1.5, CS-CART
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TABLE 8. G-mean performances of CSL methods and LOCS in the
imbalanced cases. R and C denote rank and misclassification cost
corresponding to highest G-mean, respectively.

TABLE 9. F1-score performances of CSL methods and LOCS in the
imbalanced cases. R and C denote rank and misclassification cost
corresponding to highest F1-score, respectively.

ranked 2.65, and CS-SVM ranked 1.85, in terms of AUC,
indicating that LOCS had the best performance on aver-
age. The Wilcoxon Signed-Rank test results with the small
p-values are shown at the bottom of Table 7. The ranking of
three methods are the same in the G-mean table. However,

TABLE 10. Classification performances of LOCS with different importance
settings.

the F1-score table shows a difference that the cost-sensitive
SVM performed the best. When comparing the positive
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misclassification cost, which showed the best performance in
CSL, with the IR of each data, it was found that the cost that
showed the best performance was not significantly related to
IR. In addition, among the nine data (IR 11-IR 87.8) from
led7digit02456789vs (#17) to winequality-red-8 (#25), the
AUC and G-mean performances of LOCS were high in all
data except for the data of yeast1vs7 (#19). This was shown
in Fig. 5 (b) and Fig. 6 (b). These figures are the results
of plotting the difference in AUC and G-mean values of
LOCS and CSL methods in data order. As in the figures for
comparing with the resampling methods, a value greater than
zero indicated better performance of LOCS. It was found that
the difference in performance between the LOCS and CSL
methods is relatively large in data with a large IR.

D. DIFFERENT IMPORTANCE FOR TPR AND FPR
An experiment was conducted to observe how the TPR impor-
tance (w1) and FPR importance (w2) of Equation (7) affect
the classification result. After fixing w2 = 1, and training the
classifier by varying w1 from one to three, the performance
has been summarized in Table 10. The performance of RSC
was included in the table as a baseline. The results of #8
data show that, as w1 of LOCS increased from one to three,
TPR values increased to 0.795, 0.895, and 0.923 as intended.
However, as the FPR values also increased to 0.373, 0.521,
and 0.558, the AUC values decreased to 0.711, 0.687, and
0.682. This means that FP increased as the TPR importance
increased to classify positive instances more accurately. The
increase in the TPR value as the TPR importance increased
was also found in data #6, #7, #10, #11, #13, #14, #15, #16,
#19, and #22. In some cases, a further increase in AUC was
found as the degree of increase in FPR was relatively small
compared to the degree of increase in TPR with an increase
in w1. The TPR value did not change even when w1 was
increased in the case of #9, #12, #17, #18, #20, #21, and
#24 data. On the other hand, it was found that the FPR value
gradually increased and the AUC value gradually decreased.

V. CONCLUSION
In this study, a new classification method, called LOCS,
was proposed to solve the imbalanced data learning problem
based on a sphere-based classifier. The proposed algorithm
was designed to set the AUC, which is a widely used evalua-
tion measure in imbalanced data classification, as a learning
objective to construct a sphere classifier that maximizes this
parameter. The advantage of the proposed method is that
it can be applied regardless of the degree of class imbal-
ance because the closer the two classes are to the balanced
state, the closer the AUC is to accuracy. In addition, it can
be modified appropriately for the application domain and
utilized by setting different importance levels for TPR and
FPR. The effectiveness of LOCS was verified in numerical
experiments based on 25 real datasets. The best performance
was shown in 13 out of 20 imbalanced datasets in comparison
experiments with conventional resampling approaches, and
the best performance was shown in 12 out of 20 datasets

in comparison experiments with conventional CSL methods.
The CSL took a long time to learn because different misclas-
sification costs had to be tried, while the proposed algorithm
showed satisfactory performance with single learning. It was
found that LOCS can produce robust classification results,
even with changes in class distribution through experiments
that varied in IR. In addition, experiments have shown that
the proposed algorithm can be effectively used in practical
domains by controlling the importance of TPR and FPR.
Further studies are required to extend the proposed method
to multi-class problems, because this study was limited to
binary classification. A promising future research direction is
to employ, instead of AUC, another metrics such as G-mean
and F-scores as learning objectives in the proposed learning
framework.
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